Последнее обновление: 29/09/2013

Синапс – определение, структура, роль синапса в строении нервной системы

Синапс в структуре нервной системы – это небольшой участок в окончании нейона, отвечающий за передачу информации между нервными клетками. В его формировании участвуют две клетки – передающая и воспринимающая.

Определение понятия

Синапс является небольшим отделом в окончании нейрона. С его помощью ведется передача информации от одного нейрона к другому. Синапсы располагаются в тех участках нервных клеток, где они контактируют друг с другом. Кроме того, синапсы имеются в местах, где нервные клетки вступают в соединение с различными мышцами или железами организма.

Строение синапса

Структура синапса состоит из трех частей, каждая из которых несет свои функции в процессе передачи информации. В его строении задействованы обе клетки, и передающая, и воспринимающая.

На конце аксона передающей клетки располагается начальная часть синапса – пресинаптическое окончание. Оно способно вызывать в клетке запуск (термин имеет несколько названий – «нейромедиаторы», «посредники», «медиаторы») – специальных химических веществ, благодаря которым реализовывается передача электрического сигнала между двумя нейронами.

Средняя часть синапса является синаптической щелью – пространством между двумя вступающими во взаимодействие нервными клетками. Именно через эту щель и идет электрический импульс от передающей клетки.

Заключительная часть синапса является частью клетки воспринимающей и называется постсинаптическим окончанием – контактирующем фрагментом клетки со множеством чувствительных рецепторов в своей структуре.

Механизм работы синапса

Из пресинаптического окончания вниз по аксону нейрона проходит электрический заряд от передающей клетки к воспринимающей. Он запускает выброс в синаптическую щель нейротрансмиттеров. Данные медиаторы двигаются через синаптическую щель до постсинаптического окончания следующей клетки, где вступают во взаимодействие с многочисленными ее рецепторами. Данный процесс вызывает цепь биохимических реакций и, как следствие, провоцирует запуск электрического импульса с кратким изменением своего потенциала на участке клетки. Данное явление известно как потенциал действия (или волна возбуждения при прохождении нервного сигнала).

Синапс-структурно-функциональное образование, которое обеспечивает передачу возбуждающих или тормозных влияний с нервной клетки на другую инервируемую ей клетку.

Виды синапсов:

По локализации : центральные, перифирические.

Центральные-синапсы в пределах ЦНС-контакт между 2-мя нейронами.

Виды центральных:аксональные,аксосоматические,дендросоматические,дендродендриты.

Перифирические-находятся за пределами ЦНС.

Виды:нервно-мышечные, нейроэпителиальные,вегетативных ганглиев.

По мех-му передачи: химические(передача инф-ии с помощью медиаторов) , электрические(щелевидные контакты, передача инф-ии идет с помощью круговых токов-сердечная, гладкие мышцы, ЦНС), смешанные

По виду медиатора(для хим-их): холинэргические(ацетилхолин),адренэргические(норадреналин),гамкэргические(ГАМК к-та),глицинэргические.

По функции : возбуждающие(обеспечивают передачу возбуждения на иннервируемую клетку.Возникает возбуждающий постсинаптический потенциал(ВПСП)-деполяризующие), тормозные(хар-ся ТПСП-гиперполяризующие синапсы).

Строение синапса.

Пресинаптическая мембрана

Постсинаптическая мембрана

Синаптическая щель(между 1и 2)

Пресинапич.мемб- элетрогенная мембрана,которая покрывает терминаль аксона в области синапса. Она содержит

Синаптич.пузырьки(они заполнены ацетилхолином)

Митохондрии(содержат микрофиламенты и сократительные белки)

Постсинаптическая мемб-утолщена,складчатая поверхность. На ней содержатся белки:белки рецепторы(в них ионные каналы), белки с ферментативной активностью.

Синаптическая щель(заполнена жидкостью, по составу близкой к плазме)Через нее проходят фиброзные нити(базальная мембрана)

Мех-м передачи возбуждения через синапс(в основе квантовая теория)

1.По нервному волокну распространяется потенциал действия к пресинаптической терминали

2.Пресинаптическая мембрана деполяризуется

3.Повыш-ся проницаемость кальциевых каналов этой мембраны и иона Са из синаптич. щели проникают внутрь пресинаптической терминали.

4.Синаптические пузырьки упорядочиваются вдоль пресинаптической мембраны

5.При участии ионов Са начин-ся нейросекреция медиатора в синаптическую щель.

6.Синаптич. пузырьки сливаются с мембр. и путем экзоцитоза выделяют ацетилхолин с син.щель

7.На 1 потенциал действия нервн-го волокна у млекопитающих выделяется 200-300 квантов медиатора.Кол-во медиатора прямо-пропорционально зависит от амплитуды потенциала действия нервного волокна(от силы раздражений)

8.Путем диффузии по базальной мемб. ацетилхолин достигает постсинаптической мембраны

9.Молекулы ацетилхолина взаимодействуют с белком-рецептором

10.Изменяется конфигурация белка и открывается встроенный в него ионный канал.

11.Через каналы двигаются ионы Na(выходят из клетки)

12.Заряд постсинаптической мембраны изменяется,возникают потенциалы концевой пластинки.

13.Эти потенциалы стимулируются, достигают пороговой величины и вызывают развитие возбуждения в инервируемой клетке.

14.В мышечном волокне возникает потенциал действия приводящий к сокращению мышцы.

Клапанный аппарат сердца. Виды клапанов, механизмы их работы во время цикла сердечной деятельности.

2 вида клапанов: предсердно-желудочковые(атриовентрикулярные), полулунные.

Атриовентрикулярные (створчатые).В правой половине -3-х створчатый, в левой-2-х.

К створкам клапанов прикрепляются сухожильные нити-хорды, а другим концом нити прикрепляются к сосочковым мышцам.

Полулунные . Имеют форму 3-х карманов. Располагаются в месте выхода из желудочков крупных сосудов(из левого жел-аорта,из правого-легочный ствол)

Механизм работы клапанов.

Работа сердца представл. собой чередование фаз сокращения(систолы) и расслабления(диастолы

При частоте сердечных сокращений 70-75 в 1 минуту 1 сердечн цикл длится-0,8-0,86 сек

В сердечном цикле различают систолу и диастолу предсердий и желудочков.

Общая пауза-промежуток времени в течение которого и предсердия и желудочки находятся в фазе диастолы. Общ.пауза составляет о,4 сек или 50% серд.цикла

Во время общей паузы сердце наполняется кровью,сердечная мышца отдыхает и расслабляется,обеспечивает интенсивный приток крови к сердцу.

Компоненты систолы и диастолы желудочков-сложные фазы, а предсердий-простые.

Компоненты систолы желудочков:

-период напряжения :1)фаза асинхронного сокращ.Сокращ-ся межжелудочк.перегородка, сосочковые мышцы и закрываются атриовентрикулярные клапаны.

2)фаза изометрического сокращения.Осуществляется при закрытых клапанах.Давление в желудочках возрастает и становится больше, чем в аорте и легочном стволе. За счет разности давления открываются полулунные клапаны. Наступает период изгнания крови из желудочков.

-период изгнания :1)фаза максимально быстрого изгнания,2)фаза медленного изгнания

Компоненты диастолы желудочков:

-протодиастолический период (от начала расслабления до закрытия полулунных клапанов).

В момент расслабления в жел. давление снижается и становится < чем в сосудах. За счет разности давления кровь стремится назад в жел.,заполняет кармашки клапанов и они закрываются.

-фаза изометрического расслабления. Протекает при закрытых клапанах. Желудочки продолжают расслабляться, давление становится <чем в предсердиях.Створчатые клапаны открываются.Наступает период наполнения желудочков кровью(включ. в себя фазу быстрого и медленного наполнения)

-пресистола

Дыхательная функция крови. Транспорт кислорода. Формы транспорта двуокиси углерода в плазме крови и эритроцитах.

О 2 переносится от легких к тканям 2 формами:

1.соединение О 2 с гемоглобином (Fe –гем,глобин(белковая часть)Образуется оксигемоглобин. В результате взаимод. О 2 с гемом, Fe остается 2-х валентным, не окисляется, р-я называется-оксигенация

1г гемоглобина связывает и переносит 1,345 мл О 2

Кислородная емкость крови- кол-во О 2 , кот.связывает гемоглобин в 100 мл крови

2.физическое растворение газа в крови.

СО 2 переносится от тканей к легким. Существует 3 транспортные формы:

1.соединение СО 2 с бикарбонатами(K 2 CO 3 -в эритроцитах соединяется,

Na 2 CO 3 –в плазме крови

2. СО 2 с гемоглобином(белковой частью)образуется карбгемоглобин.

3.Физическое растворение

Внутреннее тканевое дыхание осущ-ся на территории тканей. Состоит из 2-х этапов:

1.газообмен между капиллярами большого круга кровообращения и тканями.

2.собственно тканевое дыхание(истинное биологическое окисление энергии митохондрий)

Доказательством внутреннего дыхания явл. Артерио-венозная разница по О 2

артер. кровь венозная кровь

СО 2 50-52% 55-57%

Билет 21

1.Кровяное давление, его виды. Величина кровяного давления в различных отделах кровяного русла. Факторы, обуславливающие величину кровяного давления и методы его определения. Показатели артериального кровяного давления.

Кровяное давление, т.е. давление крови на стенки кровеносных сосудов, измеряется в миллиметрах ртутного столба.В зависимости от вида сосуда, по которому течет кровь, различают артериальное, венозное и капиллярное давление крови.

Величину артериального давления характеризуют:

-Систолическое давление -самое высокое давление крови в артериях, наблюдается во время систолы левого желудочка и характеризует состояние миокарда левого жел. 110-120мм рт. ст.

-Диастолическое -давление на стенки сосудов в фазу диастолы. Оно характеризует степень тонуса артериальных стенок.60-80мм рт. ст.

-Пульсовое давление -разность между систолическим и диастолическим.35-55 мм рт.ст.Только при таких условиях во время систолы левого желудочка клапан аорты открывается полностью и кровь из левого желудочка поступает в большой круг кровообращения.

-Среднее гемодинамическое -сумма диастолич. и 1/3 пульсового. Выражает энергию непрерывного движения крови, довольно постоянная величина для сосуда 70-95 мм рт. ст.

На величину артериального давления оказывают действие рефлекторные влияния со слизистыз полости рта и языка, а также возраст, время суток, состояние организма, ЦНС-ы.

У животных артериальное давление измеряется бескровным и кровавым способом. У человека только бескровными способами: пальпаторным(метод Рива-Роччи) и аускультативным(метод Н.С.Короткова)

Для этого могут быть использованы:сфигмоманометр Рива-Роччи, сфигмотонометр(тонометр мембранного типа)

Прибор для измерения артериального давления состоит из полой резиновой манжеты, манометра и груши для нагнетания воздуха в манжету.Метод основан на определении давления, создаваемого в манжете прибора,которая сдавливает плечевую артерию, нарушая движение в ней крови.

В основе аускультативного метода определения артериального давления лежит выслушивание сосудистых тонов. В несдавленной артерии звуки отсутствуют.Если поднять давление в манжете выше уровня систолического, то манжета полностью прерывает просвет артерии и кровоток в ней прекращается. Если постепенно выпускать воздух из манжеты, то в момент когда давление в ней станеь чуть ниже систолического, кровь в момент систолы преодолевает суженный участок и ударяется о его стенку ниже наложения манжеты. При ударе о стенку артерии порции крови, движущейся с большой скоростью и кинетической энергией, возникает звук(сосудистые тоны), слышимый ниже наложения манжеты

Синапс (греч. synapsis соприкосновение, соединение) - специализированная зона контакта между отростками нервных клеток и другими возбудимыми и невозбудимыми клетками, обеспечивающая передачу информационного сигнала. Морфологически синапс образован контактирующими мембранами двух клеток. Мембрана, принадлежащая отросткам нервных клеток, называется пресинаптической, мембрана клетки, к которой передается сигнал, - постсинаптической. В соответствии с принадлежностью постсинаптической мембраны синапса подразделяют на нейросекреторные, нейромышечные и межнейрональные. Термин «синапс» был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

Синапс - особая структура, обеспечивающая передачу нервного импульса с нервного волокна на какую-либо другую нервную клетку или нервное волокно, также с рецепторной клетки на нервное волокно (область соприкосновения нервных клеток друг с другом и другой нервной клеткой). Для образования синапса необходимы 2 клетки.

Структура синапса

Типичный синапс - аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической, образованной булавовидным расширением окончанием аксона передающей клетки и постсинаптической, представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае - участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания.

Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую. Между обеими частями имеется синаптическая щель, края которой укреплены межклеточными контактами. Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели называется пресинаптической мембраной . Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной , в химических синапсах она рельефна и содержит многочисленные рецепторы. В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки, содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент, разрушающий этот медиатор. На постсинаптической и пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

Классификации синапсов

В зависимости от механизма передачи нервного импульса различают

  • химические ;
  • электрические - клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм); Так как сопротивление внеклеточной жидкости мало (в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.
  • смешанные синапсы : Пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом. Наиболее распространён первый тип.

Химические синапсы можно классифицировать по их местоположению и принадлежности соответствующим структурам:

  • периферические
    • нервно-мышечные
    • нейросекреторные (аксо-вазальные)
    • рецепторно-нейрональные
  • центральные
    • аксо-дендритические - с дендритами, в т. ч.
    • аксо-шипиковые - с дендритными шипиками, выростами на дендритах;
    • аксо-соматические - с телами нейронов;
    • аксо-аксональные - между аксонами;
    • дендро-дендритические - между дендритами;

В зависимости от медиатора синапсы разделяются на

  • аминергические, содержащие биогенные амины (например, серотонин, дофамин;) o в том числе адренергические, содержащие адреналин или норадреналин;
  • холинергические, содержащие ацетилхолин;
  • пуринергические, содержащие пурины;
  • пептидергические, содержащие пептиды. При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

По знаку действия:

  • возбуждающие
  • тормозные.

Если первые способствуют возникновению возбуждения в постсинаптической клетке (в них в результате поступления импульса происходит деполяризация мембраны, которая может вызвать потенциал действия при определённых условиях.), то вторые, напротив, прекращают или предотвращают его появление, препятствуют дальнейшему распространению импульса. Обычно тормозными являются глицинергические (медиатор - глицин) и ГАМК-ергические синапсы (медиатор - гамма-аминомасляная кислота).

Таким образом, тормозные синапсы бывают двух видов:

  1. синапс, в пресинаптических окончаниях которого выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий возникновение тормозного постсинаптического потенциала;
  2. аксо-аксональный синапс, обеспечивающий пресинаптическое торможение.

Синапс холинергический (s. cholinergica) - синапс, медиатором в котором является ацетилхолин. В некоторых синапсах присутствует постсинаптическое уплотнение - электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные. Известно, что все глутаматергические синапсы асимметричны, а ГАМК-ергические - симметричны. В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы. К специальным формам синапсов относятся шипиковые аппараты, в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

Механизм функционирования химического синапса При деполяризации пресинаптической терминали открываются потенциал-чувствительные кальциевые каналы, ионы кальция входят в пресинаптическую терминаль и запускают механизм слияния синаптических пузырьков с мембраной, вследствие чего медиатор выходит в синаптическую щель и соединяется с белками-рецепторами постсинаптической мембраны, которые делятся на метаботропные и ионотропные. Первые связаны с G-белком и запускают каскад реакций внутриклеточной передачи сигнала, вторые связаны с ионными каналами, которые открываются при связывании с ними нейромедиатора, что приводит к изменению мембранного потенциала.

Медиатор действует в течение очень короткого времени, после чего разрушается специфическим ферментом. Например, в холинэргических синапсах фермент, разрушающий медиатор в синаптической щели - ацетилхолинэстераза. Одновременно часть медиатора может перемещаться через постсинаптическую мембрану (прямой захват) и в обратном направлении через пресинаптическую мембрану (обратный захват). В ряде случаев медиатор также поглощается соседними клетками нейроглии. Открыты два механизма высвобождения: с полным слиянием везикулы с плазмалеммой и так называемый «поцеловал и убежал» (англ. kiss-and-run), когда везикула соединяется с мембраной, и из неё в синаптическую щель выходят небольшие молекулы, а крупные остаются в везикуле. Второй механизм, предположительно, быстрее первого, с помощью него происходит синаптическая передача при высоком содержании ионов кальция в синаптической бляшке. Следствием такой структуры синапса является односторонее проведение нервного импульса.

Существует так называемая синаптическая задержка - время, нужное для передачи нервного импульса. Её длительность - 0,5 мс. Так называемый «принцип Дейла» (один нейрон - один медиатор) признан ошибочным. Или, как иногда считают, он уточнён: из одного окончания клетки может выделяться не один, а несколько медиаторов, причём их набор постоянен для данной клетки.

Тоже результат активности маленьких нервных клеток. Но это необыкновенно нужная и сложная работа была бы невозможна без синапсов, которые обеспечивают взаимодействие нейронов и связывают их в единые нейронные сети.

Если перевести слово «синапс» с греческого, то получится «связь». Это и есть место связи, соединения двух нейронов. Казалось бы, что тут такого особенного в обычном соединении? Но именно синапсы делают возможным прохождение импульса по цепи нервных клеток и играют важную роль во всех .

Место синапсов в нервной системе

Одна из главных задач нейронов – сохранение и обработка, поступающей из внешнего мира информации. От органов чувств, мышц, связок и т. д. слабые электрические сигналы по нервным волокнам попадают в головной мозг, там они распространяются по нейронным цепям, создавая очаги возбуждения и связи между отдельными нейронами, центрами и отделами головного мозга. Так вкратце происходят все процессы в нашей психике: от простейших безусловных рефлексов, до сложнейшей мыслительной деятельности.

Распространение нервных импульсов происходит благодаря имеющимся у нейронов отросткам. Короткие и сильно разветвленные дендриты специализируются на приеме сигналов от других нейронов. У одной нервной клетки может быть до 1500 дендритов. А вот передающее нервное волокно – аксон – одно, но оно длинное и может достигать 1,5 метров. Соединяясь с отростками дендритов, аксон передает сигнал от одного нейрона к другому.

Но проблема в том, что напрямую импульс чаще всего пройти не может, так как между «ветвями» дендрита одной нервной клетки и аксоном другой есть щель – пространство, заполненное межклеточным веществом.

Происходит следующее: в процессе движения импульса в месте соединения нервных волокон возникает биохимическая реакция, образуется белковая молекула – нейротрансмиттер или медиатор (посредник) – и закупоривает щель, создавая своеобразный мостик для прохождения сигнала.

Так возникает то, что еще в 1897 году английский физиолог Ч. Шеррингтон назвал синапсом.

Структура синапса

Если учесть, что размер нервной клетки редко превышает 100 мкм, то место соединения передающего и принимающего волокон двух нейронов вообще микроскопическое. И тем не менее, синапс имеет сложное строение, включающее в себя три основных отдела:

  • Нервное окончание «ветвей» дендрита, которое представляет собой микроскопическое утолщение, называемое пресинаптической мембраной. Это очень важная часть синапса, отвечающая за синтез белковых молекул.
  • Аналогичное утолщение на отростках аксона. Оно имеет специальные рецепторы, позволяющие принимать сигналы от медиаторов. Это постсинаптическая мембрана.
  • Синаптическая щель, в которой образуется медиатор – проводящая импульс белковая молекула. Эта часть синапса одновременно и препятствует прохождению сигнала, и является причиной возникновения молекул белков, которые не только играют роль «мостиков», но и участвуют в работе нервной системы и организма в целом.

Функции этих белковых соединений разнообразны, так как нейроны вырабатывают разные виды медиаторов, и их химический состав оказывает различное влияние на процессы в нервной системе. Причем влияние это настолько сильное, что оно во многом управляет психическими реакциями, а недостаток даже одного из белков может привести к серьезным заболеваниям, таким как болезнь Паркинсона или Альцгеймера.

Сейчас обнаружено и изучено более 60 видов нейротрансмиттеров с разными свойствами. Вот примеры некоторых из них:

  • Норадреналин – гормон . Он обладает возбуждающим действием, повышает активность всех систем организма и добавляет чувство ярости в наше эмоциональное состояние.
  • Серотонин. Его функции многообразны: от обеспечения процесса пищеварения до влияния на уровень сексуального влечения.
  • Глутамат необходим для запоминания и сохранения информации, но его переизбыток токсичен и может вызвать гибель нервных клеток.
  • Дофамин – гормон счастья, источник позитивных , дарующий состояние блаженства. И одновременно этот белок, как и многие другие, обеспечивает эффективность познавательных процессов. А его недостаток может вызвать состояние и привести к слабоумию.

Это далеко не все белки, которые вырабатывают нейроны, но даже такой пример позволяет оценить значение нейротрансмиттеров и роль синапсов в организации нормальной деятельности головного . Разрушение нервных связей в результате болезни или травмы может привести и к серьезным нарушениям психических функций.

Виды синапсов

Синапсы обеспечивают связи не только между нейронами головного мозга, но и с нервными клетками органов чувств, рецепторами, расположенными во внутренних органах, мышцах и связках. Поэтому существует большое разнообразие синапсов в зависимости от специализации нейронов, от характера их воздействия, от того белкового соединения, которое вырабатывается при прохождении импульса.

В нашей нервной системе существует два основных процесса, определяющих ее деятельность. Это возбуждение и торможение. В соответствии с ними и синапсы делятся на два вида:

  • возбуждающие проводят сигналы, которые распространяют реакцию возбуждения нервных клеток;
  • тормозящие обеспечивают прохождение нервного импульса, который передает нейронам «команду» торможения.

По месту расположения синапсы различаются:

  • на центральные, расположенные в головном мозге;
  • периферические, обеспечивающие связи нейронов за пределами мозга – в периферической нервной системе.

Передача импульсов через синаптическую щель тоже может проводиться разными способами, в соответствии с этим выделяют три вида синапсов:

  • Химические синапсы расположены в коре головного мозга. Они проводят сигнал с помощью нейротрасмиттеров, которые образуются в результате биохимической реакции.
  • Электрические – та часть синапсов, которые способны передавать электрический сигнал без посредников-медиаторов. Например, это касается нейронов, расположенных в зрительном рецепторе. В этом случае химическая реакция не происходит, и обмен сигналами осуществляется быстрее.
  • Электрохимические синапсы сочетают в себе особенности обеих этих групп.

Также существует классификация синапсов по видам трансмиттеров. Например, если производится норадреналин, но синапсы эти называются адренергические, а если ацетилхолин, то – холинергические. Учитывая, что белков, вырабатываемых нейронами, несколько десятков видов, мы имеем очень объемную классификацию, которая здесь вряд ли уместна.

Синапсы и нейронные сети

Синапсы, устанавливая связи между проводящими нервными волокнами, обеспечивают возникновение и поддержание в рабочем состоянии нейронных цепей. Соединяясь и переплетаясь, они образуют сложные нейронные сети, по которым с огромной скоростью проносятся электрические импульсы.

По последним научным данным, только в коре головного мозга функционирует около 100 млрд нейронов. Каждый из них способен иметь до 10 000 синапсов, то есть связей с другими нервными клетками. И они могут обмениваться сигналами со скоростью 100 м/сек. Представляете, какой объем информации циркулирует в нашей нервной системе?

Результаты недавних исследований американских нейрофизиологов позволяют утверждать, что потенциальный объем памяти головного мозга человека измеряется петабайтами. 1 петабайт – 10 15 байт или 1 миллион гигабайт. И это сопоставимо с объемом информации, циркулирующей во всемирном интернет-пространстве. Поэтому когда не слишком радивый студент говорит, что у него распухла голова от полученных знаний и ничего больше туда впихнуть он не может, то стоит в этом усомниться.

1. По виду выделяемого медиатора выделяют химические синапсы двух видов:

а) адренергические (медиатором является адреналин).

б) холинергические (медиатором является ацетилхолин).

2. Электрические синапсы. Передают возбуждение без участия медиатора с большой скоростью и обладают двухсторонним проведением возбуждения. Структурной основой электрического синапса является нексус. Встречаются эти синапсы в железах внутренней секреции, эпителиальной ткани, ЦНС, сердце. В некоторых органах возбуждение может передаваться и через химические и через электрические синапсы.

3. По эффекту действия:

а) возбуждающие

б) тормозные

4. По месту расположения:

а) аксоаксональные

б) аксосоматические

в) аксодендрические

г) дендродендрические

д) дендросоматические.

Механизм передачи возбуждения в нервно-мышечном синапсе.

ПД достигая нервного окончания (пресинаптической мембраны) вызывает его деполяризацию. В результате этого внутрь окончания поступают ионы кальция. Увеличение концентрации кальция в нервном окончании способствует освобождению ацетилхолина, который выходит в синаптическую щель. Медиатор достигает постсинаптической мембраны и связывается там с рецепторами. В результате внутрь постсинаптической мембраны поступают ионы натрия и эта мембрана деполяризуется.

Если исходный уровень МПП составлял 85 мВ, то он может снижаться до 10 мВ, т.е. происходит частичная деполяризация, т.е. возбуждение пока еще не распространяется дальше, а находится в синапсе. В результате этих механизмов развивается синаптическая задержка, которая составляет от 0,2 до 1 мВ. частичная деполяризация постсинаптической мембраны называется возбуждающим постсинаптическим потенциалом (ВПСП).

Под влиянием ВПСП в соседнем чувствительном участке мембраны мышечного волокна возникает распространяющийся ПД, который и вызывает сокращение мышцы.

Ацетилхолин из пресинаптического окончания выделяется постоянно, но его концентрация невысока, что необходимо для поддержания тонуса мышцы в покое.

Для заблокирования передачи возбуждения через синапс применяют яд кураре, который связывается с рецепторами постсинаптической мембраны и препятствует их взаимодействию с ацетилхолином. Заблокировать проведение возбуждения через синапс может яд бутулин и другие вещества.

На наружной поверхности постсинаптической мембраны содержится фермент ацетилхолинэстераза, который расщепляет ацетилхолин и инактивирует его.

Принципы и особенности передачи возбуждения

в межнейральных синапсах.

Основной принцип передачи возбуждения в межнейральных синапсах такой же как и в нейромышечном синапсе. Однако существуют свои особенности:

1. Многие синапсы являются тормозными.

2. ВПСП при деполяризации одного синапса недостаточно для вызова распространяющегося потенциала действия, т.е. необходимо поступление импульсов к нервной клетке от многих синапсов.

Нервно-мышечный синапс

Классификация синапсов

1. По местоположению и принадлежности соответствующим структурам:

    периферические (нервно-мышечные, нейросекреторные, рецепторнонейрональные);

    центральные (аксо-соматические, аксо-дендритные, аксо-аксональные, сомато-дендритные. сомато-соматические);

2. По эффекту действия:

    возбуждающие

    тормозные

3. По способу передачи сигналов:

    Электрические,

    химические,

    смешанные.

4. По медиатору:

    холинергические,

    адренергические,

    серотонинергические,

    глицинергически. и т.д.

Тормозные медиаторы:

– гамма-аминомасляная кислота (ГАМК)

– таурин

– глицин

Возбуждающие медиаторы:

– аспартат

– глутамат

Оба эффекта:

– норадреналин

– дофамин

– серотонин

Механизм передачи возбуждения в синапсе

(на примере нервно-мышечного синапса)

    Выброс медиатора в синаптическую щель

    Диффузия АХ

    Возникновение возбуждения в мышечном волокне.

    Удаление АХ из синаптической щели