В статье было рассказано о сути метода параллельного проектирования и его свойствах. Но как показывает практика, учащимся трудно воспринимать теоретические выкладки без демонстрации на конкретных примерах.

В данной статье покажем, как использовать свойства параллельного проектирования и свойства известных школьникам плоских фигур (треугольника, параллелограмма, трапеции, круга и шестиугольника) для изображения этих фигур при параллельном проектировании .

1. Изображение треугольника

1) Любой треугольник (прямоугольный, равнобедренный, правильной) изображается произвольным треугольником в удобном расположении на рисунке.

2) Если ΔA 1 B 1 C 1 – прямоугольный, то изображение направлений двух его высот (катетов) задано. Произвольно изображаются высота, опущенная на гипотенузу, и центр вписанной окружности. Изображение перпендикуляра, опущенного из заданной точки гипотенузы на какой-либо катет, является отрезком, параллельным другому катету.

3) Если ΔA 1 B 1 C 1 – равнобедренный, то изображение медианы B 1 D 1 является изображением высоты и биссектрисы ΔA 1 B 1 C 1 . Изображение центра вписанной и описанной окружностей принадлежат BD.

4) Если ΔA 1 B 1 C 1 – правильный (равносторонний), то центры вписанной и описанной окружностей совпадают и лежат в точке пересечения медиан. Поэтому построение изображения этого треугольника не может быть произвольным, если задан, например, центр одной из этих окружностей.

2. Изображение параллелограмма

Любой заданный параллелограмм A 1 B 1 C 1 D 1 (включая прямоугольник, квадрат, ромб) может быть изображен произвольным параллелограммом ABCD.

На изображении произвольного параллелограмма изображения двух его высот, проведенных из одной вершины, можно построить произвольно. Причем высоты, проведенные из вершины острого угла параллелограмма – оригинала, лежат вне параллелограмма, а высоты, проведенные из вершины тупого угла – внутри него.

1) Если A 1 B 1 C 1 D 1 – ромб, то на изображении определяется пара взаимно перпендикулярных прямых – это диагонали ABCD. Поэтому произвольно можно построить изображение только лишь одной высоты из данной вершины ромб на его сторону.

При изображении другой высоты ромба учитывают, что основания этих высот лежат на прямой, параллельной диагонали ромба.

Аналогично изображаются перпендикуляры, опущенные на стороны ромба из любой точки его диагонали.

2) Если A 1 B 1 C 1 D 1 – квадрат, то его изображение – произвольный параллелограмм ABCD. Причем изображения высот, биссектрис, углов, перпендикуляров к сторонам строить произвольно нельзя.

3. Изображение трапеции

Любая трапеция A 1 B 1 C 1 D 1 (а также равнобокая и прямоугольная) может быть изображена произвольной трапецией ABCD.

1) Если A 1 B 1 C 1 D 1 - трапеция общего вида, то изображение ее высоты и одного из перпендикуляров, опущенных из точки основания на боковые стороны, можно строить произвольно.

2) Если A 1 B 1 C 1 D 1 - прямоугольная трапеция, то C 1 B 1 ⊥ A 1 B 1 , изображение высоты трапеции уже задано на рисунке, поэтому произвольно может быть изображен лишь перпендикуляр к наклонной боковой стороне.

3) Если A 1 B 1 C 1 D 1 - равнобокая трапеция (есть ось симметрии), то изображением высоты является отрезок, соединяющий середины верхнего и нижнего оснований трапеции (или ему параллельный).

4. Изображение окружности

Параллельной проекцией окружности является эллипс. Центром окружности на изображении является точка пересечения сопряженных диаметров эллипса. Два диаметра окружности (эллипса) называются сопряженными, если каждый из них делит пополам все хорды, параллельные другому диаметру.

4. Изображение правильного шестиугольника

Правильный шестиугольник A 1 B 1 C 1 D 1 E 1 F 1 изображается так: сначала изображается произвольный параллелограмм BCEF и проводятся его диагонали BE и CF; затем от точки их пересечения О откладываются равные отрезки произвольной длины (но большей половины стороны ВС) параллельно сторонам BC и EF. Концы построенных отрезков – это вершины A и D.

Итак, мы рассмотрели всевозможные варианты изображения плоских фигур на плоскости с использованием метода параллельного проектирования .

В следующей статье мы рассмотрим изображение пространственных фигур на плоскости .

Изображение окружностей в изометрической проекции

Рассмотрим, как в изометрической проекции изображаются окружности. Для этого изобразим куб с вписанными в его грани окружностями (рис. 3.16). Окружности, расположенные соответственно в плоскостях, перпендикулярных осям х, у, z, изображаются в изометрии в виде трех одинаковых эллипсов.

Рис. 3.16.

Для упрощения работы эллипсы заменяют овалами, очерчиваемыми дугами окружностей, их строят так (рис. 3.17). Вычерчивают ромб, в который должен вписываться овал, изображающий данную окружность в изометрической проекции. Для этого на осях откладывают от точки О в четырех направлениях отрезки, равные радиусу изображаемой окружности (рис. 3.17, а ). Через полученные точки a, b, с, d проводят прямые, образующие ромб. Его стороны равны диаметру изображаемой окружности.

Рис. 3.17.

Из вершин тупых углов (точек А и В ) описывают между точками а и b, а также с и d дуги радиусом R, равным длине прямых Ва или Вb (рис. 3.17, б ).

Точки С и Д лежащие на пересечении диагонали ромба с прямыми Ва и Вb, являются центрами малых дуг, сопрягающих большие.

Малые дуги описывают радиусом R, равным отрезку Са (Db ).

Построение изометрических проекций деталей

Рассмотрим построение изометрической проекции детали, два вида которой даны на рис. 3.18, а.

Построение выполняют в следующем порядке. Сначала вычерчивают исходную форму детали – угольник. Затем строят овалы, изображающие дугу (рис. 3.18, б ) и окружности (рис. 3.18, в).

Рис. 3.18.

Для этого на вертикально расположенной плоскости находят точку О, через которую проводят изометрические оси х и z. Таким построением получают ромб, в который вписана половина овала (рис. 3.18, б ). Овалы на параллельно расположенных плоскостях строят перенесением центров дуг на отрезок, равный расстоянию между данными плоскостями. Двойными кружочками на рис. 3.18 показаны центры этих дуг.

На тех же осях х и z строят ромб со стороной, равной диаметру окружности d. В ромб вписывают овал (рис. 3.18, в).

Находят центр окружности на горизонтально расположенной грани, проводят изометрические оси, строят ромб, в который вписывают овал (рис. 3.18, г ).

Понятие о диметрической прямоугольной проекции

Расположение осей диметрической проекции и способ их построения приведены на рис. 3.19. Ось z проводят вертикально, ось х – под углом около 7° к горизонтали, а ось у образует с горизонталью угол приблизительно в 41° (рис. 3.19, а ). Построить оси можно, пользуясь линейкой и циркулем. Для этого из точки О откладывают по горизонтали вправо и влево по восемь равных делений (рис. 3.19, б ). Из крайних точек восставляют перпендикуляры. Высота их равна: для перпендикуляра к оси х – одному делению, для перпендикуляра к оси у – семи делениям. Крайние точки перпендикуляров соединяют с точкой О.

Рис. 3.19.

При вычерчивании диметрической проекции, как и при построении фронтальной, размеры по оси у сокращают в 2 раза, а по осям х и z откладывают без сокращений.

На рис. 3.20 показана диметрическая проекция куба с вписанными в его грани окружностями. Как видно из этого рисунка, окружности в диметрической проекции изображаются эллипсами.

Рис. 3.20.

Технический рисунок

Технический рисунок – это наглядное изображение, выполненное по правилам аксонометрических проекций от руки, на глаз. Им пользуются в тех случаях, когда нужно быстро и наглядно показать на бумаге форму предмета. Обычно в этом возникает необходимость при конструировании, изобретательстве и рационализации, а также при обучении чтению чертежей, когда с помощью технического рисунка нужно пояснить форму детали, представленной на чертеже.

Выполняя технический рисунок, придерживаются правил построения аксонометрических проекций: под теми же углами располагают оси, так же сокращают размеры по осям, соблюдают форму эллипсов и последовательность построения.