Пример №1 . Предприятие, производящее компьютеры, получает одинаковые комплектующие детали от трех поставщиков. Первый поставляет 50 % всех комплектующих деталей, второй - 20 %, третий - 30 % деталей.
Известно, что качество поставляемых деталей разное, и в продукции первого поставщика процент брака составляет 4 %, второго - 5 %, третьего - 2 %. Определить вероятность того, что деталь, выбранная наудачу из всех полученных, будет бракованной.

Решение . Обозначим события: A - «выбранная деталь бракована», H i - «выбранная деталь получена от i-го поставщика», i =1, 2, 3 Гипотезы H 1 , H 2 , H 3 образуют полную группу несовместных событий. По условию
P(H 1) = 0.5; P(H 2) = 0.2; P(H 3) = 0.3
P(A|H 1) = 0.04; P(A|H 2) = 0.05; P(A|H 3) = 0.02

По формуле полной вероятности (1.11) вероятность события A равна
P(A) = P(H 1) · P(A|H 1) + P(H 2) · P(A|H 2) + P(H 3) · P(A|H 3) = 0.5 · 0.04 + 0.2 · 0.05 + 0.3 · 0.02=0.036
Вероятность того, что выбранная наудачу деталь окажется бракованной, равна 0.036.

Пусть в условиях предыдущего примера событие A уже произошло: выбранная деталь оказалась бракованной. Какова вероятность того, что она была получена от первого поставщика? Ответ на этот вопрос дает формула Байеса .
Мы начинали анализ вероятностей, имея лишь предварительные, априорные значения вероятностей событий. Затем был произведен опыт (выбрана деталь), и мы получили дополнительную информацию об интересующем нас событии. Имея эту новую информацию, мы можем уточнить значения априорных вероятностей. Новые значения вероятностей тех же событий будут уже апостериорными (послеопытными) вероятностями гипотез (рис. 1.5).

Схема переоценки гипотез
Пусть событие A может осуществиться лишь вместе с одной из гипотез H 1 , H 2 , …, H n (полная группа несовместных событий). Априорные вероятности гипотез мы обозначали P(H i) условные вероятности события A - P(A|H i), i = 1, 2,…, n. Если опыт уже произведен и в результате него наступило событие A, то апостериорными вероятностями гипотез будут условные вероятности P(H i |A), i = 1, 2,…, n. В обозначениях предыдущего примера P(H 1 |A) - вероятность того, что выбранная деталь, оказавшаяся бракованной, была получена от первого поставщика.
Нас интересует вероятность события H k |A Рассмотрим совместное наступление событий H k и A то есть событие AH k . Его вероятность можно найти двумя способами, используя формулы умножения (1.5) и (1.6):
P(AH k) = P(H k)P(A|H k);
P(AH k) = P(A)P(H k |A).

Приравняем правые части этих формул
P(H k) · P(A|H k) = P(A) · P(H k |A),

отсюда апостериорная вероятность гипотезы H k равна

В знаменателе стоит полная вероятность события A. Подставив вместо P(A) ее значение по формуле полной вероятности (1.11), получим:
(1.12)
Формула (1.12) называется формулой Байеса и применяется для переоценки вероятностей гипотез.
В условиях предыдущего примера найдем вероятность того, что бракованная деталь была получена от первого поставщика. Сведем в одну таблицу известные нам по условию априорные вероятности гипотез P(H i) условные вероятности P(A|H i) рассчитанные в процессе решения совместные вероятности P(AH i) = P(H i) · P(A|H i) и рассчитанные по формуле (1.12) апостериорные вероятности P(H k |A), i,k = 1, 2,…, n (табл. 1.3).

Таблица 1.3 - Переоценка гипотез

Гипотезы H i Вероятности
Априорные P(H i) Условные P(A|H i) Совместные P(AH i) Апостериорные P(H i |A)
1 2 3 4 5

H 1 - деталь получена от первого поставщика

0.5 0.04 0.02

H 2 - деталь получена от второго поставщика

0.2 0.05 0.01

H 3 - деталь получена от третьего поставщика

0.3 0.02 0.006
Сумма 1.0 - 0.036 1
Рассмотрим последнюю строку этой таблицы. Во второй колонке стоит сумма вероятностей несовместных событий H 1 , H 2 , H 3 , образующих полную группу:
P(Ω) = P(H 1 + H 2 + H 3) = P(H 1) + P(H 2) + P(H 3) = 0.5 + 0.2 + 0.3 = 1
В четвертой колонке значение в каждой строке (совместные вероятности) получено по правилу умножения вероятностей перемножением соответствующих значений во второй и третьей колонках, а в последней строке 0.036 - есть полная вероятность события A (по формуле полной вероятности).
В колонке 5 вычислены апостериорные вероятности гипотез по формуле Байеса (1.12):

Аналогично рассчитываются апостериорные вероятности P(H 2 |A) и P(H 3 |A), причем числитель дроби - совместные вероятности, записанные в соответствующих строках колонки 4, а знаменатель - полная вероятность события A, записанная в последней строке колонки 4.
Сумма вероятностей гипотез после опыта равна 1 и записана в последней строке пятой колонки.
Итак, вероятность того, что бракованная деталь была получена от первого поставщика, равна 0.555. Послеопытная вероятность больше априорной (за счет большого объема поставки). Послеопытная вероятность того, что бракованная деталь была получена от второго поставщика, равна 0.278 и также больше доопытной (за счет большого количества брака). Послеопытная вероятность того, что бракованная деталь была получена от третьего поставщика, равна 0.167.

Пример №3 . Имеются три одинаковые урны; в первой урне два белых и один черный шар; во второй - три белых и один черный; в третьей - два белых и два черных шара. Для опыта наугад выбрана одна урна и из нее вынут шар. Найдите вероятность того, что этот шар белый.
Решение. Рассмотрим три гипотезы: H 1 - выбрана первая урна, H 2 - выбрана вторая урна, H 3 - выбрана третья урна и событие A - вынут белый шар.
Так как гипотезы по условию задачи равновозможны, то

Условные вероятности события A при этих гипотезах соответственно равны:
По формуле полной вероятности

Пример №4 . В пирамиде стоят 19 винтовок, из них 3 с оптическим прицелом. Стрелок, стреляя из винтовки с оптическим прицелом, может поразить мишень с вероятностью 0,81, а стреляя из винтовки без оптического прицела, - с вероятностью 0,46. Найдите вероятность того, что стрелок поразит мишень, стреляя из случайно взятой винтовки.
Решение. Здесь первым испытанием является случайный выбор винтовки, вторым - стрельба по мишени. Рассмотрим следующие события: A - стрелок поразит мишень; H 1 - стрелок возьмет винтовку с оптическим прицелом; H 2 - стрелок возьмет винтовку без оптического прицела. Используем формулу полной вероятности. Имеем


Учитывая, что винтовки выбираются по одной, и используя формулу классической вероятности, получаем: P(H 1) = 3/19, P(H 2) = 16/19.
Условные вероятности заданы в условии задачи: P(A|H 1) = 0;81 и P(A|H 2) = 0;46. Следовательно,

Пример №5 . Из урны, содержащей 2 белых и 3 черных шара, наудачу извлекаются два шара и добавляется в урну 1 белый шар. Найдите вероятность того, что наудачу взятый шар окажется белым.
Решение. Событие “извлечен белый шар” обозначим через A. Событие H 1 - наудачу извлекли два белых шара; H 2 - наудачу извлекли два черных шара; H 3 - извлекли один белый шар и один черный. Тогда вероятности выдвинутых гипотез


Условные вероятности при данных гипотезах соответственно равны: P(A|H 1) = 1/4 - вероятность извлечь белый шар, если в урне в данный момент один белый и три черных ша-ра, P(A|H 2) = 3/4 - вероятность извлечь белый шар, если в урне в данный момент три белых и один черный шар, P(A|H 3) = 2/4 = 1/2 - вероятность извлечь белый шар, если в урне в данный момент два белых и два черных шара. В соответствии с формулой полной вероятности

Пример №6 . Производится два выстрела по цели. Вероятность попадания при первом выстреле 0,2, при втором - 0,6. Вероятность разрушения цели при одном попадании 0,3, при двух - 0,9. Найдите вероятность того, что цель будет разрушена.
Решение. Пусть событие A - цель разрушена. Для этого достаточно попадания с одного выстрела из двух или поражение цели подряд двумя выстрелами без промахов. Выдвинем гипотезы: H 1 - оба выстрела попали в цель. Тогда P(H 1) = 0,2 · 0,6 = 0;12. H 2 - либо первый раз, либо второй раз был совершен промах. Тогда P(H 2) = 0,2 · 0,4 + 0,8 · 0,6 = 0,56. Гипотеза H 3 - оба выстрела были промахи - не учитывается, так как вероятность разрушения цели при этом нулевая. Тогда условные вероятности соответственно равны: вероятность разрушения цели при условии обоих удачных выстрелов равна P(A|H 1) = 0,9, а вероятность разрушения цели при условии только одного удачного выстрела P(A|H 2) = 0,3. Тогда вероятность разрушения цели по формуле полной вероятности равна.

Полезная страница? Сохрани или расскажи друзьям

Общая постановка задачи примерно* следующая:

В урне находится $K$ белых и $N-K$ чёрных шаров (всего $N$ шаров). Из нее наудачу и без возвращения вынимают $n$ шаров. Найти вероятность того, что будет выбрано ровно $k$ белых и $n-k$ чёрных шаров.

По классическому определению вероятности, искомая вероятность находится по формуле гипергеометрической вероятности (см. пояснения ):

$$ P=\frac{C_K^k \cdot C_{N-K}^{n-k}}{C_N^n}. \qquad (1) $$

*Поясню, что значит "примерно": шары могут выниматься не из урны, а из корзины, или быть не черными и белыми, а красными и зелеными, большими и маленькими и так далее. Главное, чтобы они были ДВУХ типов, тогда один тип вы считаете условно "белыми шарами", второй - "черными шарами" и смело используете формулу для решения (поправив в нужных местах текст конечно:)).

Видеоурок и шаблон Excel

Посмотрите наш ролик о решении задач про шары в схеме гипергеометрической вероятности, узнайте, как использовать Excel для решения типовых задач.

Расчетный файл Эксель из видео можно бесплатно скачать и использовать для решения своих задач.

Примеры решений задач о выборе шаров

Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.

Подставляем в формулу (1) значения: $K=10$, $N-K=8$, итого $N=10+8=18$, выбираем $n=5$ шаров, из них должно быть $k=2$ белых и соответственно, $n-k=5-2=3$ черных. Получаем:

$$ P=\frac{C_{10}^2 \cdot C_{8}^{3}}{C_{18}^5} = \frac{45 \cdot 56}{8568} = \frac{5}{17} = 0.294. $$

Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?

Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.

Подставляем в формулу (1) значения: $K=5$ (белых шаров), $N-K=5$ (красных шаров), итого $N=5+5=10$ (всего шаров в урне), выбираем $n=2$ шара, из них должно быть $k=2$ белых и соответственно, $n-k=2-2=0$ красных. Получаем:

$$ P=\frac{C_{5}^2 \cdot C_{5}^{0}}{C_{10}^2} = \frac{10 \cdot 1}{45} = \frac{2}{9} = 0.222. $$

Пример 3. В корзине лежат 4 белых и 2 черных шара. Из корзины достали 2 шара. Какова вероятность, что они одного цвета?

Здесь задача немного усложняется, и решим мы ее по шагам. Введем искомое событие
$A = $ (Выбранные шары одного цвета) = (Выбрано или 2 белых, или 2 черных шара).
Представим это событие как сумму двух несовместных событий: $A=A_1+A_2$, где
$A_1 = $ (Выбраны 2 белых шара),
$A_2 = $ (Выбраны 2 черных шара).

Выпишем значения параметров: $K=4$ (белых шаров), $N-K=2$ (черных шаров), итого $N=4+2=6$ (всего шаров в корзине). Выбираем $n=2$ шара.

Для события $A_1$ из них должно быть $k=2$ белых и соответственно, $n-k=2-2=0$ черных. Получаем:

$$ P(A_1)=\frac{C_{4}^2 \cdot C_{2}^{0}}{C_{6}^2} = \frac{6 \cdot 1}{15} = \frac{2}{5} = 0.4. $$

Для события $A_2$ из выбранных шаров должно оказаться $k=0$ белых и $n-k=2$ черных. Получаем:

$$ P(A_2)=\frac{C_{4}^0 \cdot C_{2}^{2}}{C_{6}^2} = \frac{1 \cdot 1}{15} = \frac{1}{15}. $$

Тогда вероятность искомого события (вынутые шары одного цвета) есть сумма вероятностей этих событий:

$$ P(A)=P(A_1)+P(A_2)=\frac{2}{5} + \frac{1}{15} =\frac{7}{15} = 0.467. $$

Рассмотрим зависимое событие , которое может произойти лишь в результате осуществления одной из несовместных гипотез , которые образуют полную группу . Пусть известны их вероятности и соответствующие условные вероятности . Тогда вероятность наступления события равна:

Эта формула получила название формулы полной вероятности . В учебниках она формулируется теоремой, доказательство которой элементарно: согласно алгебре событий , (произошло событие и или произошло событие и после него наступило событие или произошло событие и после него наступило событие или …. или произошло событие и после него наступило событие ) . Поскольку гипотезы несовместны, а событие – зависимо, то по теореме сложения вероятностей несовместных событий (первый шаг) и теореме умножения вероятностей зависимых событий (второй шаг) :

Задача 1

Имеются три одинаковые урны. В первой урне находятся 4 белых и 7 черных шаров, во второй – только белые и в третьей – только черные шары. Наудачу выбирается одна урна и из неё наугад извлекается шар. Какова вероятность того, что этот шар чёрный?

Решение : рассмотрим событие – из наугад выбранной урны будет извлечён чёрный шар. Данное событие может произойти в результате осуществления одной из следующих гипотез:
– будет выбрана 1-ая урна;
– будет выбрана 2-ая урна;
– будет выбрана 3-я урна.

Так как урна выбирается наугад, то выбор любой из трёх урн равновозможен , следовательно:

Обратите внимание, что перечисленные гипотезы образуют полную группу событий , то есть по условию чёрный шар может появиться только из этих урн, а например, не прилететь с бильярдного стола. Проведём простую промежуточную проверку:
, ОК, едем дальше:

В первой урне 4 белых + 7 черных = 11 шаров, по классическому определению :
– вероятность извлечения чёрного шара при условии , что будет выбрана 1-ая урна.

Во второй урне только белые шары, поэтому в случае её выбора появления чёрного шара становится невозможным : .

И, наконец, в третьей урне одни чёрные шары, а значит, соответствующая условная вероятность извлечения чёрного шара составит (событие достоверно) .

По формуле полной вероятности:

– вероятность того, что из наугад выбранной урны будет извлечен чёрный шар.

Ответ :

Задача 2

В тире имеются 5 различных по точности боя винтовок. Вероятности попада­ния в мишень для данного стрелка соответственно равны и 0,4. Чему равна вероятность попадания в мишень, если стрелок делает один выстрел из слу­чайно выбранной винтовки?

Задача 3

В пирамиде 5 винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок производит один выстрел из наудачу взятой винтовки.


Решение : в этой задаче количество винтовок точно такое же, как и в предыдущей, но вот гипотезы всего две:
– стрелок выберет винтовку с оптическим прицелом;
– стрелок выберет винтовку без оптического прицела.
По классическому определению вероятности : .
Контроль:

Задача 4

Двигатель работает в трёх режимах: нормальном, форсированном и на холостом ходу. В режиме холостого хода вероятность его выхода из строя равна 0,05, при нормальном режиме работы – 0,1, а при форсированном – 0,7. 70% времени двигатель работает в нормальном режиме, а 20% – в форсированном. Какова вероятность выхода из строя двигателя во время работы?

Следствием обеих основных теорем – теоремы сложения вероятностей и теоремы умножения вероятностей – является так называемая формула полной вероятности.

Пусть требуется определить вероятность некоторого события , которое может произойти вместе с одним из событий:

образующих полную группу несовместных событий. Будем эти события называть гипотезами.

Докажем, что в этом случае

, (3.4.1)

т.е. вероятность события вычисляется как сумма произведений вероятности каждой гипотезы на вероятность события при этой гипотезе.

Формула (3.4.1) носит название формулы полной вероятности.

Доказательство. Так как гипотезы образуют полную группу, то событие может появиться только в комбинации с какой-либо из этих гипотез:

Так как гипотезы несовместны, то и комбинации также несовместны; применяя к ним теорему сложения, получим:

Применяя к событию теорему умножения, получим:

,

что и требовалось доказать.

Пример 1. Имеются три одинаковые на вид урны; в первой урне два белых и один черный шар; во второй – три белых и один черный; в третьей – два белых и два черных шара. Некто выбирает наугад одну из урн и вынимает из нее шар. Найти вероятность того, что этот шар белый.

Решение. Рассмотрим три гипотезы:

Выбор первой урны,

Выбор второй урны,

Выбор третьей урны

и событие – появление белого шара.

Так как гипотезы, по условию задачи, равновозможные, то

.

Условные вероятности события при этих гипотезах соответственно равны:

По формуле полной вероятности

.

Пример 2. По самолету производится три одиночных выстрела. Вероятность попадания при первом выстреле равна 0,4, при втором – 0,5, при третьем 0,7. Для вывода самолета из строя заведомо достаточно трех попаданий; при одном попадании самолет выходит из строя с вероятностью 0,2, при двух попаданиях – с вероятностью 0,6. Найти вероятность того, что в результате трех выстрелов самолет будет выведен из строя.

Решение. Рассмотрим четыре гипотезы:

В самолет не попало ни одного снаряда,

В самолет попал один снаряд,

В самолет попало два снаряда,

В самолет попало три снаряда.

Пользуясь теоремами сложения и умножения, найдем вероятности этих гипотез:

Условные вероятности события (выход самолета из строя) при этих гипотезах равны:

Применяя формулу полной вероятности, получим:

Заметим, что первую гипотезу можно было бы и не вводить в рассмотрение, так как соответствующий член в формуле полной вероятности обращается в нуль. Так обычно и поступают при применении формулы полной вероятности, рассматривая не полную группу несовместных гипотез, а только те из них, при которых данное событие возможно.

Пример 3. Работа двигателя контролируется двумя регуляторами. Рассматривается определенный период времени , в течение которого желательно обеспечить безотказную работу двигателя. При наличии обоих регуляторов двигатель отказывается с вероятностью , при работе только первого из них – с вероятностью , при работе только второго - , при отказе обоих регуляторов – с вероятностью . Первый из регуляторов имеет надежность , второй - . Все элементы выходят из строя независимо друг от друга. Найти полную надежность (вероятность безотказной работы) двигателя.

Формула полной вероятности позволяет найти вероятность события A , которое может наступить только с каждым из n исключающих друг друга событий , образующих полную систему, если известны их вероятности , а условные вероятности события A относительно каждого из событий системы равны .

События также называются гипотезами, они являются исключающими друг друга. Поэтому в литературе можно также встретить их обозначение не буквой B , а буквой H (hypothesis).

Для решения задач с такими условиями необходимо рассмотреть 3, 4, 5 или в общем случае n возможностей наступления события A - с каждым событий .

По теоремам сложения и умножения вероятностей получаем сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы. То есть, вероятность события A может быть вычислена по формуле

или в общем виде

,

которая и называется формулой полной вероятности .

Формула полной вероятности: примеры решения задач

Пример 1. Имеются три одинаковых на вид урны: в первой 2 белых шара и 3 чёрных, во второй - 4 белых и один чёрный, в третьей - три белых шара. Некто подходит наугад к одной из урн и вынимает из неё один шар. Пользуясь формулой полной вероятности , найти вероятность того, что этот шар будет белым.

Решение. Событие A - появление белого шара. Выдвигаем три гипотезы:

Выбрана первая урна;

Выбрана вторая урна;

Выбрана третья урна.

Условные вероятности события A относительно каждой из гипотез:

, , .

Применяем формулу полной вероятности, в результате - требуемая вероятность:

.

Пример 2. На первом заводе из каждых 100 лампочек производится в среднем 90 стандартных, на втором - 95, на третьем - 85, а продукция этих заводов составляет соответственно 50%, 30% и 20% всех электролампочек, поставляемых в магазины некоторого района. Найти вероятность приобретения стандартной электролампочки.

Решение. Обозначим вероятность приобретения стандартной электролампочки через A , а события, заключающиеся в том, что приобретённая лампочка изготовлена соответственно на первом, втором и третьем заводах, через . По условию известны вероятности этих событий: , , и условные вероятности события A относительно каждого из них: , , . Это вероятности приобретения стандартной лампочки при условии её изготовления соответственно на первом, втором, третьем заводах.

Событие A наступит, если произойдут или событие K - лампочка изготовлена на первом заводе и стандартна, или событие L - лампочка изготовлена на втором заводе и стандартна, или событие M - лампочка изготовлена на третьем заводе и стандартна. Других возможностей наступления события A нет. Следовательно, событие A является суммой событий K , L и M , которые являются несовместимыми. Применяя теорему сложения вероятностей, представим вероятность события A в виде

а по теореме умножения вероятностей получим

то есть, частный случай формулы полной вероятности .

Подставив в левую часть формулы значения вероятностей, получаем вероятность события A :

Пример 3. Производится посадка самолёта на аэродром. Если позволяет погода, лётчик сажает самолёт, пользуясь, помимо приборов, ещё и визуальным наблюдением. В этом случае вероятность благополучной посадки равна . Если аэродром затянут низкой облачностью, то лётчик сажает самолёт, ориентируясь только по приборам. В этом случае вероятность благополучной посадки равна ; . Приборы, обеспечивающие слепую посадку, имеют надёжность (вероятность безотказной работы) P . При наличии низкой облачности и отказавших приборах слепой посадки вероятность благополучной посадки равна ; . Статистика показывает, что в k % случаев посадки аэродром затянут низкой облачностью. Найти полную вероятность события A - благополучной посадки самолёта.

Решение. Гипотезы:

Низкой облачности нет;

Низкая облачность есть.

Вероятности этих гипотез (событий):

;

Условная вероятность .

Условную вероятность снова найдём по формуле полной вероятности с гипотезами

Приборы слепой посадки действуют;

Приборы слепой посадки отказали.

Вероятности этих гипотез:

По формуле полной вероятности

Пример 4. Прибор может работать в двух режимах: нормальном и ненормальном. Нормальный режим наблюдается в 80% всех случаев работы прибора, а ненормальный - в 20% случаев. Вероятность выхода прибора из строя за определённое время t равна 0,1; в ненормальном 0,7. Найти полную вероятность выхода прибора из строя за время t .

Решение. Вновь обозначаем вероятность выхода прибора из строя через A . Итак, относительно работы прибора в каждом режиме (события ) по условию известны вероятности: для нормального режима это 80% (), для ненормального - 20% (). Вероятность события A (то есть, выхода прибора из строя) в зависимости от первого события (нормального режима) равна 0,1 (); в зависимости от второго события (ненормального режима) - 0,7 (). Подставляем эти значения в формулу полной вероятности (то есть, сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы) и перед нами - требуемый результат.