Цели:

1. Повторить знания о квадратичной функции.

2. Познакомиться с методом решения квадратного неравенства на основе свойств квадратичной функции.

Оборудование: мультимедиа, презентация “Решение квадратных неравенств”, карточки для самостоятельной работы, таблица “Алгоритм решения квадратного неравенства”, листы контроля с копировальной бумагой.

ХОД УРОКА

I. Организационный момент (1 мин).

II. Актуализация опорных знаний (10 мин).

1. Построение графика квадратичной функции у=х 2 -6х+8 <Рисунок 1. Приложение >

  • определение направления ветвей параболы;
  • определение координат вершины параболы;
  • определение оси симметрии;
  • определение точек пересечения с осями координат;
  • нахождение дополнительных точек.

2. Определить по чертежу знак коэффициента a и количество корней уравнения ах 2 +вх+с=0. <Рисунок 2. Приложение >

3. По графику функции у=х 2 -4х+3 определить:

  • Чему равны нули функции;
  • Найти промежутки, на которых функция принимает положительные значения;
  • Найти промежутки, на которых функция принимает отрицательные значения;
  • При каких значениях х функция возрастает, а при каких убывает? <Рисунок 3>

4. Изучение новых знаний (12 мин.)

Задача 1: Решить неравенство: х 2 +4х-5> 0.

Неравенству удовлетворяют значения х, при которых значения функции у=х 2 +4х-5 равны нулю или положительны, то есть те значения х при которых точки параболы лежат на оси ох или выше этой оси.

Построим график функции у=х 2 +4х-5.

С осью ох: Х 2 +4х-5=0. По теореме Виета: х 1 =1, х 2 =-5. Точки(1;0),(-5;0).

С осью оу: у(0)=-5. Точка (0;-5).

Дополнительные точки: у(-1)=-8, у(2)=7. <Рисунок 4>

Итог: Значения функции положительны и равны нулю (неотрицательны) при

  • Необходимо ли каждый раз для решения неравенства подробно строить график квадратичной функции?
  • Нужно ли находить координаты вершины параболы?
  • А что важно? (а, х 1 ,х 2)

Вывод: Для решения квадратного неравенства достаточно определить нули функции, направление ветвей параболы и построить эскиз графика.

Задача 2: Решить неравенство: х 2 -6х+8< 0.

Решение: Определим корни уравнения х 2 -6х+8=0.

По теореме Виета: х 1 =2, х 2 =4.

а>0 – ветви параболы направлены вверх.

Построим эскиз графика. <Рисунок 5>

Отметим знаками “+” и “–” интервалы, на которых функция принимает положительные и отрицательные значения. Выберем необходимый нам интервал.

Ответ: Х€.

5. Закрепление нового материала (7 мин).

№ 660 (3). Ученик решает на доске.

Решить неравенство-х 2 -3х-2<0.

Х 2 -3х-2=0; х 2 +3х+2=0;

корни уравнения: х 1 =-1, х 2 =-2.

а<0 – ветви вниз. <Рисунок 6>

№ 660 (1) - Работа со скрытой доской.

Решить неравенство х 2 -3х+2< 0.

Решение: х 2 -3х+2=0.

Найдем корни: ; х 1 =1, х 2 =2.

а>0 – ветви вверх. Строим эскиз графика функции. <Рисунок 7>

Алгоритм:

  1. Найти корни уравнения ах 2 +вх+с=0.
  2. Отметить их на координатной плоскости.
  3. Определить направление ветвей параболы.
  4. Построить эскиз графика.
  5. Отметить знаками “+” и “ - ”, интервалы на которых функция принимает положительные и отрицательные значения.
  6. Выбрать необходимый интервал.

6. Самостоятельная работа (10 мин.).

(Прием - копировальная бумага).

Лист-контроль подписывается и сдается учителю для проверки и определения коррекции.

Самопроверка по доске.

Дополнительное задание:

№ 670. Найти значения х, при которых функция принимает значения не большие нуля: у=х 2 +6х-9.

7. Домашнее задание (2 мин).

№ 660 (2, 4), № 661 (2, 4).

Заполнить таблицу:

D Неравенство a Чертеж Решение
D>0 ах 2 +вх+с> 0 a>0
D>0 ах 2 +вх+с> 0 a<0
D>0 ах 2 +вх+с< 0 a>0
D>0 ах 2 +вх+с< 0 a<0

8. Итог урока (3 мин).

  1. Воспроизведите алгоритм решения неравенств.
  2. Кто справился с работой на отлично?
  3. Что показалось сложным?

Графический метод заключается в построении множества допустимых решений ЗЛП, и нахождении в данном множестве точки, соответствующей max/min целевой функции.

В связи с ограниченными возможностями наглядного графического представления данный метод применяется только для систем линейных неравенств с двумя неизвестными и систем, которые могут быть приведены к данному виду.

Для того чтобы наглядно продемонстрировать графический метод, решим следующую задачу:

1. На первом этапе надо построить область допустимых решений. Для данного примера удобнее всего выбрать X2 за абсциссу, а X1 за ординату и записать неравенства в следующем виде:

Так как и графики и область допустимых решении находятся в первой четверти. Для того чтобы найти граничные точки решаем уравнения (1)=(2), (1)=(3) и (2)=(3).

Как видно из иллюстрации многогранник ABCDE образует область допустимых решений.

Если область допустимых решений не является замкнутой, то либо max(f)=+ ?, либо min(f)= -?.

2. Теперь можно перейти к непосредственному нахождению максимума функции f.

Поочерёдно подставляя координаты вершин многогранника в функцию f и сравнивать значения, находим что f(C)=f (4; 1)=19 - максимум функции.

Такой подход вполне выгоден при малом количестве вершин. Но данная процедура может затянуться если вершин довольно много.

В таком случае удобнее рассмотреть линию уровня вида f=a. При монотонном увеличении числа a от -? до +? прямые f=a смещаются по вектору нормали. Если при таком перемещении линии уровня существует некоторая точка X - первая общая точка области допустимых решений (многогранник ABCDE) и линии уровня, то f(X) - минимум f на множестве ABCDE. Если X - последняя точка пересечения линии уровня и множества ABCDE то f(X) - максимум на множестве допустимых решений. Если при а>-? прямая f=a пересекает множество допустимых решений, то min(f)= -?. Если это происходит при а>+?, то max(f)=+ ?.

см. также Решение задачи линейного программирования графически , Каноническая форма задач линейного программирования

Система ограничений такой задачи состоит из неравенств от двух переменных:
и целевая функция имеет вид F = C 1 x + C 2 y , которую необходимо максимизировать.

Ответим на вопрос: какие пары чисел ( x ; y ) являются решениями системы неравенств, т. е. удовлетворяют каждому из неравенств одновременно? Другими словами, что значит решить систему графически?
Предварительно необходимо понять, что является решением одного линейного неравенства с двумя неизвестными.
Решить линейное неравенство с двумя неизвестными – это значит определить все пары значений неизвестных, при которых неравенство выполняется.
Например, неравенству 3x – 5 y ≥ 42 удовлетворяют пары (x , y ) : (100, 2); (3, –10) и т. д. Задача состоит в нахождении всех таких пар.
Рассмотрим два неравенства: ax + by c , ax + by c . Прямая ax + by = c делит плоскость на две полуплоскости так, что координаты точек одной из них удовлетворяют неравенству ax + by >c , а другой неравенству ax + +by <c .
Действительно, возьмем точку с координатой x = x 0 ; тогда точка, лежащая на прямой и имеющая абсциссу x 0 , имеет ординату

Пусть для определенности a < 0, b >0, c >0. Все точки с абсциссой x 0 , лежащие выше P (например, точка М ), имеют y M >y 0 , а все точки, лежащие ниже точки P , с абсциссой x 0 , имеют y N <y 0 . Поскольку x 0 –произвольная точка, то всегда с одной стороны от прямой будут находиться точки, для которых ax + by > c , образующие полуплоскость, а с другой стороны – точки, для которых ax + by < c .

Рисунок 1

Знак неравенства в полуплоскости зависит от чисел a , b , c .
Отсюда вытекает следующий способ графического решения систем линейных неравенств от двух переменных. Для решения системы необходимо:

  1. Для каждого неравенства выписать уравнение, соответствующее данному неравенству.
  2. Построить прямые, являющиеся графиками функций, задаваемых уравнениями.
  3. Для каждой прямой определить полуплоскость, которая задается неравенством. Для этого взять произвольную точку, не лежащую на прямой, подставить ее координаты в неравенство. если неравенство верное, то полуплоскость, содержащая выбранную точку, и является решением исходного неравенства. Если неравенство неверное, то полуплоскость по другую сторону прямой является множеством решений данного неравенства.
  4. Чтобы решить систему неравенств, необходимо найти область пересечения всех полуплоскостей, являющихся решением каждого неравенства системы.

Эта область может оказаться пустой, тогда система неравенств не имеет решений, несовместна. В противном случае говорят, что система совместна.
Решений может быть конечное число и бесконечное множество. Область может представлять собой замкнутый многоугольник или же быть неограниченной.

Рассмотрим три соответствующих примера.

Пример 1. Решить графически систему:
x + y – 1 ≤ 0;
–2 x – 2y + 5 ≤ 0.

  • рассмотрим уравнения x+y–1=0 и –2x–2y+5=0 , соответствующие неравенствам;
  • построим прямые, задающиеся этими уравнениями.

Рисунок 2

Определим полуплоскости, задаваемые неравенствами. Возьмем произвольную точку, пусть (0; 0). Рассмотрим x + y– 1 0, подставим точку (0; 0): 0 + 0 – 1 ≤ 0. значит, в той полуплоскости, где лежит точка (0; 0), x + y 1 ≤ 0, т.е. полуплоскость, лежащая ниже прямой, является решением первого неравенства. Подставив эту точку (0; 0), во второе, получим: –2 ∙ 0 – 2 ∙ 0 + 5 ≤ 0, т.е. в полуплоскости, где лежит точка (0; 0), –2x – 2y + 5≥ 0, а нас спрашивали, где –2x – 2y + 5 ≤ 0, следовательно, в другой полуплоскости – в той, что выше прямой.
Найдем пересечение этих двух полуплоскостей. Прямые параллельны, поэтому плоскости нигде не пересекаются, значит система данных неравенств решений не имеет, несовместна.

Пример 2. Найти графически решения системы неравенств:

Рисунок 3
1. Выпишем уравнения, соответствующие неравенствам, и построим прямые.
x + 2y – 2 = 0

x 2 0
y 0 1

y x – 1 = 0
x 0 2
y 1 3

y + 2 = 0;
y = –2.
2. Выбрав точку (0; 0), определим знаки неравенств в полуплоскостях:
0 + 2 ∙ 0 – 2 ≤ 0, т.е. x + 2y – 2 ≤ 0 в полуплоскости ниже прямой;
0 – 0 – 1 ≤ 0, т.е. y x – 1 ≤ 0 в полуплоскости ниже прямой;
0 + 2 =2 ≥ 0, т.е. y + 2 ≥ 0 в полуплоскости выше прямой.
3. Пересечением этих трех полуплоскостей будет являться область, являющаяся треугольником. Нетрудно найти вершины области, как точки пересечения соответствующих прямых


Таким образом, А (–3; –2), В (0; 1), С (6; –2).

Рассмотрим еще один пример, в котором получившаяся область решения системы не ограничена.