Электромагнит – это магнит, который работает (создаёт магнитное поле) только при протекании через катушку электрического тока. Чтобы сделать мощный электромагнит, нужно взять магнитопровод и обмотать его медной проволокой и просто пропустить ток по этой проволоке. Магнитопровод начнет намагничиваться катушкой и начнет притягивать железные предметы. Хотите мощный магнит – поднимайте напряжение и ток, экспериментируйте. А чтобы не мучится и не собирать магнит самому, можно просто достать катушку с магнитного пускателя (они бывают разные, на 220В/380В). Достаете эту катушку и внутрь вставляем кусок любой железяки (например, обычный толстый гвоздь) и включаем в сеть. Вот это будет по-настоящему не плохой магнит. А если у вас нет возможности достать катушку с магнитного пускателя, то сейчас рассмотрим, как сделать электромагнит самому.

Для сборки электромагнита вам понадобятся проволока, источник постоянного тока и сердечник. Теперь берем наш сердечник и мотаем медную проволоку на него (лучше виток витку, а не в навал – увеличится коэффициент полезного действия). Если хотим сделать мощный электро магнит, то мотаем в несколько слоев, т.е. когда намотали первый слой, переходим во второй слой, а потом мотаем третий слой. При намотке учитывайте, что то, что вы намотаете, эта катушка имеет реактивное сопротивление, и при протекании через эту катушку будет проходить меньший ток при большом реактивном сопротивлении. Но тоже учитывайте, нам нужен и важен ток, потому, что мы будем током намагничивать сердечник, который служит в качестве электро магнита. Но большой ток сильно будет нагревать катушку, по которой протекает ток, так что соотнесите эти три понятия: сопротивление катушки, ток и температура.


При намотке провода выберите оптимальную толщину медной проволоки (где-то 0,5 мм). А можете и поэкспериментировать, учитывая, что чем меньше сечение проволоки, тем больше будет реактивное сопротивление и соответственно ток протекать будет меньший. Но если вы будите мотать толстым проводом (примерно 1мм), было бы не плохо, т.к. чем толще проводник, тем сильнее магнитное поле вокруг проводника и плюс ко всему будет протекать больший ток, т.к. реактивное сопротивление будет меньше. Так же ток будет зависеть и от частоты напряжения (если от переменного тока). Так же стоит сказать пару слов о слоях: чем больше слоев, тем больше магнитное поле катушки и тем сильнее будет намагничивать сердечник, т.к. при наложении слоев магнитные поля складываются.

Хорошо, катушку намотали, и сердечник внутрь вставили, теперь можно приступить к подаче напряжения на катушку. Подаем напряжение и начинаем увеличивать его (если у вас блок питания с регулировкой напряжения, то плавно поднимайте напряжение). Следим при этом чтобы наша катушка не грелась. Подбираем напряжение такое, чтобы при работе катушка была слегка теплой или просто теплой – это будет номинальный режим работы, а так же можно будет узнать номинальный ток и напряжение, замерив на катушке и узнать потребляемую мощность электромагнита, перемножив ток и напряжение.

Если вы собираетесь включать от розетки 220 вольт электромагнит, то вначале обязательно измерьте сопротивление катушки. При протекании через катушку тока в 1 Ампер сопротивление катушки должно быть 220 ом. Если 2 Ампера, то 110 Ом. Вот как считаем ТОК=напряжение/сопротивление= 220/110= 2 А.

Все, включили устройство. Попробуйте поднести гвоздик или скрепку – она должна притянуться. Если плохо притягивается или очень плохо держится, то домотайте слоев пять медной проволки: магнитное поле увеличится и сопротивление увеличится, а если сопротивление увеличится, то номинальные данные электро магнита изменятся и нужно будет перенастроить его.

Если хотите увеличить мощность магнита, то возьмите подковообразный сердечник и намотайте провод на две стороны, таким образом получится манит-подкова состоящий из сердечника и 2-ух катушек. Магнитные поля двух катушек сложатся, а значит, магнит в 2 раза будет работать мощнее. Большую роль играет диаметр и состав сердечника. При малом сечении получится слабый электромагнит, хоть если мы и подадим высокое напряжение, а вот если увеличим сечение сердечка, то у нас выйдет не плохой электромагнит. Да если еще сердечник будет из сплава железа и кобальта (этот сплав характеризуется хорошей магнитной проводимостью), то проводимость увеличится и за счет этого сердечник будет лучше намагничиваться полем катушки.

Электромагниты в технических устройствах применяются для подъема грузов, переключения контактов реле магнитных пускателей, вентилей гидравлических систем, растормаживания механических тормозов и т. д.

На рис. 1.18 представлена схема магнитной цепи электромагнита.

Подвижная часть (якорь – 2, рис. 1.18) магнитопровода электромагнита отделена от его неподвижной части 1 рис. 1.18 воздушным зазором. При подключении намагничивающей обмотки к источнику электрической энергии возбуждается магнитное поле, возникает электромагнитная сила, действующая на якорь, и он, преодолевая силу тяжести, действие пружин и т. п., притягивается к неподвижной части магнитопровода.

Расчет силы притяжения электромагнита часто проводится приближенно, исходя из следующих соображений: 1. Ток I в обмотке имеет установившееся значение.

2. Сердечник 1 и якорь 2 не насыщены.

3. Потоком рассеяния Ф р и выпучиванием магнитного поля в зазорах пренебрегают.

4. При изменении воздушного зазора на dl 0 магнитная индукция В 0 остается постоянной.

В таком случае можно считать, что механическая работа по перемещению якоря в направлении действия сил F на расстояние dl 0 равна изменению энергии магнитного поля в воздушных зазорах, вследствие уменьшения их объемов.

С учетом двух воздушных зазоров имеем:

механическая работа

энергия магнитного поля в двух зазорах длиной dl 0 , где
– плотность электромагнитной энергии (энергия в единице объема зазора), S 0 – площадь одного воздушного зазора. Приравняв dW мех и dW эм , получим расчетную формулу силы притягивания электромагнита

1.16.

6.5.Об индуктивности намагничивающей обмотки.

Если катушка не имеет ферромагнитного сердечника, то зависимость потокосцепления y от тока катушки I линейная и индуктивность катушки
. Здесь индуктивность, как коэффициент пропорциональности между потокосцеплением и током катушки, является линейным параметром катушки. То же замечание относится и к намагничивающим обмоткам с ненасыщенным магнитопроводом (
).

Если поток Ф сцепляется со всеми w витками катушки (обмотки), то потокосцепление
, где
, тогда индуктивность

1.17

Здесь
– магнитное сопротивление на пути магнитного потока.

Абсолютная магнитная проницаемость ненасыщенных ферромагнитных материалов m а >> m 0 – магнитной проницаемости вакуума (4 10 -7 Гн/м) . Поэтому размещение намагничивающей обмотки на ферромагнитном магнитопроводе резко увеличивает индуктивность катушки.

Физически последнее утверждение объясняется способностью ферромагнетиков усиливать внешнее магнитное поле, созданное током обмотки, за счет ориентации по направлению поля собственных областей самопроизвольного намагничивания. Эта ориентация выражена тем четче, чем больше ток обмотки. Когда все области самопроизвольного намагничивания ориентируются в направлении внешнего поля, наступает магнитное насыщение магнитопровода, его магнитная проницаемость и индуктивность обмотки резко снижаются, магнитопровод перестает выполнять функцию локализации магнитного поля.

В общем случае, когда приходится считаться с тем что
, используется понятие дифференциальной индуктивности
(индуктивность L становится нелинейным параметром обмотки).

Индуктивность, как элемент схемы замещения реальной электрической цепи, дает возможность учитывать при расчетах явление самоидукции (при переменных токах катушки) и явление накопления энергии в магнитном поле катушки.