>>Ранг матрицы

Ранг матрицы

Определение ранга матрицы

Рассмотрим прямоугольную матрицу. Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n. Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r , то это означает, что в матрице А имеется отличный от нуля минор порядка r , но всякий минор порядка, большего чем r , равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение

Вычисление ранга матрицы с помощью миноров

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k .

Пример 1. Найти методом окаймления миноров ранг матрицы

.

Решение. Начинаем с миноров 1-го порядка, т.е. с элементов матрицы А. Выберем, например, минор (элемент) М 1 = 1, расположенный в первой строке и первом столбце. Окаймляя при помощи второй строки и третьего столбца, получаем минор M 2 = , отличный от нуля. Переходим теперь к минорам 3-го порядка, окаймляющим М 2 . Их всего два (можно добавить второй столбец или четвертый). Вычисляем их: = 0. Таким образом, все окаймляющие миноры третьего порядка оказались равными нулю. Ранг матрицы А равен двум.

Вычисление ранга матрицы с помощью элементарных преобразований

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными , если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,

.

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Пример 2 Найти ранг матрицы

А=

и привести ее к каноническому виду.

Решение. Из второй строки вычтем первую и переставим эти строки:

.

Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5:

;

из третьей строки вычтем первую; получим матрицу

В = ,

которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Матрицу В легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:

.

Число r называется рангом матрицы A , если:
1) в матрице A есть минор порядка r , отличный от нуля;
2) все миноры порядка (r+1) и выше, если они существуют, равны нулю.
Иначе, ранг матрицы – это наивысший порядок минора, отличного от нуля.
Обозначения: rangA , r A или r .
Из определения следует, что r – целое положительное число. Для нуль-матрицы считают ранг равным нулю.

Назначение сервиса . Онлайн-калькулятор предназначен для нахождения ранга матрицы . При этом решение сохраняется в формате Word и Excel . см. пример решения .

Инструкция . Выберите размерность матрицы, нажмите Далее.

Выберите размерность матрицы 3 4 5 6 7 x 3 4 5 6 7

Определение . Пусть дана матрица ранга r . Любой минор матрицы, отличный от нуля и имеющий порядок r, называется базисным, а строки и столбцы его составляющие – базисными строками и столбцами.
Согласно этому определению, матрица A может иметь несколько базисных миноров.

Ранг единичной матрицы E равен n (количеству строк).

Пример 1 . Даны две матрицы , и их миноры , . Какой из них можно принять в качестве базисного?
Решение . Минор M 1 =0, поэтому он не может быть базисным ни для одной из матриц. Минор M 2 =-9≠0 и имеет порядок 2, значит его можно принять в качестве базисного матриц A или / и B при условии, что они имеют ранги, равные 2 . Поскольку detB=0 (как определитель с двумя пропорциональными столбцами), то rangB=2 и M 2 можно взять за базисный минор матрицы B. Ранг матрицы A равен 3, в силу того, что detA=-27≠0 и, следовательно, порядок базисного минора этой матрицы должен равняться 3, то есть M 2 не является базисным для матрицы A . Отметим, что у матрицы A единственный базисный минор, равный определителю матрицы A .

Теорема (о базисном миноре). Любая строка (столбец) матрицы является линейной комбинацией ее базисных строк (столбцов).
Следствия из теоремы.

  1. Всякие (r+1) столбцов (строк) матрицы ранга r линейно зависимы.
  2. Если ранг матрицы меньше числа ее строк (столбцов), то ее строки (столбцы) линейно зависимы. Если rangA равен числу ее строк (столбцов), то строки (столбцы) линейно независимы.
  3. Определитель матрицы A равен нулю тогда и только тогда, когда ее строки (столбцы) линейно зависимы.
  4. Если к строке (столбцу) матрицы прибавить другую строку, (столбец) умноженную на любое число, отличное от нуля, то ранг матрицы не изменится.
  5. Если в матрице зачеркнуть строку (столбец), являющуюся линейной комбинацией других строк (столбцов), то ранг матрицы не изменится.
  6. Ранг матрицы равен максимальному числу ее линейно независимых строк (столбцов).
  7. Максимальное число линейно независимых строк совпадает с максимальным числом линейно независимых столбцов.

Пример 2 . Найти ранг матрицы .
Решение. Исходя из определения ранга матрицы, будем искать минор наивысшего порядка, отличный от нуля. Сначала преобразуем матрицу к более простому виду. Для этого первую строку матрицы умножим на (-2) и прибавим ко второй, затем ее же умножим на (-1) и прибавим к третьей.

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными , если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Пример 2 Найти ранг матрицы

А=

и привести ее к каноническому виду.

Решение. Из второй строки вычтем первую и переставим эти строки:

.

Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5:

;

из третьей строки вычтем первую; получим матрицу

В = ,

которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Матрицу В легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:

.

Теоре́ма Кро́некера - Капе́лли - критерий совместности системы линейных алгебраических уравнений:

Для того чтобы линейная система являлась совместной, необходимо и достаточно, что бы ранг расширенной матрицы этой системы был равен рангу ее основной матрицы.

Доказательство (условия совместности системы)

Необходимость

Пусть система совместна. Тогда существуют числа такие, что . Следовательно, столбец является линейной комбинацией столбцов матрицы . Из того, что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (столбец), которая является линейной комбинацией других строк (столбцов) следует, что .

Достаточность

Пусть . Возьмем в матрице какой-нибудь базисный минор. Так как , то он же и будет базисным минором и матрицы . Тогда, согласно теореме о базисном миноре , последний столбец матрицы будет линейной комбинацией базисных столбцов, то есть столбцов матрицы . Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы .

Следствия

    Количество главных переменных системы равно рангу системы.

    Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.

Однородная система уравнений

Предложение 15 . 2 Однородная система уравнений

всегда является совместной.

Доказательство . Для этой системы набор чисел , , , является решением.

В этом разделе мы будем использовать матричную запись системы: .

Предложение 15 . 3 Сумма решений однородной системы линейных уравнений является решением этой системы. Решение, умноженное на число, тоже является решением.

Доказательство . Пусть и служат решениями системы . Тогда и . Пусть . Тогда

Так как , то -- решение.

Пусть -- произвольное число, . Тогда

Так как , то -- решение.

Следствие 15 . 1 Если однородная система линейных уравнений имеет ненулевое решение, то она имеет бесконечно много различных решений.

Действительно, умножая ненулевое решение на различные числа, будем получать различные решения.

Определение 15 . 5 Будем говорить, что решения системы образуют фундаментальную систему решений , если столбцы образуют линейно независимую систему и любое решение системы является линейной комбинацией этих столбцов.

Для того что бы вычислить ранг матрицы можно применить метод окаймляющих миноров или метод Гаусса . Рассмотрим метод Гаусса или метод элементарных преобразований.

Рангом матрицы называют максимальный порядок её миноров, среди которых есть хотя бы один, не равный нулю.

Рангом системы строк (столбцов) называется максимальное количество линейно независимых строк (столбцов) этой системы.

Алгоритм нахождения ранга матрицы методом окаймляющих миноров:

  1. Минор M k-того порядка не равен нулю.
  2. Если окаймляющие миноры для минора M (k+1)-го порядка, составить невозможно (т.е. матрица содержит k строк или k столбцов), то ранг матрицы равен k . Если окаймляющие миноры существуют и все равны нулю, то ранг равен k. Если среди окаймляющих миноров есть хотя бы один, не равный нулю, то пробуем составить новый минор k+2 и т.д.

Разберем алгоритм более подробно. Сначала рассмотрим миноры первого (элементы матрицы) порядка матрицы A . Если все они равны нулю, то rangA = 0 . Если есть миноры первого порядка (элементы матрицы) не равные нулю M 1 ≠ 0 , то ранг rangA ≥ 1 .

M 1 . Если такие миноры есть, то они буду миноры второго порядка. Если все миноры окаймляющие минор M 1 равны нулю, то rangA = 1 . Если есть хоть один минор второго порядка не равные нулю M 2 ≠ 0 , то ранг rangA ≥ 2 .

Проверим есть ли окаймляющие миноры для минора M 2 . Если такие миноры есть, то они буду миноры третьего порядка. Если все миноры окаймляющие минор M 2 равны нулю, то rangA = 2 . Если есть хоть один минор третьего порядка не равные нулю M 3 ≠ 0 , то ранг rangA ≥ 3 .

Проверим есть ли окаймляющие миноры для минора M 3 . Если такие миноры есть, то они буду миноры четвертого порядка. Если все миноры окаймляющие минор M 3 равны нулю, то rangA = 3 . Если есть хоть один минор четвертого порядка не равные нулю M 4 ≠ 0 , то ранг rangA ≥ 4 .

Проверяем есть ли окаймляющий минор для минора M 4 , и так далее. Алгоритм прекращается, если на каком-то этапе окаймляющие миноры равны нулю или окаймляющий минор нельзя получить (в матрице "закончились" строки или столбцы). Порядок не нулевого минора, который получилось составить будет рангом матрицы.

Пример

Рассмотрим данный метод на примере. Дана матрицы 4х5:

У данной матрице ранг не может быть больше 4. Так же у этой матрице есть не нулевые элементы (минор первого порядка), значит ранг матрицы ≥ 1.

Составим минор 2-ого порядка. Начнем с угла.

Так определитель равен нулю, составим другой минор.

Найдем определитель данного минора.

Определить данного минора равен -2 . Значит ранг матрицы ≥ 2 .

Если данный минор был равен 0, то составили бы другие миноры. До конца бы составили все миноры по 1 и второй строке. Потом по 1 и 3 строке, по 2 и 3 строке, по 2 и 4 строке, пока не нашли бы минор не равный 0, например:

Если все миноры второго порядка равны 0, то ранг матрицы был бы равен 1. Решение можно было бы остановить.

3-го порядка.

Минор получился не нулевой. значит ранг матрицы ≥ 3 .

Если бы данный минор был нулевым, то нужно было бы составить другие миноры. Например:

Если все миноры третьего порядка равны 0, то ранг матрицы был бы равен 2. Решение можно было бы остановить.

Продолжим поиска ранга матрицы. Составим минор 4-го порядка.

Найдем определитель этого минора.

Определитель минора получился равный 0 . Построим другой минор.

Найдем определитель этого минора.

Минор получился равным 0 .

Построить минор 5-го порядка не получится, для этого нет строки в данной матрицы. Последний минор не равный нулю был 3-го порядка, значит ранг матрицы равен 3 .

Прежде всего отметим, что проективная плоскость в отличие от евклидовой плоскости не имеет бесконечной протяженности. Давайте выясним, в чем же различие между ними, а с другой стороны, как они между собой связаны? Для этого давайте уточним, какие положения евклидовой плоскости используются в проективной геометрии. В основе проективной геометрии лежит своя система аксиом. И хотя логические построения на аксиоматическом фундаменте являются замечательной иллюстрацией математического метода, однако, будучи при этом оторванным от евклидовой геометрии, такое изложение проективной геометрии излишне абстрактно. Поэтому для большей конкретности и наглядности целесообразно исходить из модели евклидовой плоскости.

Известно, что прямая на евклидовой плоскости продолжается в обе стороны бесконечно и что между точками прямой и всеми действительными числами можно установить взаимно однозначное соответствие, при котором естественной упорядоченности точек на прямой отвечает упорядоченность чисел но их величине.

Дополним теперь прямую «слева и справа» одной и той же условной точкой которую назовем бесконечно удаленной точкой.

Понятно, что возникает сомнение - а можно ли говорить о реальности несуществующих точек? Однако в современных теориях это встречается часто. Так, например, хотя среди действительных чисел нет бесконечно больших чисел, в математическом анализе применяется символ правда не в качестве числа, а для обозначения неограниченного роста. (В этом же смысле символ употребляется по отношению к тригонометрическим функциям.) После добавления к обычной прямой бесконечно удаленной точки «пополненная» прямая становится замкнутой. Давайте теперь прибавим к: каждой обычной прямой по бесконечно удаленной точке, причем условимся, что когда прямые параллельны, то добавляемые к ним точки совпадают, когда же прямые не параллельны, то их бесконечно удаленные точки различны.

Две пересекающиеся на евклидовой плоскости прямые пересекаются в обычной точке, причем бесконечно удаленные точки этих прямых не совпадают. Следовательно, в этой новой геометрии параллельных прямых не существует, каждые две прямые обязательно

пересекаются в одной точке. Семейство параллельных между собой в обычной геометрии прямых имеет одну общую бесконечно удаленную точку, разнонаправленные же прямые имеют разные бесконечно удаленные точки. В связи с этим бесконечно удаленных точек бесконечно много.

Множество этих бесконечно удаленных точек, опять-таки по определению, составляет одну так называемую бесконечно удаленную прямую

Таким образом мы получаем геометрию, в которой к евклидовой плоскости добавляется одна бесконечно удаленная прямая.

По существу, эта геометрия пока не очень отличается от евклидовой геометрии. Вместо положения о параллельности двух прямых вводится положение об их пересечении в бесконечно удаленной точке.

Основные аксиомы, принятые в проективной геометрии, утверждают, что две точки определяют одну прямую (если обе точки - бесконечно удаленные, то они определяют бесконечно удаленную прямую и что две прямые всегда пересекаются в одной точке. И хотя положения этих двух аксиом весьма важны, но до тех пор пока мы выделяем

некоторые точки в одну бесконечно удаленную прямую, мы практически не меняем сути евклидовой геометрии и не привносим в геометрию ничего нового.