Интегрирование рациональных функций Дробно – рациональная функция Простейшие рациональные дроби Разложение рациональной дроби на простейшие дроби Интегрирование простейших дробей Общее правило интегрирования рациональных дробей

многочлен степени n. Дробно – рациональная функция Дробно – рациональной функцией называется функция, равная отношению двух многочленов: Рациональная дробь называется правильной, если степень числителя меньше степени знаменателя, то есть m < n , в противном случае дробь называется неправильной. многочлен степени m Всякую неправильную рациональную дробь можно, путем деления числителя на знаменатель, представить в виде суммы многочлена L(x) и правильной рациональной дроби:)()()(x. Q x. P xf n m)()()(x. Q x. R x. L x. Q x. P

Дробно – рациональная функция Привести неправильную дробь к правильному виду: 2 95 4 x xx 95 4 xx 2 x 3 x 34 2 xx 952 3 xx 2 2 x 23 42 xx 954 2 xx x 4 xx 84 2 93 x 3 63 x 15 2 95 4 x xx 342 23 xxx 2 15 x

Простейшие рациональные дроби Правильные рациональные дроби вида: Называются простейшими рациональными дробями типов. ax A); 2(Nkk ax A k)04(2 2 qp qpxx NMx); 2; 04(2 2 Nkkqp qpxx NMx k V V,

Разложение рациональной дроби на простейшие дроби Теорема: Всякую правильную рациональную дробь, знаменатель которой разложен на множители: можно представить, притом единственным образом в виде суммы простейших дробей: s k qxpxxxxxx. Q)()()(22 2 11 2 21)()(x. Q x. P 1 xx A k k xx B)()(2 2 2 1 11 2 qxpx DCx 2 22 22 2 11)(qxpx Nx. M s ss qxpx Nx. M)(

Разложение рациональной дроби на простейшие дроби Поясним формулировку теоремы на следующих примерах: Для нахождения неопределенных коэффициентов A, B, C, D … применяют два метода: метод сравнивания коэффициентов и метод частных значений переменной. Первый метод рассмотрим на примере. 3 2)3)(2(4 xx x 2 x A 3 3 2 21)3()3(3 x B x B 1 2 x DCx 22 22 2 11)1(1 xx Nx. M)1(3 22 3 xx x 2 21 x A 22 2)1)(4(987 xxx xx 4 x

Разложение рациональной дроби на простейшие дроби Представить дробь в виде суммы простейших дробей: Приведем простейшие дроби к общему знаменателю Приравняем числители получившейся и исходной дробей Приравняем коэффициенты при одинаковых степенях х)52)(1(332 2 2 xxx xx 1 x A 52 2 xx CBx)52)(1()1)(()52(2 2 xxx x. CBxxx. A 33252 222 xx. CBx. Cx. Bx. AAx. Ax 35 32 2 0 1 2 CAx BAx 2 3 1 C B A 52 23 1 1 2 xx x x

Интегрирование простейших дробей Найдем интегралы от простейших рациональных дробей: Интегрирование дроби 3 типа рассмотрим на примере. dx ax A k dx qpxx NMx 2 ax axd A)(Cax. Aln)(axdax. A k C k ax. A k

Интегрирование простейших дробейdx xx x 102 13 2 dx xx x 9)12(13 2 dx x x 9)1(13 2 dtdx tx tx 1 1 dt t t 9 1)1(3 2 dt t t 9 23 2 9 322 t dtt 9 9 2 3 2 2 t td 33 2 t arctg. C t arctgt 33 2 9 ln 2 32 C x arctgxx 3 1 3 2 102 ln

Интегрирование простейших дробей Интеграл данного типа с помощью подстановки: приводится к сумме двух интегралов: Первый интеграл вычисляется методом внесения t под знак дифференциала. Второй интеграл вычисляется с помощью рекуррентной формулы: dx qpxx NMx k 2 V t p x 2 kk at dt N at dtt M 22122 1221222))(1(222 321 kkkk atk t k k aat dt

Интегрирование простейших дробей a = 1; k = 3 323)1(t dt tarctg t dt 1 21)1)(12(2222 322 1 21222 t t t dt)1(22 1 2 t t tarctg 2223)1)(13(2232 332 t t C t t tarctg 222)1(4)1(

Общее правило интегрирования рациональных дробей Если дробь неправильная, то представить ее в виде суммы многочлена и правильной дроби. Разложив знаменатель правильной рациональной дроби на множители, представить ее в виде суммы простейших дробей с неопределенными коэффициентами Найти неопределенные коэффициенты методом сравнения коэффициентов или методом частных значений переменной. Проинтегрировать многочлен и полученную сумму простейших дробей.

Пример Приведем дробь к правильному виду. dx xxx 23 35 2 442 35 xxxxxx 23 2 2 x 345 2 xxx 442 34 xxx x 2 234 242 xxx 4425 23 xxx xxx 23 35 2 442 xxx xx xx 23 2 2 2 48 52 5 xxx 5105 23 48 2 xx

Пример Разложим знаменатель правильной дроби на множители Представим дробь в виде суммы простейших дробей Найдем неопределенные коэффициенты методом частных значений переменной xxx xx 23 2 2 48 2 2)1(48 xx xx 2)1(1 x C x B x A 2 2)1()1(xx Cxx. Bxx. A 48)1()1(22 xx. Cxx. Bxx. A 5241 31 40 CBAx Cx Ax 3 12 4 C B A xxx xx 23 2 2 48 2)1(3 1 124 xxx

Пример dx xx 2 2)1(3 1 124 52 2 2)1(3 1 12452 x dx dxxdxdxx C x xxxx x 1 3 1 ln 12 ln

2., 5.
,

3.
, 6.
.

В интегралах 1-3 качествеu принимают. Тогда, послеn -кратного применения формулы (19) придем к одному из табличных интегралов

,
,
.

В интегралах 4-6 при дифференцировании упроститься трансцендентный множитель
,
или
, который следует принять заu .

Вычислить следующие интегралы.

Пример 7.

Пример 8.

Приведение интегралов к самому себе

Если подынтегральная функция
имеет вид:

,
,
и так далее,

то после двукратного интегрирования по частям получим выражение, содержащее исходный интеграл :

,

где
- некоторая постоянная.

Разрешая полученное уравнение относительно , получим формулу для вычисления исходного интеграла:

.

Этот случай применения метода интегрирования по частям называется «приведение интеграла к самому себе ».

Пример 9. Вычислить интеграл
.

В правой части стоит исходный интеграл . Перенеся его в левую часть, получим:

.

Пример 10. Вычислить интеграл
.

4.5. Интегрирование простейших правильных рациональных дробей

Определение. Простейшими правильными дробями I , II и III типов называются следующие дроби:

I . ;

II .
; (
- целое положительное число);

III .
; (корни знаменателя комплексные, то есть:
.

Рассмотрим интегралы от простейших дробей.

I .
; (20)

II . ; (21)

III .
;

Преобразуем числитель дроби таким образом, чтобы выделить в числителе слагаемое
, равное производной знаменателя.

Рассмотрим первый из двух полученных интегралов и сделаем в нем замену:

Во втором интеграле дополним знаменатель до полного квадрата:

Окончательно, интеграл от дроби третьего типа равен:

=
+
. (22)

Таким образом, интеграл от простейших дробей I-го типа выражается через логарифмы,II–го типа – через рациональные функции,III-го типа – через логарифмы и арктангенсы.

4.6.Интегрирование дробно-рациональных функций

Одним из классов функций, которые имеют интеграл, выраженный через элементарные функции, является класс алгебраических рациональных функций, то есть функций, получающихся в результате конечного числа алгебраических операций над аргументом.

Всякая рациональная функция
может быть представлена в виде отношения двух многочленов
и
:

. (23)

Будем предполагать, что многочлены не имеют общих корней.

Дробь вида (23) называется правильной , если степень числителя меньше степени знаменателя, то есть,m < n . В противном случае –неправильной .

Если дробь неправильная, то, разделив числитель на знаменатель (по правилу деления многочленов), представим дробь в виде суммы многочлена и правильной дроби:

, (24)

где
- многочлен,- правильная дробь, причем степень многочлена
- не выше степени (n -1).

Пример.

Так как интегрирование многочлена сводится к сумме табличных интегралов от степенной функции, то основная трудность при интегрировании рациональных дробей заключается в интегрировании правильных рациональных дробей.

В алгебре доказано, что всякая правильная дробь разлагается на сумму рассмотренных вышепростейших дробей, вид которых определяется корнями знаменателя
.

Рассмотрим три частных случая. Здесь и далее будем считать, что коэффициент при старшей степени знаменателя
равен единице=1, то есть
многочлен приведенный .

Случай 1. Корни знаменателя, то есть, корни
уравнения
=0, действительны и различны. Тогда знаменатель представим в виде произведения линейных множителей:

а правильная дробь разлагается на простейшие дроби I-готипа:

, (26)

где
– некоторые постоянные числа, которые находятся методом неопределенных коэффициентов.

Для этого необходимо:

1. Привести правую часть разложения (26) к общему знаменателю.

2. Приравнять коэффициенты при одинаковых степенях тождественных многочленов, стоящих в числителе левой и правой частей. Получим систему линейных уравнений для определения
.

3. Решить полученную систему и найти неопределенные коэффициенты
.

Тогда интеграл дробно-рациональной функции (26) будет равен сумме интегралов от простейших дробей I-готипа, вычисляемых по формуле (20).

Пример. Вычислить интеграл
.

Решение. Разложим знаменатель на множители, используя теорему Виета:

Тогда, подынтегральная функция разлагается на сумму простейших дробей:

.

х :

Запишем систему трех уравнений для нахождения
х в левой и правой частях:

.

Укажем более простой способ нахождения неопределенных коэффициентов, называемый методом частных значений .

Полагая в равенстве (27)
получим
, откуда
. Полагая
получим
. Наконец, полагая
получим
.

.

Случай 2. Корня знаменателя
действительны,но среди них есть кратные (равные) корни. Тогда знаменатель представим в виде произведения линейных множителей, входящих в произведение в той степени, какова кратность соответствующего корня:

где
.

Правильная дробь будет разлагаться сумму дробейI–го иII-го типов. Пусть, например,- корень знаменателя кратностиk , а все остальные (n - k ) корней различны.

Тогда разложение будет иметь вид:

Аналогично, если существуют другие кратные корни. Для некратных корней в разложение (28) входят простейшие дроби первого типа.

Пример. Вычислить интеграл
.

Решение. Представим дробь в виде суммы простейших дробей первого и второго рода с неопределенными коэффициентами:

.

Приведем правую часть к общему знаменателю и приравняем многочлены, стоящие в числителях левой и правой части:

В правой части приведем подобные при одинаковых степенях х :

Запишем систему четырех уравнений для нахождения
и. Для этого приравняем коэффициенты при одинаковых степеняхх в левой и правой части

.

Случай 3. Среди корней знаменателя
есть комплексные однократные корни. То есть, в разложение знаменателя входят множители второй степени
, не разложимые на действительные линейные множители, причем они не повторяются.

Тогда в разложении дроби каждому такому множителю будет соответствовать простейшая дробь IIIтипа. Линейным множителям соответствуют простейшие дробиI–го иII-го типов.

Пример. Вычислить интеграл
.

Решение.
.

.

.

Интегрирование дробно-рациональной функции.
Метод неопределенных коэффициентов

Продолжаем заниматься интегрированием дробей. Интегралы от некоторых видов дробей мы уже рассмотрели на уроке , и этот урок в некотором смысле можно считать продолжением. Для успешного понимания материала необходимы базовые навыки интегрирования, поэтому если Вы только приступили к изучению интегралов, то есть, являетесь чайником, то необходимо начать со статьи Неопределенный интеграл. Примеры решений .

Как ни странно, сейчас мы будем заниматься не столько нахождением интегралов, сколько… решением систем линейных уравнений. В этой связи настоятельно рекомендую посетить урок А именно – нужно хорошо ориентироваться в методах подстановки («школьном» методе и методе почленного сложения (вычитания) уравнений системы).

Что такое дробно-рациональная функция? Простыми словами, дробно-рациональная функция – это дробь, в числителе и знаменателе которой находятся многочлены либо произведения многочленов. При этом дроби являются более навороченными, нежели те, о которых шла речь в статье Интегрирование некоторых дробей .

Интегрирование правильной дробно-рациональной функции

Сразу пример и типовой алгоритм решения интеграла от дробно-рациональной функции.

Пример 1


Шаг 1. Первое, что мы ВСЕГДА делаем при решении интеграла от дробно-рациональной функции – это выясняем следующий вопрос: является ли дробь правильной? Данный шаг выполняется устно, и сейчас я объясню как:

Сначала смотрим на числитель и выясняем старшую степень многочлена:

Старшая степень числителя равна двум.

Теперь смотрим на знаменатель и выясняем старшую степень знаменателя. Напрашивающийся путь – это раскрыть скобки и привести подобные слагаемые, но можно поступить проще, в каждой скобке находим старшую степень

и мысленно умножаем: – таким образом, старшая степень знаменателя равна трём. Совершенно очевидно, что если реально раскрыть скобки, то мы не получим степени, больше трёх.

Вывод : Старшая степень числителя СТРОГО меньше старшей степени знаменателя, значит, дробь является правильной.

Если бы в данном примере в числителе находился многочлен 3, 4, 5 и т.д. степени, то дробь была бы неправильной .

Сейчас мы будем рассматривать только правильные дробно-рациональные функции . Случай, когда степень числителя больше либо равна степени знаменателя, разберём в конце урока.

Шаг 2. Разложим знаменатель на множители. Смотрим на наш знаменатель:

Вообще говоря, здесь уже произведение множителей, но, тем не менее, задаемся вопросом: нельзя ли что-нибудь разложить еще? Объектом пыток, несомненно, выступит квадратный трехчлен. Решаем квадратное уравнение:

Дискриминант больше нуля, значит, трехчлен действительно раскладывается на множители:

Общее правило: ВСЁ, что в знаменателе МОЖНО разложить на множители – раскладываем на множители

Начинаем оформлять решение:

Шаг 3. Методом неопределенных коэффициентов раскладываем подынтегральную функцию в сумму простых (элементарных) дробей. Сейчас будет понятнее.

Смотрим на нашу подынтегральную функцию:

И, знаете, как-то проскакивает интуитивная мысль, что неплохо бы нашу большую дробь превратить в несколько маленьких. Например, вот так:

Возникает вопрос, а можно ли вообще так сделать? Вздохнем с облегчением, соответствующая теорема математического анализа утверждает – МОЖНО. Такое разложение существует и единственно .

Только есть одна загвоздочка, коэффициенты мы пока не знаем, отсюда и название – метод неопределенных коэффициентов.

Как вы догадались, последующие телодвижения так, не гоготать! будут направлены на то, чтобы как раз их УЗНАТЬ – выяснить, чему же равны .

Будьте внимательны, подробно объясняю один раз!

Итак, начинаем плясать от:

В левой части приводим выражение к общему знаменателю:

Теперь благополучно избавляемся от знаменателей (т.к. они одинаковы):

В левой части раскрываем скобки, неизвестные коэффициенты при этом пока не трогаем:

Заодно повторяем школьное правило умножение многочленов. В свою бытность учителем, я научился выговаривать это правило с каменным лицом: Для того чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена .

С точки зрения понятного объяснения коэффициенты лучше внести в скобки (хотя лично я никогда этого не делаю в целях экономии времени):

Составляем систему линейных уравнений.
Сначала разыскиваем старшие степени:

И записываем соответствующие коэффициенты в первое уравнение системы:

Хорошо запомните следующий нюанс . Что было бы, если б в правой части вообще не было ? Скажем, красовалось бы просто без всякого квадрата? В этом случае в уравнении системы нужно было бы поставить справа ноль: . Почему ноль? А потому что в правой части всегда можно приписать этот самый квадрат с нулём: Если в правой части отсутствуют какие-нибудь переменные или (и) свободный член, то в правых частях соответствующих уравнений системы ставим нули .

Записываем соответствующие коэффициенты во второе уравнение системы:

И, наконец, минералка, подбираем свободные члены.

Эх,…что-то я расшутился. Шутки прочь – математика наука серьезная. У нас в институтской группе никто не смеялся, когда доцент сказала, что разбросает члены по числовой прямой и выберет из них самые большие. Настраиваемся на серьезный лад. Хотя… кто доживет до конца этого урока, все равно будет тихо улыбаться.

Система готова:

Решаем систему:

(1) Из первого уравнения выражаем и подставляем его во 2-е и 3-е уравнения системы. На самом деле можно было выразить (или другую букву) из другого уравнения, но в данном случае выгодно выразить именно из 1-го уравнения, поскольку там самые маленькие коэффициенты .

(2) Приводим подобные слагаемые во 2-м и 3-м уравнениях.

(3) Почленно складываем 2-е и 3-е уравнение, при этом, получая равенство , из которого следует, что

(4) Подставляем во второе (или третье) уравнение, откуда находим, что

(5) Подставляем и в первое уравнение, получая .

Если возникли трудности с методами решения системы отработайте их на уроке Как решить систему линейных уравнений?

После решения системы всегда полезно сделать проверку – подставить найденные значения в каждое уравнение системы, в результате всё должно «сойтись».

Почти приехали. Коэффициенты найдены, при этом:

Чистовое оформление задание должно выглядеть примерно так:




Как видите, основная трудность задания состояла в том, чтобы составить (правильно!) и решить (правильно!) систему линейных уравнений. А на завершающем этапе всё не так сложно: используем свойства линейности неопределенного интеграла и интегрируем. Обращаю внимание, что под каждым из трёх интегралов у нас «халявная» сложная функция, об особенностях ее интегрирования я рассказал на уроке Метод замены переменной в неопределенном интеграле .

Проверка: Дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.
В ходе проверки пришлось приводить выражение к общему знаменателю, и это не случайно. Метод неопределенных коэффициентов и приведение выражения к общему знаменателю – это взаимно обратные действия .

Пример 2

Найти неопределенный интеграл.

Вернемся к дроби из первого примера: . Нетрудно заметить, что в знаменателе все множители РАЗНЫЕ. Возникает вопрос, а что делать, если дана, например, такая дробь: ? Здесь в знаменателе у нас степени, или, по-математически кратные множители . Кроме того, есть неразложимый на множители квадратный трехчлен (легко убедиться, что дискриминант уравнения отрицателен, поэтому на множители трехчлен никак не разложить). Что делать? Разложение в сумму элементарных дробей будет выглядеть наподобие с неизвестными коэффициентами вверху или как-то по-другому?

Пример 3

Представить функцию

Шаг 1. Проверяем, правильная ли у нас дробь
Старшая степень числителя: 2
Старшая степень знаменателя: 8
, значит, дробь является правильной.

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Очевидно, что нет, всё уже разложено. Квадратный трехчлен не раскладывается в произведение по указанным выше причинам. Гуд. Работы меньше.

Шаг 3. Представим дробно-рациональную функцию в виде суммы элементарных дробей.
В данном случае, разложение имеет следующий вид:

Смотрим на наш знаменатель:
При разложении дробно-рациональной функции в сумму элементарных дробей можно выделить три принципиальных момента:

1) Если в знаменателе находится «одинокий» множитель в первой степени (в нашем случае ), то вверху ставим неопределенный коэффициент (в нашем случае ). Примеры №1,2 состояли только из таких «одиноких» множителей.

2) Если в знаменателе есть кратный множитель , то раскладывать нужно так:
– то есть последовательно перебрать все степени «икса» от первой до энной степени. В нашем примере два кратных множителя: и , еще раз взгляните на приведенное мной разложение и убедитесь, что они разложены именно по этому правилу.

3) Если в знаменателе находится неразложимый многочлен второй степени (в нашем случае ), то при разложении в числителе нужно записать линейную функцию с неопределенными коэффициентами (в нашем случае с неопределенными коэффициентами и ).

На самом деле, есть еще 4-й случай, но о нём я умолчу, поскольку на практике он встречается крайне редко.

Пример 4

Представить функцию в виде суммы элементарных дробей с неизвестными коэффициентами.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Строго следуйте алгоритму!

Если Вы разобрались, по каким принципам нужно раскладывать дробно-рациональную функцию в сумму, то сможете разгрызть практически любой интеграл рассматриваемого типа.

Пример 5

Найти неопределенный интеграл.

Шаг 1. Очевидно, что дробь является правильной:

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Можно. Здесь сумма кубов . Раскладываем знаменатель на множители, используя формулу сокращенного умножения

Шаг 3. Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Обратите внимание, что многочлен неразложим на множители (проверьте, что дискриминант отрицательный), поэтому вверху мы ставим линейную функцию с неизвестными коэффициентами, а не просто одну буковку.

Приводим дробь к общему знаменателю:

Составим и решим систему:

(1) Из первого уравнения выражаем и подставляем во второе уравнение системы (это наиболее рациональный способ).

(2) Приводим подобные слагаемые во втором уравнении.

(3) Почленно складываем второе и третье уравнения системы.

Все дальнейшие расчеты, в принципе, устные, так как система несложная.

(1) Записываем сумму дробей в соответствии с найденными коэффициентами .

(2) Используем свойства линейности неопределенного интеграла. Что произошло во втором интеграле? С этим методом Вы можете ознакомиться в последнем параграфе урока Интегрирование некоторых дробей .

(3) Еще раз используем свойства линейности. В третьем интеграле начинаем выделять полный квадрат (предпоследний параграф урока Интегрирование некоторых дробей ).

(4) Берём второй интеграл, в третьем – выделяем полный квадрат.

(5) Берём третий интеграл. Готово.

Рациональная функция - это дробь вида , числитель и знаменатель которой - многочлены или произведения многочленов.

Пример 1. Шаг 2.

.

Умножаем неопределённые коэффициенты на многочлены, которых нет в данной отдельной дроби, но которые есть в других полученных дробях:

Раскрываем скобки и приравниваем полученое к полученному выражению числитель исходной подынтегральной дроби:

В обеих частях равенства отыскиваем слагаемые с одинаковыми степенями икса и составляем из них систему уравнений:

.

Сокращаем все иксы и получаем эквивалентную систему уравнений:

.

Таким образом, окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 2. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Теперь начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Теперь требуется составить и решить систему уравнений. Для этого приравниваем коэффициенты при переменной в соответствующей степени в числителе исходного выражения функции и аналогичные коэффициенты в полученном на предыдущем шаге выражения:

Решаем полученную систему:

Итак, , отсюда

.

Пример 3. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Как и в предыдущих примерах составляем систему уравнений:

Сокращаем иксы и получаем эквивалентную систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 4. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Как приравнивать числитель исходной дроби к выражению в числителе, полученному после разложения дроби на сумму простых дробей и приведения этой суммы к общему знаменателю, мы уже знаем из предыдуших примеров. Поэтому лишь для контроля приведём получившуюся систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

Пример 5. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Самостоятельно приводим к общему знаменателю эту сумму, приравнивать числитель этого выражения к числителю исходной дроби. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 6. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Производим с этой суммой те же действия, что и в предыдущих примерах. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 7. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

После известных действий с полученной суммой должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 8. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Внесём некоторые изменения в уже доведённые до автоматизма действия для получения системы уравнений. Есть искусственный приём, который в некоторых случаях помогает избежать лишних вычислений. Приводя сумму дробей к общему знаменателю получаем и приравнивая числитель этого выражения к числителю исходной дроби, получаем.

Одним из важнейших классов функций, интегралы от которых выражаются через элементарные функции, является класс рациональных функций.

Определение 1. Функция вида где
- многочлены степеней
n и m называется рациональной. Целая рациональная функция, т.е. многочлен, интегрируется непосредственно. Интеграл от дробно-рациональной функции можно найти путем разложения на слагаемые, которые стандартным образом преобразуются к основным табличным интегралам.

Определение 2. Дробь
называется правильной, если степень числителя
n меньше степени знаменателя m . Дробь, у которой степень числителя больше или равна степени знаменателя, называется неправильной.

Любую неправильную дробь можно представить в виде суммы многочлена и правильной дроби. Это делается посредством деления многочлена на многочлен «столбиком», подобно делению чисел.

Пример.

Представим дробь
в виде суммы многочлена и правильной дроби:

x - 1


3

3

3

Первое слагаемое
в частном получается как результат деления старшего члена
, делимого на старший членх делителя. Затем умножаем
на делительх-1 и полученный результат вычитаем из делимого; аналогично находятся остальные слагаемые неполного частного.

Выполнив деление многочленов, получим:

Это действие называется выделением целой части.

Определение 3. Простейшими дробями называются правильные рациональные дроби следующих типов:

I.

II.
(K=2, 3, …).

III.
где квадратный трехчлен

IV.
где К=2, 3, …; квадратный трехчлен
не имеет действительных корней.

а) разложить знаменатель
на простейшие действительные множители (согласно основной теореме алгебры это разложение может содержать линейные двучлены вида
и квадратные трехчлены
, не имеющие корней);

б) написать схему разложения данной дроби на сумму простейших дробей. При этом каждому сомножителю вида
соответствуетk слагаемых видов I и II:

каждому сомножителю вида
соответствует е слагаемых видовIII и IV:

Пример.

Записать схему разложения дроби
в сумму простейших.

в) выполнить сложение полученных простейших дробей. Записать равенство числителей полученной и исходной дробей;

г) найти коэффициенты соответствующего разложения:
(методы решения будут рассмотрены ниже);

д) найденные значения коэффициентов подставить в схему разложения.

Интегрирование всякой правильной рациональной дроби после разложения на простейшие слагаемые сводится к нахождению интегралов одного из типов:




(k и e =2, 3, …).

Вычисление интеграла сводится к формулеIII:

интеграла - к формулеII:

интеграл можно найти по правилу, указанному в теории интегрирования функций, содержащих квадратный трехчлен;- путем преобразований, показанных ниже в примере 4.

Пример 1.

а) разложим знаменатель на множители:

б) напишем схему разложения подынтегральной функции на слагаемые:

в) выполним сложение простейших дробей:

Запишем равенство числителей дробей:

г) для нахождения неизвестных коэффициентов A, B, C существуют два метода.

Два многочлена равны тогда и только тогда, когда равны их коэффициенты при одинаковых степенях х , поэтому можно составить соответствующую систему уравнений. В этом заключается один из методов решения.

Коэффициенты при

свободные члены (коэф. при ):4А=8.

Решив систему, получим А=2 , В=1 , С= - 10 .

Другой метод - частных значений будет рассмотрен в следующем примере;

д) подставим найденные значения в схему разложения:

Подставляя под знак интеграла полученную сумму, и интегрируя каждое слагаемое отдельно, найдем:

Пример 2.

Тождество есть равенство, справедливое при любых значениях входящих в него неизвестных. На этом основан метод частных значений. Можно придавать х любые значения. Удобнее для вычислений брать те значения, которые обращают в нуль какие-либо слагаемые в правой части равенства.

Пусть х = 0 . Тогда 1 = А 0(0+2)+В 0 (0-1)+С (0-1)(0+2).

Аналогично при х = - 2 имеем 1= - 2В*(-3 ), при х = 1 имеем 1 = 3А .

Следовательно,

Пример 3.

г) сначала воспользуемся методом частных значений.

Пусть х = 0 , тогда 1 = А 1, А = 1 .

При х = - 1 имеем - 1+4+2+1 = - В(1+1+1) или 6 = - 3В , В = - 2 .

Для нахождения коэффициентов С и D нужно составить еще два уравнения. Для этого можно взять любые другие значения х , например х = 1 и х = 2 . Можно воспользоваться первым методом, т.е. приравнять коэффициенты при каких-либо одинаковых степенях х , например при и. Получим

1 = А+В+С и 4 = С + D – В.

Зная А = 1 , В = -2 , найдем С = 2 , D = 0 .

Таким образом, при вычислении коэффициентов можно сочетать оба метода.

Последний интеграл находим отдельно по правилу, указанному в методе веления новой переменной. Выделим полный квадрат в знаменателе:

положим,
тогда
Получим:

=

Подставляя в предыдущее равенство, найдем

Пример 4.

Найти

б)

д)

Интегрируя, имеем:

Первый интеграл преобразуем к формуле III:

Второй интеграл преобразуем к формуле II:

В третьем интеграле заменим переменную:

(При выполнении преобразований воспользовались формулой тригонометрии

Найти интегралы:

51.

52.

53.

54.

55.

56.

57.

58.

Вопросы для самопроверки.

    Какие из данных рациональных дробей являются правильными:

2. Верно ли записана схема разложения дроби на сумму простейших дробей?