Аналитическое задание функции

Функция %%y = f(x), x \in X%% задана явным аналитическим способом , если дана формула, указывающая последовательность математических действий, которые надо выполнить с аргументом %%x%%, чтобы получить значение %%f(x)%% этой функции.

Пример

  • %% y = 2 x^2 + 3x + 5, x \in \mathbb{R}%%;
  • %% y = \frac{1}{x - 5}, x \neq 5%%;
  • %% y = \sqrt{x}, x \geq 0%%.

Так, например, в физике при равноускоренном прямолинейном движении скорость тела определяется формулой %%v = v_0 + a t%%, а формула для перемещения %%s%% тела при равномерно ускоренном движении на промежутке времени от %%0%% до %%t%% записывается в виде: %% s = s_0 + v_0 t + \frac{a t^2}{2} %%.

Кусочно-заданные функции

Иногда рассматриваемая функция может быть задана несколькими формулами, действующими на различных участках области ее определения, в которой изменяется аргумент функции. Например: $$ y = \begin{cases} x ^ 2,~ если~x < 0, \\ \sqrt{x},~ если~x \geq 0. \end{cases} $$

Функции такого вида иногда называют составными или кусочно-заданными . Примером такой функции является %%y = |x|%%

Область определения функции

Если функция задана явным аналитическим способом с помощью формулы, но область определения функции в виде множества %%D%% не указана, то под %%D%% будем всегда подразумевать множество значений аргумента %%x%%, при которых данная формула имеет смысл. Так для функции %%y = x^2%% областью определения служит множество %%D = \mathbb{R} = (-\infty, +\infty)%%, поскольку аргумент %%x%% может принимать любые значения на числовой прямой . А для функции %%y = \frac{1}{\sqrt{1 - x^2}}%% областью определения будет множество значений %%x%% удовлетворяющих неравенству %%1 - x^2 > 0%%, т.е. %%D = (-1, 1)%%.

Преимущества явного аналитического задания функции

Отметим, что явный аналитический способ задания функции достаточно компактен (формула, как правило, занимает немного места), легко воспроизводим (формулу нетрудно записать) и наиболее приспособлен к выполнению над функциями математических действий и преобразований.

Некоторые из этих действий - алгебраические (сложение, умножение и др.) - хорошо известны из школьного курса математики, другие (дифференцирование, интегрирование) будем изучать в дальнейшем. Однако этот способ не всегда нагляден, так как не всегда четок характер зависимости функции от аргумента, а для нахождения значений функции (если они необходимы) требуются иногда громоздкие вычисления.

Неявное задание функции

Функция %%y = f(x)%% задана неявным аналитическим способом , если дано соотношение $$F(x,y) = 0, ~~~~~~~~~~(1)$$ связывающее значения функции %%y%% и аргумента %%x%%. Если задавать значения аргумента, то для нахождения значения %%y%%, соответствующего конкретному значению %%x%%, необходимо решить уравнение %%(1)%% относительно %%y%% при этом конкретном значении %%x%%.

При заданном значении %%x%% уравнение %%(1)%% может не иметь решения или иметь более одного решения. В первом случае заданное значение %%x%% не принадлежит области определения неявно заданной функции, а во втором случае задает многозначную функцию , имеющую при данном значении аргумента более одного значения.

Отметим, что если уравнение %%(1)%% удается явно разрешить относительно %%y = f(x)%%, то получаем ту же функцию, но уже заданную явным аналитическим способом. Так, уравнение %%x + y^5 - 1 = 0%%

и равенство %%y = \sqrt{1 - x}%% определяют одну и ту же функцию.

Параметрическое задание функции

Когда зависимость %%y%% от %%x%% не задана непосредственно, а вместо этого даны зависимости обоих переменных %%x%% и %%y%% от некоторой третьей вспомогательной переменной %%t%% в виде

$$ \begin{cases} x = \varphi(t),\\ y = \psi(t), \end{cases} ~~~t \in T \subseteq \mathbb{R}, ~~~~~~~~~~(2) $$то говорят о параметрическом способе задания функции;

тогда вспомогательную переменную %%t%% называют параметром.

Если из уравнений %%(2)%% удается исключить параметр %%t%%, то приходят к функции, заданной явной или неявной аналитической зависимостью %%y%% от %%x%%. Например, из соотношений $$ \begin{cases} x = 2 t + 5, \\ y = 4 t + 12, \end{cases}, ~~~t \in \mathbb{R}, $$ исключением параметра %%t%% получим зависимость %%y = 2 x + 2%%, которая задает в плоскости %%xOy%% прямую.

Графический способ

Пример графического задания функции

Приведенные выше примеры показывают, что аналитическому способу задания функции соответствует ее графическое изображение , которое можно рассматривать как удобную и наглядную форму описания функции. Иногда используют графический способ задания функции, когда зависимость %%y%% от %%x%% задают линией на плоскости %%xOy%%. Однако при всей наглядности он проигрывает в точности, поскольку значения аргумента и соответствующие им значения функции можно получить из графика лишь приближенно. Возникающая при этом погрешность зависит от масштаба и точности измерения абсциссы и ординаты отдельных точек графика. В дальнейшем графику функции отведем роль только иллюстрации поведения функции и поэтому будем ограничиваться построением «эскизов» графиков, отражающих основные особенности функций.

Табличный способ

Отметим табличный способ задания функции, когда некоторые значения аргумента и соответствующие им значения функции в определенном порядке размещаются в таблице. Так построены известные таблицы тригонометрических функций, таблицы логарифмов и т.п. В виде таблицы обычно представляют зависимость между величинами, измеряемыми при экспериментальных исследованиях, наблюдениях, испытаниях.

Недостаток этого способа состоит в невозможности непосредственного определения значений функции для значений аргумента, не входящих в таблицу. Если есть уверенность, что непредставленные в таблице значения аргумента принадлежат области определения рассматриваемой функции, то соответствующие им значения функции могут быть вычислены приближенно при помощи интерполяции и экстраполяции.

Пример

x 3 5.1 10 12.5
y 9 23 80 110

Алгоритмический и словесный способы задания функций

Функцию можно задать алгоритмическим (или программным ) способом, который широко используют при вычислениях на ЭВМ.

Наконец, можно отметить описательный (или словесный ) способ задания функции, когда правило соответствия значений функции значениям аргумента выражено словами.

Например, функцию %%[x] = m~\forall {x \in с помощью трех формул.

Если зависимость между х и у задана формулой, разрешенной относительно у, т.е. имеет вид у = f(x) , то говорят, что функция от х задана в явном виде, например,. Если же значения х и у связаны некоторым уравнением видаF(x,y) = 0, т.е. формула не разрешена относительно у, то говорят, что функция задана неявно. Например,. Заметим, что не всякую неявную функцию можно представить в виде у =f(x), наоборот, любую явную функцию всегда можно представить в виде неявной:
. Еще одна разновидность аналитического задания функции – параметрическое, когда аргумент х и функция у являются функциями третьей величины – параметраt:
, где
, Т – некоторый промежуток. Такой способ широко применяется в механике, в геометрии.

Аналитический способ является самым распространенным способом задания функции. Компактность, возможность применения к данной функции аппарата математического анализа, возможность вычисления значений функции при любых значениях аргумента – его основные преимущества.

4. Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами. Например, функция Е(х) – целая часть числа х, функция Дирихле, функция Римана,n!,r(n) – число делителей натурального числаn.

5. Полуграфический способ. Здесь значения функции представляются в виде отрезков, а значения аргумента – в виде чисел, проставленных на концах отрезков, указывающих значения функции. Так, например, в термометре есть шкала с равными делениями, у которых проставлены числа. Эти числа являются значениями аргумента (температуры). Они стоят на том месте, которое определяет графическое удлинение столбца ртути (значения функции) в связи с ее объемным расширением в результате температурных изменений.


Различные способы задания функции Аналитический, графический, табличный – наиболее простые, а потому наиболее популярные способы задания функции, для наших нужд этих способов вполне достаточно. Аналитическийграфическийтабличный На самом деле в математике имеется довольно много различных способов задания функции и один из них – словесный, который используется в весьма своеобразных ситуациях.


Словесный способ задания функции Функция может быть задана и словесно, т. е. описательно. Например, так называемая функция Дирихле задается следующим образом: функция у равна 0 для всех рациональных и 1 для всех иррациональных значений аргумента х. Такая функция не может быть задана таблицей, так как она определяется на всей числовой оси и множество значений ее аргумента бесконечно. Графически данная функция также не может быть задана. Аналитическое выражение для этой функции было, все же найдено, но оно так сложно, что не имеет практического значения. Словесный же способ дает краткое и ясное ее определение.


Пример 1 Функция y = f (x) задана на множестве всех неотрицательных чисел с помощью следующего правила: каждому числу х 0 ставится в соответствии первый знак после запятой в десятичной записи числа x. Если, скажем, х = 2,534, то f(х) = 5 (первый знак после запятой – цифра 5); если х = 13,002, то f(х) = 0; если х = 2/3, то, записав 2/3 в виде бесконечной десятичной дроби 0,6666…, находим f(x) = 6. А чему равно значение f(15)? Оно равно 0, так как 15 = 15,000…, и мы видим, что первый десятичный знак после запятой есть 0 (вообще – то верно равенство 15 = 14,999…, но математики договорились не рассматривать бесконечные периодические десятичные дроби с периодом 9).


Любое неотрицательное число х можно записать в виде десятичной дроби (конечной или бесконечной), а потому для каждого значения х можно найти определенное число значений первого знака после запятой, так что мы можем говорить о функции, хотя и несколько необычной. D (f) = . = 2 [" title="Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 [" class="link_thumb"> 7 Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 = 47 [ - 0,23] = - 1 x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 ["> x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 = 47 [ - 0,23] = - 1"> x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 [" title="Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 ["> title="Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 [">


Из всех указанных способов задания функции наибольшие возможности для применения аппарата математического анализа дает аналитический способ, а н нн наибольшей наглядностью обладает г гг графический. Вот почему математический анализ основывается на глубоком синтезе аналитических и геометрических методов. Исследование функций, заданных аналитически, проводится гораздо легче и становится наглядным, если параллельно рассматривать и графики этих функций.





Х у=х


Великий математик - Дирихле В профессор Берлинского, с 1855 Гёттингенского университетов. Основные труды по теории чисел и математическому анализу. В области математического анализа Дирихле впервые точно сформулировал и исследовал понятие условной сходимости ряда, установил признак сходимости ряда (т.н. признак Дирихле, 1862), дал (1829) строгое доказательство возможности разложения в ряд Фурье функции, имеющей конечное число максимумов и минимумов. Значительные работы Дирихле посвящены механике и математической физике (принцип Дирихле в теории гармонической функции). Дирихле Петер Густав Лежён () Немецкий математик, иностранный чл.-корр. Петербургской АН (с), член Лондонского королевского общества (1855), Парижской АН (1854), Берлинской АН. Дирихле доказал теорему о существовании бесконечно большого числа простых чисел во всякой арифметической прогрессии из целых чисел, первый член и разность которой - числа взаимно простые и изучал (1837) закон распределения простых чисел в арифметических прогрессиях, в связи с чем ввел функциональные ряды особого вида (т.н. ряды Дирихле).



является заданной, иначе говоря, известной, если для каждого значения возможного числа аргументов можно узнать соответствующее значение функции. Наиболее распространенные три способа задания функции : табличный, графический, аналитический, существуют еще словесный и рекурсивный способы.

1. Табличный способ наиболее широко распространен (таблицы логарифмов , квадратных корней), основное его достоинство - возможность получения числового значения функции , недостатки заключаются в том, что таблица может быть трудно читаема и иногда не содержит промежуточных значений аргумента.

Например:

x

y

Аргумент х принимает заданные в таблице значения, а у определяется соответственно этому аргументу х .

2. Графический способ заключается в проведении линии (графика), у которой абсциссы изображают значения аргумента, а ординаты - соответствующие значения функции . Часто для наглядности масштабы на осях принимают разными.

Например: для нахождения по графику у , которому соответствует х = 2,5 необходимо провести перпендикуляр к оси х на отметке 2,5 . Отметку можно довольно точно сделать с помощью линейки. Тогда найдем, что при х = 2,5 у равно 7,5 , однако если нам необходимо найти значение у при х равном 2,76 , то графический способ задания функции не будет достаточно точным, т.к. линейка не дает возможности для столь точного замера.

Достоинства этого способа задания функций заключаются в легкости и целостности восприятия, в непрерывности изменения аргумента; недостатком является уменьшение степени точности и сложность получения точных значений.

3. Аналитический способ состоит в задании функции одной или несколькими формулами. Основным достоинством этого способа является высокая точность определения функции от интересующего аргумента, а недостатком является затрата времени на проведение дополнительных математических операций.

Например:

Функцию можно задать с помощью математической формулы y= x 2 , тогда если х равно 2 , то у равно 4, возводим х в квадрат.

4. Словесный способ состоит в задании функции обычным языком, т.е. словами. При этом необходимо дать входные, выходные значения и соответствие между ними.

Например:

Словесно можно задать функцию (задачу), принимающуюся в виде натурального аргумента х с соответствующим значением суммы цифр, из которых состоит значение у . Поясняем: если х равно 4 , то у равно 4 , а если х равно 358 , то у равен сумме 3 + 5 + 8 , т. е 16 . Далее аналогично.

5. Рекурсивный способ состоит в задании функции через саму себя, при этом значения функции определяются через другие ее же значения. Такой способ задания функции используется в задании множеств и рядов.

Например:

При разложении числа Эйлера задается функцией:

Ее сокращение приведено ниже:

При прямом расчёте возникает бесконечная рекурсия, но можно доказать, что значение f(n) при возрастании n стремится к единице (поэтому, несмотря на бесконечность ряда , значение числа Эйлера конечно). Для приближённого вычисления значения e достаточно искусственно ограничить глубину рекурсии некоторым наперёд заданным числом и по достижении его использовать вместо f(n) единицу.

Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций


Понятие функции является основным и первоначальным, как и понятие множества. Пусть X - некоторое множество действительных чисел х. Если каждому х € X по некоторому закону поставлено в соответствие определенное действительное число у, то говорят, что на множестве X задана функция и пишут Введенную таким образом функцию называют числовой. При этом множество X называют областью onределения функции, а независимую переменную х - аргументом. Для указания функции иногда используют только символ, которым обозначен закон соответствия, т. е. вместо f(x) п и шут просто /. Таким образом, функция задана, если указаны 1) область определения 2) правило /, которое каждому значению а: € X ставит в соответствие определенное число у = /(х) - значение функции, отвечающее этому значению аргумента х. Функции / и g называют равными, если их области определения совпадают и равенство f(x) = g(x) верно для любого значения аргумента х из их обшей области определения. Так, функции у, не являются равными; они равны только на отрезке [О, I]. Примеры функций. 1. Последовательность {о„} есть функция целочисленного аргумента, определенная на множестве натуральных чисел, такая, что /(п) = ап (п = 1,2,...). 2. Функция у = п? (читается «эн-факториал»). Задана на множестве натуральных чисел: каждому натуральному числу п ставится в соответствие произведение всех натуральных чисел от 1 до п включительно: причем условно полагают 0! = 1. Обозначение sign происходит от латинского слова signum - знак. Эта функция определена на всей числовой прямой множество ее значений состоит из трех чисел -1,0, I (рис. 1). у = |х), где (х) обозначает целую часть действительного числа х, т. е. [х| - наибольшее целое число, не превосходящее Читается: -игрек равно антье икс» (фр. entier). Эта функция задана на всей числовой оси, а множество всех ее значений состоит из целых чисел (рис. 2). Способы задания функции Аналитическое задание функции Функция у = f(x) называется заданной аналитически, если она определяется с помощью формулы, указывающей, какие действия надо произвести над каждым значением х, чтобы получить соответствующее значение у. Например, функция задана аналитически. При этом под областью определения функции (если она заранее не указана) понимается множество всех действительных значений аргумента х, при которых аналитическое выражение, определяющее функцию, принимает лишь действительные и конечные значения. В этом смысле область определения функции называют также ее областью существования. Для функции областью определения является отрезок Для функции у - sin х область определения - вся числовая ось. Заметим, что не всякая формула определяет функцию. Например, формула никакую функцию не определяет, так как нет ни одного действительного значения х, при котором имели б ы действительные значения оба написанных выше корня. Аналитическое задание функции может выглядеть достаточно сложно. В частности, функция может быть задана различными формулами на различных частях своей области определения. Например, функция может быть определена так: 1.2. Графический способ задания функции Функция у = f(x) называется заданной графически, если задан ее график, т.е. множество точек (ху/(х)) на плоскости хОу, абсциссы которых принадлежат области определения функции, а ординаты равны соответствующим значениям функции (рис.4). Не для каждой функции ее график можно изобразить на рисунке. Например, функция Дирихле если х - рациональное, если х - иррациональное, ZX \о, не допускает такого изображения. Функция Я(х) задана на всей числовой оси, а множество ее значений состоит из двух чисел 0 и 1. 1.3. Табличный способ задания функции Функция называется заданной таблично, если приведена таблица, в которой указаны численные значения функции для некоторых значений аргумента. При табличном задании функции ее область определения состоит только из значений x\t x2i..., хп, перечисленных в таблице. §2. Предел функции в точке Понятие предела функции является центральным в математическом анализе. Пусть функция f(x) определена в некоторой окрестности Q точки xq, кроме, быть может, самой точки доопределение (Коши). Число А называется пределом функции f(x) в точке хо, если для любого числа е > 0. которое может быть как угодно малым, существует число <5 > 0, такое, что для всех iGH.i^ ж0, удовлетворяющих условию верно неравенство Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций Обозначение: С помощьюлогическихсимволов это определение выражается следующим образом Примеры. 1. Пользуясь определением предела функции в точке, показать, что Функция определена всюду, включая точку zo = 1: /(1) = 5. Возьмем любое. Для того, чтобы неравенство |(2х + 3) - 5| имело место, необходимо выполнение следующих неравенств Следовательно, если взять будем иметь. Это означает, что число 5 есть предел функции: в точке 2. Пользуясь определением предела функции, показать, что Функция не определена в точке хо = 2. Рассмотрим /(х) в некоторой окрестности точки-Xq = 2, например, на интервале (1, 5), не содержащем точку х = 0, в которой функция /(х) также не определена. Возьмем произвольное число с > 0 и преобразуем выражение |/(х) - 2| при х ф 2 следующим образом Для х б (1, 5) получаем неравенство Отсюда видно, что если взять 6 = с, то для всех х € (1,5), подчиненных условию будет верно неравенство Это означает, что число Л - 2 является пределом данной функции в точке Дадим геометрическое пояснение понятия предела функции в точке, обратившись к ее графику (рис. 5). При х значения функции /(х) определяются ординатами точек кривой М\М,при х > хо - ординатами точек кривой ММ2. Значение /(х0) определяется ординатой точки N. График данной функции получается, если взять «хорошую» кривую М\ММг и точку М(х0, А) на кривой заменитьточкой jV. Покажем, что в точке хо функция /(х) имеет предел, равный числу А (ординате точки М). Возьмем любое (как угодно малое) число е > 0. Отметим на оси Оу точки с ординатами А, А - е, А + е. Обозначим через Р и Q точки пересечения графика функции у = /(х) с прямыми у = А- епу = А + е. Пусть абсциссы этих точек есть х0 - Ль х0 + hi соответственно (ht > 0, /12 > 0). Из рисунка видно, что для любого х Ф х0 из интервала (х0 - h\, х0 + hi) значение функции /(х) заключено между. для всех х ^ хо, удовлетворя ющих условию верно неравенство Положим Тогда интервал будет содержаться в интервале и, следовательно, неравенство или, что тоже, будет выполнено для всех х, удовлетворяющих условию Это доказывает, что Таким образом, функция у = /(х) имеетпредел А вточкехо, если, какой быузкой ни была е-полоска между прямыми у = А- ену = А + е, найдется такое «5 > 0, что для всех х из проколотой окрестности точки х0 точки графика функции у = /(х) оказываются внутри указанной е-полоски. Замечание 1. Величина б зависитот е: 6 = 6(e). Замечание 2. В определении предела функции в точке Xq сама точка хо из рассмотрения исключается. Таким образом, значение функции в точке Хо нс влияет на предел функции в этой точке. Более того, функция может быть даже не определена в точке Xq. Поэтому две функции, равные в окрестности точки Xq, исключая, быть может, саму точку хо (в ней они могут иметь разные значения, одна из них или обе вместе могут быть не определены), имеют при х - Xq один и тот же предел или обе не имеют предела. Отсюда, в частности, следует, чтодля отыскания вточке хо предела дроби законно сокращать эту дробь на равные выражения, обращающиеся в нуль при х = Xq. Пример 1. Найти Функция /(х) = j для всех х Ф 0 равна единице, а в точке х = 0 не определена. Заменив /(х) на равную ей при х 0 функцию д(х) = 1, получаем Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций Пример 2. Найти lim /(х), где Функция, совпадает с функцией /(х) всюду, исключая точку х = 0, и имеет в точке х = 0 предел, равный нулю: lim д(х) = 0 (покажите это!). Поэтому lim /(х) = 0. Задача. Сформулировать с помощью неравенств (на языке е -6), что означает Пусть функция /(я) определена в некоторой окрестности П точки х0, кроме, быть может, самой точки х0. Определение (Гейне). Число А называется пределом функции /(х) в точке х0, если для любой последовательности {хп} значений аргумента х 6 П, z„ / х0), сходящейся к точке х0, соответствующая последовательность значений функции {/(х„)} сходится к числу А. Приведенным определением удобно пользоваться, когда надо установить, что функция /(х) не имеет предела в точке х0. Для этого достаточно найти какую-нибудь последовательность {/(хп)}, не имеющую предела, или же указать две последовательности {/(хп)} и {/(х"п)}, имеющие различные пределы. Покажем, например, чтофунк-иия /(х) = sin j (рис.7), определенная ВСЮДУ, Кроме ТОЧКИ X = О, Рис.7 н е имеет предела в точке х = 0. Рассмотрим две последовательности {, сходящиеся к точке х = 0. Соответствующие последовательности значений функции /(х) сходятся к разным пределам: последовательность {sinnTr} сходится к нулю, а последовательность {sin(5 + - к единице. Это означает, что функция /(х) = sin j в точке х = 0 предела не имеет. Замечание. Оба определения предела функии» в точке (определение Коши и определение Гейне) равносильны. §3. Теоремы о пределах Теорема 1 (единственность предела). Если функция f(x) имеет предел в точке хо, то этот предел единственный. А Пусть lim /(х) = А. Покажем, что никакое число В ф А не может быть пределом х-х0 функции /(х) вточкех0. Тотфакт,что lim /(х) ф Вспомощьюлогическихсимволов ХО формулируется так: Воспользовавшись неравенством получаем, Возьмем е = > 0. Поскольку lim /(х) = А, для выбранного е > 0 найдется 6 > 0 такое, что Из соотношения (1) для указанных значений х имеем Итак, нашлось такое, что каким бы малым ни было существуют х Ф xQ, такие, что и вместе с тем ^ е. Отсюда В Определение. Функция /(х) называется ограниченной в окрестности точки х0> если существуют числа М > 0 и 6 > 0 такие, что Теорема 2 (ограниченность функции, имеющей предел). Если функция f{x) определена в окрестности точки х0 и имеет в точке х0 конечный предел, то она ограничена в некоторой окрестности этой точки. м Пусть Тогда для любого например, для е = 1, найдется такое 6 > О, что для всех х Ф х0, удовлетворяющих условию будет верно неравенство Замечая, что всегда получим Положим. Тогда в каждой точке х интервала будем иметь Это означает, согласно определению, что функция /(х) ограничена в окрестности Напротив, из ограниченности функции /(х) в окрестности точки х0 не следует существования предела функции /(х) в точке х0. Например, функция /(х) = sin офаничена в окрестности точки но не имеет предела в точке х = 0. Сформулируем еще две теоремы, геометрический смысл которыхдостаточноясен. Теорема 3 (переход к пределу в неравенстве). Если /(х) ^ ip(x) для всех х из некоторой окрестности точки х0, кроме, быть может, самой точки х0, и каждая из функций /(х) и ip(x) в точке х0 имеет предел, то Заметим, что из строгого неравенства для функций не обязательно следует строгое неравенство для их пределов. Если эти пределы существуют, то мы можем утверждать лишь, что Так, например, для функций выполнено неравенство в то время как Теорема 4 (предел промежуточной функции). Если для всех х в некоторой окрестности точки Xq, кроме, быть может, самой точки х0 (рис.9), и функции f{x) и ip(x) в точке хо имеют один и тот же предел А, то и функция f(x) в точке х0 имеет предел, равный этому же чиыу А. § 4. Предел функции в бесконечности Пусть функция /(х) определена либо на всей числовой оси, либо по крайней мерс для всех х, удовлетворяющих условию jx| > К при некотором К > 0. Определение. Число А называют пределом функции f(x) при х, стремящемся к бесконечности, и пишут если для любого е > 0 существует число jV > 0 такое, что для всех х, удовлетворяющих условию |х| > Лг, верно неравенство Заменив в этом определении условие соответственно, получим определения Из этих определений следует, что тогда и только тогда, когда одновременно Тот факт, геометрически означает следующее: какой бы узкой ни была е-полоска между прямыми у = А- еиу = А + е, найдется такая прямая х = N >0, что правее нес график функции у = /(ж) целиком содержится в указанной е-полоске (рис. 10). В этом случае говорят, что при х +оо график функции у = /(ж) асимптотически приближается к прямой у = А. Пример, Функция /(х) = jtjj- определена на всей числовой оси и представляет собой дробь, у которой числитель постоянен, а знаменатель неограниченно возрастает при |х| +оо. Естественно ожидать, что lim /(х)=0. Покажем это. М Возьмем любое е > 0, подчиненное условию Чтобы имело место соотношение должно выполняться неравенство с или, что то же, откуда Таким образом. если взять будем иметь. Это означает, что число есть предел данной функции при Заметим, что подкоренное выражение лишь для t ^ 1. В случае, когда, неравенство с выполняется автоматически для всех График четной функции у = - асимптотически приближается к прямой Задача. Сформулировать с помощью неравенств, что означает §5. Бесконечно малые функции Пусть функция а(х) определена в некоторой окрестности точки хо, кроме, быть может, самой точки х0. Определение. Функция а(х) называется бесконечно малой функцией (сокращенно б. м. ф.) при х, стремящемся к хо, если Понятие функции Способы задания функции Примеры функций Аналитическое задание функции Графический способ задания функции Предел функции в точке Табличный способ задания функции теоремы о пределах единственность предела ограниченность функции, имеющей предел переход к пределу в неравенстве Предел функции в бесконечности Бесконечно малые функции Свойства бесконечно малых функций Например, функция а(х) = х - 1 является б. м. ф. при х 1,таккак lim(x-l) = 0. График функции у = х-1 1-1 изображен на рис. II. Вообще, функция а(х)=х-х0 является простейшим примером б. м. ф. при х-»хо. Принимая во внимание определение предела функции вточке, определение б. м. ф. можно сформулировать так. Определение. Функция а(х) называется бесконечно малой при х -* хо, если для любого £ > 0 существует такое «5 > 0, что для всех х, удовлетворяющих условию, верно неравенство Наряду с понятием бесконечно малой функции при х хо вводится понятие бесконечно малой функции при Определение. Функция а(х) называется бесконечно малой при х -» оо, если то функция а(х) называется бесконечно малой соответственно при или при Например, функция является бесконечно малой при х -» оо, поскольку lim j = 0. Функция а(х) = е~х естьбесконечно малая функция при х-* +оо, так как В дальнейшем все понятия и теоремы, связанные с пределами функций, мы будем, как правило, рассматривать только применительнок случаю предела функции в точке, предоставляя читателю самому сформулировать соответствующие понятия и доказать аналогичные теоремы дня случаев, когда Свойства бесконечно малых функций Теорема 5. Если а{х) и Р(х) - б. м. ф. при х -* хо, то их сумма а(х) + Р(х) есть также б.м. ф. при х -» хо. 4 Возьмем любое е > 0. Так как а(х) - б.м.ф. при х -* хо, то найдется «51 > 0 такое, что для всех х Ф хо, удовлетворяющих условию верно неравенство По условию Р{х) также б.м.ф. при х хо, поэтому найдется такое, что для всех х Ф хо, удовлетворяющих условию верно неравенство Положим 6 = min{«5j, 62}. Тогда для всех х Ф хо, удовлетворяющих условию будут одновременно верны неравенства (1) и (2). Поэтому Это означает, что сумма а(х) +/3(х) есть б.м.ф. при х xq. Замечание. Теорема остается справедливой для суммы любого конечного числа функций, б. м. при х zo. Теорема б (произведение б. м. ф. на ограниченную функцию). Если функция а(х) является б. м. ф. при х -* х0, а функция f(x) ограничена в окрестности точки Хо, то произведение а(х)/(х) есть б. м. ф. при х -» х0. По условию функция /(х) ограничена в окрестности точки х0. Это означает, что существуют такие числа 0 и М > 0, что Возьмем любое е > 0. Так как по условию, то найдется такое 62 > 0, что для всех х ф х0, удовлетворяющих условию |х - xol , будет верно неравенство Положим я всех х ф х0, удовлетворяющих условию |х - х0|, будут одновременно верны неравенства Поэтому Это означает, что произведение а(х)/(х) есть б. м.ф. при Пример. Функцию у = xsin - (рис.12) можно рассматривать как произведение функций a(ar) = х и f(x) = sin j. Функция а(аг) есть б. м. ф. при х - 0, а функция f}