Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости (рис. 6.3).

Если прямая перпендикулярна плоскости, то она будет перпендикулярна любой прямой, лежащей в этой плоскости. Из множества этих прямых при построении перпендикуляров к плоскости выбирают горизонталь и фронталь плоскости. В этом случае, пользуясь свойством проецирования прямого угла на комплексном чертеже, фронтальную проекцию перпендикуляра проводим под углом 90 0 к фронтальной проекции фронтали, а горизонтальную проекцию перпендикуляра – под углом 90° к горизонтальной проекции горизонтали.

Рассмотрим алгоритм построения перпендикуляра n к плоскости Р(D АВС) (табл. 6.6).

Таблица 6.6

Алгоритм построения перпендикуляра к плоскости

2. Строим фронталь в плоскости Р(D АВС) – f (f 1 f 2)

3. Строим перпендикуляр n к плоскости Р(D АВС). Для этого через точку D 2 проводим n 2 , перпендикулярно f 2 , а через D 1 проводим n 1 , перпендикулярно h 1 .

n (n 1 n 2) ^Р (DАВС), так как

n 1 ^h 1 ; h 1 P 1 (DА 1 В 1 С 1)

n 2 ^f 2 ; f 2 P 2 (DА 2 В 2 С 2)

§ 6. Перпендикулярность двух плоскостей

Две плоскости будут перпендикулярны друг к другу, если одна из них проходит через прямую, перпендикулярную другой плоскости (рис. 6.4).

АВ b , то есть АВ принадлежит плоскости b и АВ ^ плоскости a . Плоскость b ^ плоскости a .

Рассмотрим это положение на комплексном чертеже (табл. 6.7), где будет показано построение плоскости Р, проходящей через прямую l и перпендикулярной плоскости, заданной треугольником Q(D АВС) (табл. 6.7).

Таблица 6.7

Алгоритм построения плоскости, перпендикулярной данной

Вербальная форма

Графическая форма

1. Известно, что для построения прямой, перпендикулярной плоскости, необходимо построить горизонталь и фронталь в плоскости.

а) Заметим, что построение перпендикуляра упрощается, так как стороны плоскости Q(D АВС) являются прямыми уровня:

АВ (А 1 В 1 ; А 2 В 2) – фронталь

АС (А 1 С 1 ; А 2 С 2) – горизонталь.

б) Возьмем на прямой l произвольную точку К

2. Через точку К, которая принадлежит прямой l, проводим прямую n ^ Q, т.е.

n 1 ^ A 1 C 1 и n 2 ^ A 2 В 2 .

Искомая плоскость будет определяться двумя пересекающимися прямыми, одна из которых задана – l , а другая – n является перпендикулярной к заданной плоскости:

P(l n)^ Q (D ABC)

Выводы

а) не иметь общих точек;

б) иметь хотя бы одну общую точку;

в) иметь множество общих точек.

В зависимости от этого прямая может принадлежать плоскости, быть ей параллельна, пересекаться с данной плоскостью и, как частный случай, быть ей перпендикулярна.

2. Две плоскости в пространстве могут быть параллельны друг другу, пересекаться между собой и, как частный случай, быть взаимно перпендикулярны.

3. Две пересекающиеся плоскости имеют одну общую прямую – линию пересечения.

5. Для построения перпендикуляра к плоскости необходимо использовать свойства проецирования прямого угла.






Связь между параллельностью прямых и их перпендикулярностью к плоскости Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости. Если две прямые перпендикулярны к плоскости, то они параллельны.


ПЕРПЕНДИКУЛЯР И НАКЛОННЫЕ Отрезок АН называется перпендикуляром, проведенным из точки А к плоскости. Точка Н – основание перпендикуляра. Отрезок АМ называется наклонной, проведенной из точки А к плоскости. Точка М – основание наклонной. Отрезок НМ называется проекцией наклонной АМ на плоскость.


Расстояние от точки до плоскости 1.Построим плоскость, проходящую через точку W перпендикулярно какой – нибудь прямой m 1, лежащей в плоскости. 2.Найдем прямую m 2 - линию пересечения плоскостей и. 3.На прямой m 2 выберем какие – нибудь точки U 1 и U 2. 4.Длина высоты WH треугольника WU 1 U 2 - искомое расстояние от точки W до плоскости.


Расстояние между скрещивающимися прямыми 1.На одной из двух заданных прямых p и q, например на прямой q, выберем некоторую точку Т. Построим плоскость через прямую р и точку Т. 2.В плоскости через точку Т проведем прямую р 1 p. 3.Построим плоскость через пересекающиеся прямые р 1 и q. 4.Выберем на прямой р точку W и найдем расстояние WH от точки W до плоскости. WH – искомое расстояние. SV – общий перпендикуляр скрещивающихся прямых p и q.


Теорема о трех перпендикулярах Прямая, проведенная в плоскости через основание наклонной перпендикулярно к её проекции на эту плоскость, перпендикулярна и к самой наклонной. Обратная теорема: Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к её проекции на эту плоскость




ПЕРПЕНДИКУЛЯРНОСТЬ ПЛОСКОСТЕЙ Фигуру, образованную двумя полуплоскостями, не принадлежащими одной плоскости, с общей ограничивающей их прямой называют двугранным углом. Полуплоскости, образующие двугранный угол, называются его гранями. Общая граница полуплоскостей называется ребром двугранного угла.


Угол, который получается в сечении двугранного угла плоскостью, перпендикулярной его ребру, называют линейным углом двугранного угла. На рисунке а) – угол АОВ- линейный угол двугранного угла АСDB. Все линейные углы двугранного угла равны друг другу (рис.б).










Перпендикулярность в пространстве. ЛИТЕРАТУРА. 1.Геометрия Учебник для общеобразовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б.Кадомцев и др. – М. : Просвещение, Решение типовых задач по геометрии. Книга для учителя / В.Н. Литвиненко - М. : Просвещение, Изучение геометрии в классах. Методические рекомендации / С.М. Саакян, В.Ф. Бутузов – М. : Просвещение,




Соотношения между основными тригонометрическими функциямисинусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Copyright by cleverstudents

    Все права защищены.
    Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.