Исследование функции дает возможность найти область определения и область изменения функции, области ее убывания или возрастания, асимптоты, интервал знакопостоянства и др. Однако при рассмотрении графиков многих функций часто можно избежать проведения подобного исследования, используя ряд методов, упрощающих аналитическое выражение функции и облегчающих построение графика. Изложению именно таких методов посвящается эта глава, которая может служить практическим руководством при построении многих функций.

Параллельный перенос

Перенос вдоль оси ординат

f (x) => f (x) - b

Пусть требуется построить график функции у = f (х) - b. Нетрудно заметить, что ординаты этого графика для всех значений x на ЅbЅ единиц меньше соответствующих ординат графика функций у = f (х) при b>0 и на ЅbЅ единиц больше - при b<0. Следовательно, график функции у = y (х) - b можно получить параллельным переносом вдоль оси ординат графика функции у = f (х) на ЅbЅединиц вниз при b>0 или вверх при b<0. Перемещение графика связано с его перерисовыванием, что бывает затруднительно, особенно в случае сложных графиков. Перенос же графика на ЅbЅединиц вниз или вверх вдоль оси ординат эквивалентен соответствующему противоположному переносу оси абсцисс настолько же единиц. Именно этим способом мы будем пользоваться. Тогда представив исходную функцию в виде у + b = f (х), сформулируем следующее правило.

Для построения графика функции y + b = f (x) следует построить график функции y = f (x) и перенести ось абсцисс на ЅbЅ единиц вверх при b>0 или наЅbЅ единиц вниз при b<0. Полученный в новой системе координат график является графиком функции y = f (x) - b.

Перенос вдоль оси абсцисс

f (x) => f (x + a)

Пусть требуется построить график функции у = f (x + a). Рассмотрим функцию y = f (x), которая в некоторой точке x = x1 принимает значение у1 = f (x1). Очевидно, функция у = f (x + a) примет такое же значение в точке x2, координата которой определяется из равенства x2 + a = x1, т.е. x2 = x1 - a, причем рассматриваемое равенство справедливо для совокупности всех значений из области определения функции. Следовательно, график функции у = f (x + a) может быть получен параллельным перемещением графика функции y = f (x) вдоль оси абсцисс влево наЅaЅ единиц при a>0 или вправо на ЅaЅ единиц при a<0. Параллельное же перемещение вдоль оси абсцисс на ЅaЅ единиц эквивалентно переносу оси ординат на столько же единиц, но в противоположную сторону. Таким образом, получаем следующее правило.

Для построения графика функции y = f (x + a) следует построить график функции y = f (x) и перенести ось ординат на ЅaЅ единиц вправо при a>0 или наЅaЅ единиц влево при a<0. Полученный в новой системе координат график является графиком функции y = f (x + a).

Отражение

Построение графика функции вида y = f (-x)

f (x) => f (-x)

Очевидно, что функции y = f (-x) и y = f (x) принимают равные значения в точках, абсциссы которых равны по абсолютной величине, но противоположны по знаку. Иначе говоря, ординаты графика функции y = f (-x) в области положительных (отрицательных) значений х будут равны ординатам графика функции y = f (x) при соответствующих по абсолютной величине отрицательных (положительных) значениях х. Таким образом, получаем следующее правило.

Для построения графика функции y = f (-x) следует построить график функции y = f (x) и отразить его относительно оси ординат. Полученный график является графиком функции y = f (-x)

Построение графика функции вида y = - f (x)

f (x) => - f (x)

Ординаты графика функции y = - f (x) при всех значениях аргумента равны по абсолютной величине, но противоположны по знаку ординатам графика функции y = f (x) при тех же значениях аргумента. Таким образом, получаем следующее правило.

Для построения графика функции y = - f (x) следует построить график функции y = f (x) и отразить его относительно оси абсцисс.

Построение графиков четной и нечетной функций.

Как уже отмечалось, для четной функции y = f (x) во всей области изменения ее аргумента справедливо соотношение f (x) = f (-x). Следовательно, функция такого рода принимает одинаковое значение при всех значениях аргумента, равных по абсолютной величин, но противоположных по знаку. График четной функции симметричен относительно оси ординат.

Для построения графика четной функции y = f (x) следует построить ветвь графика этой функции только в области положительных значений аргумента (хі0). График функции y = f (x) в области отрицательных значений аргумента симметричен построенной ветви относительно оси ординат и получается отражением ее относительно этой оси.

Для нечетной функции y = f (x) в области всех значений аргумента справедливо равенство f (-x) = - f (x). Таким образом, в области отрицательных значений аргумента ординаты графика нечетной функции равны по величин, но противоположны по знаку ординатам графика той же функции при соответствующих положительных значениях х. График нечетной функции симметричен относительно начала координат.

Для построения графика нечетной функции y = f (x) следует построить ветвь графика этой функции только в области положительных значений аргумента (хі0). График функции y = f (x) в области отрицательных значений аргумента симметричен построенной ветви относительно начала координат и может быть получен отражением этой ветви относительно оси ординат с последующим отражением в области отрицательных значений относительно оси абсцисс.

Построение графика обратной функции

Как уже отмечалось, прямая и обратная функции выражают одну и ту же зависимость между переменными х и у, с тем только отличием, что в обратной функции переменные поменялись ролями, что равносильно изменению обозначений осей координат. Поэтому графиком обратной функции симметричен графику прямой функции относительно биссектрисы I и III координатных углов, т.е. относительно прямой y = x. Таким образом, получаем следующее правило.

Для построения графика функции y = j (x), обратной по отношению к функции y = f (x), следует построить график y = f (x) и отразить его относительно прямой y =x