Фронтальная изометрическая проекция характерна тем, что все линии предмета, параллельные фронтальной плоскости проекций, изобразятся во фронтальной изометрической проекции без искажения. Положение аксонометрических осей приведено на рис. 79. Допускается применять фронтальные изометрические проекции с углом наклона оси y к оси х 30 и 60°. Фронтальную изометрическую проекцию выполняют без искажения линейных размеров по всем трем осям. Окружности, расположенные в плоскостях, параллельных фронтальной плоскости проекций П 2 , проецируются на аксонометрическую плоскость в окружности того же диаметра. Окружности, лежащие в плоскостях, параллельных плоскостям проекций П 1 и П 3 , проецируются в виде эллипсов.

Предмет во фронтальной изометрической проекции следует располагать по отношению к осям так, чтобы сложные плоские фигуры, окружности, дуги плоских кривых находились в плоскостях, параллельных фронтальной плоскости проекций. Тогда построение их упрощается, так как они изображаются без искажений.

Рис. 79. Изображение окружности
в косоугольной фронтальной диметрической проекции

Рис. 80. Расположение большой и малой осей эллипса

Рис. 81. Построение эллипса

Рис. 82. Косоугольная фронтальная изометрическая
проекция окружности

Вопросы для самоконтроля

1. Какие проекции называются аксонометрическими?

2. Как производится переход от ортогональных координат к аксонометрическим?

3. Что такое треугольник следов?

4. Чему равны показатели искажения аксонометрических осей в прямоугольных изометрических и диметрических проекциях?

5. Что такое аксонометрический масштаб?

6. Укажите коэффициенты искажения для большой и малой оси эллипса – аксонометрической проекции окружности, принадлежащей координатной плоскости (или параллельной ей) для изометрии и диметрии.

7. Сформулируйте теорему Польке.

8. В чем различие между прямоугольными и косоугольными аксонометрическими проекциями?

Задача: Построить аксонометрическую проекцию кривой линии, заданной в ортогональных проекциях.

Косоугольные аксонометрические проекции характеризуются двумя основными признаками: плоскость аксонометрических проекций располагайся параллельно одной из граней предмета, которая изображается без искажения; направление проецирования выбирается косоугольное (составляет с плоскостью проекций острый угол), что дает возможность спроецировать и две другие грани или стороны предмета, но уже с искажением.

Название фронтальная или горизонтальная определяет положение плоскости аксонометрических проекций относительно основных сторон или граней предмета.

Аксонометрические изображения предметов при косоугольном проецировании оказываются менее наглядными, чем при прямоугольном проецировании. Изображенные предметы воспринимаются -только деформированными, со скошенностью в направлении, перпендикулярном плоскости проекций. Однако изображения в косоугольной аксонометрии обладают важным преимуществом, которое довольно часто используют в техническом черчении:плоские элементы предмета, параллельные плоскости аксонометрических проекций, проецируются без искажения. В черчении косоугольные аксонометрические проекции используют в случаях, когда нужно изобразить без искажения части предмета сложной криволинейной формы.

Фронтальная диметрическая проекция. Аксонометрические оси фронтальной диметрии располагаются следующим образом (Рис. 59а): ось ОZ -вертикальная, ось ОХ - горизонтальная, ось OY делит угол ZOX пополам и направлена вправо вниз. Ось OY можно построить, отложив от горизонтали угол 45°. По осям ОХ и OZ, размеры изображения проецируются в истинную величину, а по оси OY сокращаются вдвое.

Фронтальная диметрическая проекция куба с окружностями, вписанными в три видимые грани, показана на рис.596. В передней грани параллельной координатной плоскости XOZ окружность изображается без искажений, в двух других гранях - одинаковыми эллипсами, большие оси которых равны 1,07D, а малые - 0.33D, где D - диаметр окружности, вписанной в грани куба. Направления больших осей эллипсов отклоняются от большей диагонали аксонометрии описанного квадрата (параллелограмма) на 7°.

Фронтальную диметрию целесообразно применять в тех случаях, когда требуется сохранить неискаженными фигуры, расположенные во фронтальных плоскостях что упрощает построение аксонометрического изображения.

Фронтальная изометрическая проекция.
Во фронтальной изометрии положение осей (рис. 60а) аналогично положению осей во фронтальной ди-метрии. По всем осям размеры откладывают без сокращений, в истинную величину. На рис. 606 построена фронтальная изометрия куба. Искажение общей формы изображенного предмета и неестественная вытянутость куба вдоль оси OY в этой проекции больше, чем во фронтальной диметрии. Эллипсы рекомендуется строить по восьми точкам. Направление осей эллипсов совпадает с диагоналями граней куба.

Расположение осей во фронтальной изометрии, как и в других аксонометрических проекциях, дает вид предмета сверху.



Горизонтальная изометрическая проекция . Аксонометрические оси горизонтальной изометрии располагают следующим образом (рис. 61а): ось 0Z - вертикальная, угол между осями ОХ и OY равен 90°, ось OY составляет с горизонталью угол 30°. ГОСТ 2.317-69* допускает применять и другие углы между горизонталью и осью OY - 45 и 60°, при этом угол 90° между осями ОХ и OY сохраняется. По всем осям размеры откладывают без искажений, в истинную величину. Искажение формы и вытянутость куба направлены вдоль оси OZ. (Рис. 616).

Размеры осей эллипса, расположенного в грани, параллельной координатной плоскости Y0Z, равны осям эллипсов прямоугольной изометрии. Вместо этого эллипса можно построить овал. Второй эллипс строят по восьми точкам. Оси эллипса совпадают с направлением диагоналей граней куба.

В горизонтальной изометрии плоские фигуры, расположенные на плане и в горизонтальных плоскостях, не искажаются. Это свойство проекции используют при изображении в аксонометрии строительных объектов, когда надо сохранить неискаженными конфигурацию и размерные соотношения плана.

8.2. Ортогональные проекции.


Прямоугольное проецирование на две и три плоскости проекций.

Аксонометрические и перспективные изображения обладают хорошей наглядностью, но по ним трудно определить истинные размеры изображенных предметов, а также воспроизвести их в натуре. Поэтому в основу получения изображений на чертежах положен метод прямоугольного (ортогонального) проецирования на две или три взаимно перпендикулярные плоскости проекций. (Рис.62). Прямоугольные проекции (чертежи) предмета обладают следующим преимуществом: при наличии масштаба и размеров по чертежам можно воспроизвести изображенные предметы в точном соответствии с проектным замыслом.

Две проекции определяют положение, форму и размеры изображенного на чертеже предмета; третья проекция определяется пересечением соответствующих линий связи.

Чертеж предмета должен давать полное представление о форме изображаемого предмета, его устройстве, размерах, материале, из которого изготовлен предмет, а также содержать сведения о способах его изготовления. Вместе с тем чертеж предмета должен быть лаконичным и содержать минимальное количество изображений и текста, достаточных для свободного чтения чертежа, изготовления по нему детали и ее контроля.

Для лучшего понимания и чтения чертежи должны составляться по общим правилам. Все требования к оформлению чертежей, а также условные обозначения, содержащиеся на чертежах, должны быть единообразными. Поэтому при составлении чертежей необходимо руководствоваться основными положениями и правилами ГОСТов «Единой системы конструкторской документации». Все изображения на чертежах в зависимости от их содержания разделяются на виды, разрезы, сечения.

Изображения предметов на чертежах образуются с помощью прямоугольного проецирования предмета на плоскости проекций. При этом предполагается, что предмет расположен между, наблюдателем и соответствующей плоскостью проекций.

Предмет должен располагаться относительно фронтальной плоскости проекций так, чтобы изображение на ней наиболее полно отображало форму и размеры предмета при наилучшем использовании поля чертежа.

За основные плоскости проекций принимают шесть граней куба. Предмет мысленно помещают внутри этого куба (заднюю его грань принимают за фронтальную плоскость проекций) и строят проекции предмета на каждой грани. Если после этого развернуть грани куба до совмещения с фронтальной плоскостью, то получим изображения предмета на шести плоскостях проекций.

На каждой плоскости проекций получается изображение обращенной к наблюдателю видимой части предмета; такое изображение называется видом. В зависимости от направления проецирования установлены следующие названия видов, получаемых на основных плоскостях проекций: 1 - вид спереди (главный вид); 2 - вид сверху; 3 - вид слева; 4 - вид справа; 5 - вид снизу; 6 - вид сзади.

Названия видов на чертежах, выполненных в проекционной связи, не указывают. Чтобы уменьшить количество видов, допускается на них показывать невидимые части поверхностей предметов штриховыми линиями. Виды предмета должны быть увязаны между собой, вид сверху располагается под видом спереди, а виды слева и справа - на одном уровне с видом спереди (справа от него при взгляде на предмет слева и слева от него при взгляде на предмет справа). (Рис.63).


Рис. 63

Для того чтобы правильно разместить изображения предмета и его частей на рабочем поле чертежа, необходимо:

Выбрав масштаб чертежа, определить для каждого вида его основные габаритные размеры: для вида сверху - наибольшую длину и ширину предмета, для вида спереди - наибольшие длину и высоту и т. д.;

Полученные размеры перевести на выбранный масштаб чертежа;

Каждое изображение выразить в виде прямоугольника по установленным в масштабе габаритным размерам;

Для определения формата чертежа полученные размеры прямоугольнике расположить с возможной равномерной плотностью и с учетом необходимых мест для выносных и размерных линий и поясняющих надписей;

После схематической компоновки чертежа приступают к детальному изображению видов предмета внутри этих прямоугольников.

Для тoгo чтобы получить аксонометрическую проекцию пред­мета (рис. 106), необходимо мысленно: поместить предмет в сис­тему координат; выбрать аксонометрическую плоскость проекций и расположить предмет перед ней; выбрать направление парал­лельных проецирующих лучей, которое не должно совпадать ни с одной из аксонометрических осей; направить проецирующие лучи через все точки предмета и координатные оси до пересечения с аксонометрической плоскостью проекций, получив тем самым изображение проецируемого предмета и координатных осей.

На аксонометрической плоскости проекций получают изобра­жение - аксонометрическую проекцию предмета, а также про­екции осей систем координат, которые называют аксонометриче­скими осями.

Аксонометрической проекцией называется изображение, по­лученное на аксонометрической плоскости в результате парал­лельного проецирования предмета вместе с системой координат, которое наглядно отображает его форму.

Система координат состоит из трех взаимно пересекающихся плоскостей, которые имеют фиксированную точку - начало координат (точку О) и три оси (X, У, Z), исходящие из нее и расположенные под прямым углом друг к другу. Сис­тема координат позволяет производить измерения по осям, определяя положение предметов в пространстве.

Рис. 106. Получение аксонометрической (прямоугольной изометрической) проекции

Можно получить множество аксонометрических проекций, по- разному располагая предмет перед плоскостью и выбирая при этом различное направление проецирующих лучей (рис. 107).

Наиболее употребляемой является так называемая прямо­угольная изометрическая проекция (в дальнейшем будем использовать ее сокращенное название - изометрическая проек­ция). Изометрической проекцией (см. рис. 107, а) называется та­кая проекция, у которой коэффициенты искажения по всем трем осям равны, а углы между аксонометрическими осями составляют 120°. Изометрическая проекция получается с помощью па­раллельного проецирования.


Рис. 107. Аксонометрические проекции, установленные ГОСТ 2.317-69:
а - прямоугольная изометрическая проекция; б - прямоугольная диметрическая проекция;
в - косоугольная фронтальная изометриче­ская проекция;
г - косоугольная фронтальная диметрическая проекция



Рис. 107. Продолжение: д - косоугольная горизонтальная изометриче­ская проекция

При этом проецирующие лучи пер­пендикулярны аксонометрической плоскости проекций, а коор­динатные оси одинаково наклонены к аксонометрической плоско­сти проекций (cм. рис. 106). Если сравнить линейные размеры предмета и соответствующие им размеры аксонометрического изображения, то можно увидеть, что на изображении эти размеры меньше, чем действительные. Величины, показывающие отноше­ние размеров проекций отрезков прямых к действительным их размерам, называют коэффициентами искажения. Коэффициен­ты искажения (К) по осям изометрической проекции одинаковы и равны 0,82, однако для удобства построения используют так называемые практические коэффициенты искажения, которые равны единице (рис. 108).


Рис. 108. Положение осей и коэффициенты искажения изометрической проекции

Существуют изометрические, диметрические и триметрические проекции. К изометрическим проекциям относятся такие проекции, которые имеют одинаковые коэффициенты искажения по всем трем осям. Диметрическими проекциями называются такие проекции, у которых два коэффициента искажения по осям одинаковые, а величина третьего отличается от них. К триметрическим проекциям относятся проекции, у которых все коэффици­енты искажения различны.

Для наглядного изображения предметов (изделий или их составных частей) рекомендуется применять аксонометрические проекции, выбирая в каждом отдельном случае наиболее подходящую из них.

Сущность метода аксонометрического проецирования заключается в том, что заданный предмет вместе с координатной системой, к которой он отнесен в пространстве, параллельным пучком лучей проецируется на некоторую плоскость. Направление проецирования на аксонометрическую плоскость не совпадает ни с одной из координатных осей и не параллельно ни одной из координатных плоскостей.

Все виды аксонометрических проекций характеризуются двумя параметрами: направлением аксонометрических осей и коэффициентами искажения по этим осям. Под коэффициентом искажения понимается отношение величины изображения в аксонометрической проекции к величине изображения в ортогональной проекции.

В зависимости от соотношения коэффициентов искажения аксонометрические проекции подразделяются на:

Изометрические, когда все три коэффициента искажения одинаковы (k x =k y =k z);

Диметрические, когда коэффициенты искажения одинаковы по двум осям, а третий не равен им (k x = k z ≠k y);

Триметрические, когда все три коэффициенты искажения не равны между собой (k x ≠k y ≠k z).

В зависимости от направления проецирующих лучей аксонометрические проекции подразделяются на прямоугольные и косоугольные. Если проецирующие лучи перпендикулярны аксонометрической плоскости проекций, то такая проекция называется прямоугольной. К прямоугольным аксонометрическим проекциям относятся изометрическая и диметрическая. Если проецирующие лучи направлены под углом к аксонометрической плоскости проекций, то такая проекция называется косоугольной. К косоугольным аксонометрическим проекциям относятся фронтальная изометрическая, горизонтальная изометрическая и фронтальная диметрическая проекции.

В прямоугольной изометрии углы между осями равны 120°. Действительный коэффициент искажения по аксонометрическим осям равен 0,82, но на практике для удобства построения показатель принимают равным 1. Вследствие этого аксонометрическое изображение получается увеличенным в раза.

Изометрические оси изображены на рисунке 57.


Рисунок 57

Построение изометрических осей можно выполнить при помощи циркуля (рисунок 58). Для этого сначала проводят горизонтальную линию и перпендикулярно к ней проводят ось Z. Из точки пересечения оси Z с горизонтальной линией (точка О) проводят вспомогательную окружность произвольным радиусом, которая пересекает ось Z в точке А. Из точки А этим же радиусом проводят вторую окружность до пересечения с первой в точках В и С. Полученную точку В соединяют с точкой О - получают направление оси Х. Таким же образом соединяют точку С с точкой О - получают направление оси Y.


Рисунок 58

Построение изометрической проекции шестиугольника представлено на рисунке 59. Для этого необходимо отложить по оси X радиус описанной окружности шестиугольника в обе стороны относительно начала координат. Затем, по оси Y отложить величину размера под ключ, из полученных точек провести линии параллельно оси X и отложить по ним величину стороны шестиугольника.


Рисунок 59

Построение окружности в прямоугольной изометрической проекции

Наиболее сложной плоской фигурой для вычерчивания в аксонометрии является окружность. Как известно, окружность в изометрии проецируется в эллипс, но построение эллипса довольно сложно, поэтому ГОСТ 2.317-69 рекомендует вместо эллипсов применять овалы. Существует несколько способов построения изометрических овалов. Рассмотрим один из наиболее распространенных.

Размер большой оси эллипса 1,22d, малой 0,7d, где d - диаметр той окружности, изометрия которой строится. На рисунке 60 показан графический способ определения большой и малой осей изометрического эллипса. Для определения малой оси эллипса соединяют точки С и D. Из точек С и D, как из центров, проводят дуги радиусов, равных СD, до взаимного их пересечения. Отрезок АВ - большая ось эллипса.


Рисунок 60

Установив направление большой и малой осей овала в зависимости от того, какой координатной плоскости принадлежит окружность, по размерам большой и малой оси проводят две концентрические окружности, в пересечении которых с осями намечают точки О 1 , О 2 , О 3 , О 4 , являющиеся центрами дуг овала (рисунок 61).

Для определения точек сопряжения проводят линии центров, соединяя О 1 , О 2 , О 3 , О 4 . из полученных центров О 1 , О 2 , О 3 , О 4 проводят дуги радиусами R и R 1 . размеры радиусов видны на чертеже.


Рисунок 61

Направление осей эллипса или овала зависит от положения проецируемой окружности. Существует следующее правило: большая ось эллипса всегда перпендикулярна к той аксонометрической оси, которая на данную плоскость проецируется в точку, а малая ось совпадает с направлением этой оси (рисунок 62).


Рисунок 62

Штриховка и изометрической проекции

Линии штриховки сечений в изометрической проекции, согласно ГОСТ 2.317-69, должны иметь направление, параллельное или только большим диагоналям квадрата, или только малым.

Прямоугольной диметрией называется аксонометрическая проекция с равными показателями искажения по двум осям X и Z, а по оси Y показатель искажения в два раза меньше.

По ГОСТ 2.317-69 применяют в прямоугольной диметрии ось Z, расположенную вертикально, ось Х наклонную под углом 7°, а ось Y-под углом 41° к линии горизонта. Показатели искажения по осям X и Z равны 0,94, а по оси Y-0,47. Обычно применяют приведенные коэффициенты k x =k z =1, k y =0,5, т.е. по осям X и Z или по направлениям им параллельным, откладывают действительные размеры, а по оси Y размеры уменьшают в два раза.

Для построения осей диметрии пользуются способом, указанным на рисунке 63, который заключается в следующем:

На горизонтальной прямой, проходящей через точку О, откладывают в обе стороны восемь равных произвольных отрезков. Из конечных точек этих отрезков вниз по вертикали откладывают слева один такой же отрезок, а справа - семь. Полученные точки соединяют с точкой О и получают направление аксонометрических осей X и Y в прямоугольной диметрии.


Рисунок 63

Построение диметрической проекции шестиугольника

Рассмотрим построение в диметрии правильного шестиугольника, расположенного в плоскости П 1 (рисунок 64).


Рисунок 64

На оси Х откладываем отрезок равный величине b , чтобы его середина находилась в точке О, а по оси Y - отрезок а , размер которого уменьшен вдвое. Через полученные точки 1 и 2 проводим прямые параллельно оси ОХ, на которых откладываем отрезки равные стороне шестиугольника в натуральную величину с серединой в точках 1 и 2. Полученные вершины соединяем. На рисунке 65а изображен в диметрии шестиугольник, расположенный параллельно фронтальной плоскости, а на рисунке 66б -параллельно профильной плоскости проекции.


Рисунок 65

Построение окружности в диметрии

В прямоугольной диметрии все окружности изображаются эллипсами,

Длина большой оси для всех эллипсов одинакова и равна 1,06d. Величина малой оси различна: для фронтальной плоскости равна 0,95d , для горизонтальной и профильной плоскостей - 0,35 d.

На практике эллипс заменяется четырехцентровым овалом. Рассмотрим построение овала, заменяющего проекцию окружности, лежащей в горизонтальной и профильной плоскостях (рисунок 66).

Через точку О - начало аксонометрических осей, проводим две взаимно перпендикулярные прямые и откладываем на горизонтальной линии величину большой оси АВ=1,06d , а на вертикальной линии величину малой оси СD=0,35d. Вверх и вниз от О по вертикали откладываем отрезки ОО 1 и ОО 2 , равные по величине 1,06d. Точки О 1 и О 2 являются центром больших дуг овала. Для определения еще двух центров (О 3 и О 4) откладываем на горизонтальной прямой от точек А и В отрезки АО 3 и ВО 4 , равные ¼ величины малой оси эллипса, то есть d.


Рисунок 66

Затем, из точек О1 и О2 проводим дуги, радиус которых равен расстоянию до точек С и D, а из точек О3 и О4 - радиусом до точек А и В (рисунок 67).


Рисунок 67

Построение овала, заменяющего эллипс, от окружности, расположенной в плоскости П 2 , рассмотрим на рисунке 68. Проводим оси диметрии: Х, Y, Z. Малая ось эллипса совпадает с направлением оси Y, а большая перпендикулярна к ней. На осях Х и Z от начала откладываем величину радиуса окружности и получаем точки M, N, K, L, являющиеся точками сопряжения дуг овала. Из точек M и N проводим горизонтальные прямые, которые в пересечении с осью Y и перпендикуляром к ней дают точки О 1 , О 2, О 3, О 4 - центры дуг овала (рисунок 68).

Из центров О 3 и О 4 описывают дугу радиусом R 2 =О 3 М, а из центров О 1 и О 2 - дуги радиусом R 1 = О 2 N


Рисунок 68

Штриховка а прямоугольной диметрии

Линии штриховки разрезов и сечений в аксонометрических проекциях выполняются параллельно одной из диагоналей квадрата, стороны которого расположены в соответствующих плоскостях параллельно аксонометрическим осям (рисунок 69).


Рисунок 69

  1. Какие виды аксонометрических проекций вы знаете?
  2. Под каким углом расположены оси в изометрии?
  3. Какую фигуру представляет изометрическая проекция окружности?
  4. Как расположена большая ось эллипса для окружности, принадлежащей профильной плоскости проекций?
  5. Какие приняты коэффициенты искажения по осям X, Y, Z для построения диметрической проекции?
  6. Под какими углами расположены оси в диметрии?
  7. Какой фигурой будет являться диметрическая проекция квадрата?
  8. Как построить диметрическую проекцию окружности, расположенной во фронтальной проскости проекций?
  9. Основные правила нанесения штриховки в аксонометрических проекциях.

Косоугольная фронтальная диметрическая проекция.

Положение осей во фронтальной диметрии аналогичны расположению осей во фронтальной изометрии. Её следует строить без сокращения по осям ОХ и OZ и с сокращением в два раза по оси ОY ; коэффициенты искажения по осям ОХ и OZ равны 1, по оси ОY – 0,5.

На рис. 68 изображены: а – аксонометрические оси; б – аксонометри­ческая проекция куба с окружностями, вписанными в три видимые грани.

Рис. 68. Косоугольная фронтальная диметрия

В передней грани, параллельной координатной плоскости XOZ , окруж­ность изображается без искажений, в двух других гранях – одинаковыми эллипсами, большие оси которых равны 1,07 D , а малые – 0,33 D , где D – диаметр вписанной окружности. Направления больших осей эллипсов отклоняются от большей диагонали параллелограмма на 7º. Эти эллипсы можно также вычертить способом, указанным для прямоугольной диметрии (см. рис. 63б), так как различие в размерах осей незначительно.

Пример фронтальной диметрической проекции детали приведён на рис. 69.

Косоугольные фронтальные диметрические и изометрические проекции рекомендуется применять в тех случаях, когда целесообразно сохранить неискажёнными элементы фигуры, расположенные во фронтальных плоскостях. Это значительно упрощает построение аксонометрического изображения.

Рис. 69. Деталь с разрезом в косоугольной фронтальной диметрии

5.5.7. Косоугольная горизонтальная изометрическая проекция.

Расположение аксонометрических осей с нанесением штриховки в раз­резах и аксонометрическая проекция куба с вписанными в грани окруж­ностями представлены на рис. 70. Ось ОY составляет с горизонталью угол 30 0 . ГОСТ 2.317-69 допускает применять и другие углы между горизонталью и осью ОУ , при этом угол 90° между осями ОХ и ОY сохраняется. Коэффициент искажения по осям ОХ, ОY и OZ равен 1. Размеры осей эллипса, расположенного в грани, параллельной координатной плоскости YOZ , равны осям эллипсов прямоугольной изометрии. Вместо эллипса можно построить овал способом, приведённым на рис. 59. Второй эллипс в грани, параллельной плоскости ХОZ , строят по восьми точкам. Оси эллипсов совпадают с диагоналями граней куба.

Рис. 70. Косоугольная горизонтальная изометрия

В горизонтальной изометрии фигуры или их элементы, расположенные в горизонтальных плоскостях, не искажаются. Поэтому этот вид аксонометрии применяют тогда, когда требуется изобразить в натуральную величину фигуры, лежащие в плоскостях, параллельных горизонтальной плоскости проекций.

Пример горизонтальной изометрической проекции приведён на рис. 71.

Рис. 71. Деталь в косоугольной горизонтальной изометрии

Вопросы для самоконтроля

1. Как располагают предмет относительно фронтальной плоскости проекций?

2. Как разделяют изображения на чертеже в зависимости от их содержания?

3. Какое изображение называется видом?

4.Как располагаются основные виды в проекционной связи на чертеже и каковы их названия?

5. Какие виды обозначают и как их надписывают?

6. Какие виды называются дополнительными, какие – местными?

7. Какое изображение называется разрезом?

8. Как при разрезах указывают положение секущей плоскости?

9. Какой надписью отмечают разрез?

10. Как разделяются разрезы в зависимости от положения секущей плоскости?

11. Как классифицируются разрезы в зависимости от числа секущих плоскостей?

12. Какие разрезы называются ступенчатыми? Как их вычерчивают и обозначают?

13. Какой разрез называется местным и как он выделяется на виде?

14. Что служит разделяющей линией при соединении половины вида и разреза?

15. Что служит линией раздела, если при соединении половины вида и разреза с осью симметрии совпадает контурная линия?

16. Как показывают в разрезе ребро жесткости, если секущая плоскость направлена вдоль его длинной стороны?

17. Какое изображение принимают на чертеже в качестве главного?

18. Как располагаются основные виды в проекционной связи на чертеже и каковы их названия?

19. Какое изображение называется разрезом?

20.Как при разрезах указывают положение секущей плоскости?

21. Где могут быть расположены горизонтальный, фронтальный и профильный разрезы и когда их не обозначают?

22. Как в сложном разрезе проводят линию сечения?

23. Какие разрезы называются ступенчатыми? Как их вычерчивают и обозначают?

24. Какой разрез называется местным и как он выделяется на виде?

25. Что служит разделяющей линией при соединении половины вида и разреза?

26. Что служит линией раздела, если при соединении половины вида и разреза с осью симметрии совпадает контурная линия?

27. Как показывают в разрезе ребро жесткости, если секущая плоскость направлена вдоль его длинной стороны?

28. Каковы особенности изометрической прямоугольной проекции?

29. Как построить прямоугольную изометрию окружности, расположен­ную в горизонтальной координатной плоскости (фронтальной, профильной)?

30. Как построить овал по четырём точкам в прямоугольной изометрии?

31. Каков порядок построения аксонометрии детали, заданной её про­екциями?

32. Как располагаются оси в прямоугольной диметрии? Чему равны коэффициенты искажения?

33. Чем руководствуются при выборе вида прямоугольной аксономет­рической проекции?

34. В каких единицах проставляются линейные размеры на чертежах и указывается ли единица измерения?

35. Допускается ли использование линий контура, осевых и центровых линий в качестве размерных?

36. Допускается ли пересекать или разделять размерные числа линиями чертежа?

37. Какие знаки используют для нанесения размеров диаметра и радиуса окружности, квадрата и уклона?

38. В каких случаях допускается проводить размерные линии с обрывом?