Подробно рассмотрены примеры решений интегралов по частям, подынтегральное выражение которых является произведением многочлена на экспоненту (е в степени х) или на синус (sin x) или на косинус (cos x).

Формула интегрирования по частям

При решении примеров этого раздела, используется формула интегрирования по частям:
;
.

Примеры интегралов, содержащих произведение многочлена и sin x, cos x или e x

Вот примеры таких интегралов:
, , .

Для интегрирования подобных интегралов, многочлен обозначают через u , а оставшуюся часть - через v dx . Далее применяют формулу интегрирования по частям.

Ниже дается подробное решение этих примеров.

Примеры решения интегралов

Пример с экспонентой, е в степени х

Определить интеграл:
.

Решение

Введем экспоненту под знак дифференциала:
e - x dx = - e - x d(-x) = - d(e - x) .

Интегрируем по частям.

здесь
.
Оставшийся интеграл также интегрируем по частям.
.
.
.
Окончательно имеем:
.

Ответ

Пример определения интеграла с синусом

Вычислить интеграл:
.

Решение

Введем синус под знак дифференциала:

Интегрируем по частям.

здесь u = x 2 , v = cos(2 x+3) , du = ( x 2 )′ dx

Оставшийся интеграл также интегрируем по частям. Для этого вводим косинус под знак дифференциала.


здесь u = x , v = sin(2 x+3) , du = dx

Окончательно имеем:

Ответ

Пример произведения многочлена и косинуса

Вычислить интеграл:
.

Решение

Введем косинус под знак дифференциала:

Интегрируем по частям.

здесь u = x 2 + 3 x + 5 , v = sin 2 x , du = ( x 2 + 3 x + 5)′ dx

Для интегрирования рациональных функций вида R(sin x, cos x) применяют подстановку , которая называется универсальной тригонометрической подстановкой. Тогда . Универсальная тригонометрическая подстановка часто приводит к большим вычислениям. Поэтому, по возможности, пользуются следующими подстановками.

Интегрирование функций рационально зависящих от тригонометрических функций

1. Интегралы вида ∫ sin n xdx , ∫ cos n xdx , n>0
a) Если n нечётное, то одну степень sinx (либо cosx) следует внести под знак дифференциала, а от оставшейся чётной степени следует перейти к противоположной функции.
б) Если n чётное, то пользуемся формулами понижения степени
2. Интегралы вида ∫ tg n xdx , ∫ ctg n xdx , где n – целое.
Необходимо использовать формулы

3. Интегралы вида ∫ sin n x·cos m x dx
а) Пусть m и n разной чётности. Применяем подстановку t=sin x , если n - нечётное либо t=cos x , если m – нечётное.
б) Если m и n чётные, то пользуемся формулами понижения степени
2sin 2 x=1-cos2x , 2cos 2 x=1+cos2x .
4. Интегралы вида
Если числа m и n одинаковой чётности, то используем подстановку t=tg x . Часто бывает удобным применить приём тригонометрической единицы.
5. ∫ sin(nx)·cos(mx)dx , ∫ cos(mx)·cos(nx)dx , ∫ sin(mx)·sin(nx)dx
Воспользуемся формулами преобразования произведения тригонометрических функций в их сумму


Примеры
1. Вычислить интеграл ∫ cos 4 x·sin 3 xdx .
Делаем замену cos(x)=t . Тогда ∫ cos 4 x·sin 3 xdx =
2. Вычислить интеграл .
Делая замену sin x=t , получаем


3. Найти интеграл .
Делаем замену tg(x)=t . Подставляя, получаем


Заметим, что замена ctg(x)=t здесь удобнее, так как тогда , и поэтому

Интегрирование выражений вида R(sinx, cosx)

Пример №1 . Вычислить интегралы:

Решение.
а) Интегрирование выражений вида R(sinx, cosx) , где R - рациональная функция от sin x и cos x , преобразуются в интегралы от рациональных функций с помощью универсальной тригонометрической подстановки tg(x/2) = t .
Тогда имеем

Универсальная тригонометрическая подстановка дает возможность перейти от интеграла вида ∫ R(sinx, cosx) dx к интегралу от дробно-рациональной функции, но часто такая замена ведет к громоздким выражениям. При определенных условиях эффективными оказываются более простые подстановки:

  • Если выполняется равенство R(-sin x, cos x) = -R(sin x, cos x)dx , то применяется подстановка cos x = t .
  • Если выполняется равенство R(sin x, -cos x) = -R(sin x, cos x)dx , то подстановка sin x = t .
  • Если выполняется равенство R(-sin x, -cos x) = R(sin x, cos x)dx , то подстановка tgx = t или ctg x = t .
В данном случае для нахождения интеграла
применим универсальную тригонометрическую подстановку tg(x/2) = t .
Тогда
Так как дробь неправильная, то, выделяя целую часть, получим
Возвращась к исходной переменной будем иметь

b) Во втором примере рассмотрим важный частный случай, когда общее выражение ∫ R(sinx, cosx) dx имеет вид ∫ sin m x·cos n xdx . В этом частном случае, если m нечетно, следует применить подстановку cos x = t . Если нечетно n , следует применить подстановку sin x = t . Если оба показателя тип - четные неотрицательные числа (в частности, одно из них может быть равным нулю), то выполняют замену по известным тригонометрическим формулам:
В данном случае


Ответ:

cot(x) . 1/tan(x) = cos(x)/sin(x) Now substitute cos(x)/sin(x) into the expression, in place of cot(x) So now: sin(x) cot(x) cos(x) = sin(x) cos(x) (cos(x)/sin(x))… sin(x) cos(x) cos(x)/sin(x) The two sin(x) cancel, leaving you with cos(x) cos(x) Which is the same as cos 2 (x) So: sin(x) cot(x) cos(x) = cos 2 (x) ===

Integral of 1 divided by sinx cosx?

Integral of (substitute sin 2 x + cos 2 x for 1) = Integral of [(sin 2 x + cos 2 x)/(sin x cos x) dx] = Integral of + Inte… gral of = Integral of (sin x/cos x dx) + Integral of (cos x/sin x dx) = Integral of tan x dx + Integral of cot x dx = ln |sec x| + ln |sin x| + C

Sin2x plus cosx equals 0?

sin 2x + cos x = 0 (substitute 2sin x cos x for sin 2x) 2sin x cos x + cos x = 0 (divide by cos x each term to both sides) 2sin x + 1 = 0 (subtract 1 to both sides) 2sin x = -… 1 (divide by 2 to both sides) sin x = -1/2 Because the period of the sine function is 360⁰, first find all solutions in . Because sin 30⁰ = 1/2 , the solutions of sin x = -1/2 in are x = 180⁰ + 30⁰ = 210⁰ (the sine is negative in the third quadrant) x = 360⁰ - 30⁰ = 330⁰ (the sine is negative in the fourth quadrant) Thus, the solutions of the equation are given by x = 210⁰ + 360⁰n and x = 330⁰ + 360⁰n, where n is any integer.

What is the exact solution to cosx equals sin2x?

Cos(x) = Sin(2x) Using angle-addition, we have Sin(a+b) = Sin(a)Cos(b) + Sin(b)Cos(a). From that, we see Sin(2x) = Sin(x)Cos(x)+Sin(x)Cos(x) = 2Sin(x)Cos(x) Cos(x) = 2… Sin(x)Cos(x) If Cos(x) = 0, then the two sides are equal. This occurs at x= Pi/2 + nPi, where n is an integer and Pi is approximately 3.14. If Cos(x) doesn"t equal 0, then we can divide it out. Then, 1 = 2 Sin(x) , or 1/2 = Sin(x) This occurs when x = Pi/6 or 5Pi/6, plus or minus any multiples of 2 Pi.

What is the integral of cosx divided by sinx plus cosx from 0 to 2pi?

The Integral diverges. It has singularities whenever sin(x)+cos(x)=0. Singularities do not necessarily imply that the integral goes to infinity, but that is the case here, sin… ce the indefinite integral is x/2 + 1/2 Log[-Cos[x] - Sin[x]]. Obviously this diverges when evaluated at zero and 2pi.

What is the derivative of cosx divided by sinx?

When dealing with a right angled triangle trigonometric functions can be defined by:- cos x = adjacent/hypotenuse sin x = opposite/hypotenuse Therefore cos x/sin x = adj/hyp … ÷ opp/hyp = adj/hyp x hyp/opp = adj/opp The tangent of an angle is given by the formula: opposite/adjacent The tangent of the complementary angle is therefore: adjacent/opposite Then cos x/sin x = tan(90-x)

What is the derivative of sinx pwr cosx?

For the function: y = sin(x) cos(x) To find the derivative y", implicit differentiation must be used. To do this, both sides of the equation must be put into the argum… ent of a natural logarithm: ln(y) = ln(sin(x) cos(x)) by the properties of logarithms, this can also be expressed as: ln(y) = cos(x)ln(sin(x)) deriving both sides of the equation yields: (1/y)(y") = cos(x)(1/sin(x))(cos(x)) + -sin(x)ln(sin(x)) This derivative features two important things. The obvious thing is the product rule use to differentiate the right side of the equation. The left side of the equation brings into play the "implicit" differentiation part of this problem. The derivative of ln(y) is a chain rule. The derivative of just ln(y) is simply 1/y, but you must also multiply by the derivative of y, which is y". so the total derivative of ln(y) is (1/y)(y"). solving for y" in the above, the following is found: y" = y[(cos 2 (x)/sin(x)) - sin(x)ln(sin(x))] = y y" = y = sin(x) cos(x) }