Скорость химической реакции зависит от многих факторов, включая природу реагирующих веществ, концентрацию реагирующих веществ, температуру, наличие катализаторов. Рассмотрим эти факторы.

1). Природа реагирующих веществ . Если идёт взаимодействие между веществами с ионной связью, то реакция протекает быстрее, чем между веществами с ковалентной связью.

2.) Концентрация реагирующих веществ . Чтобы прошла химическая реакция, необходимо столкновение молекул реагирующих веществ. То есть молекулы должны настолько близко подойти друг к другу, чтобы атомы одной частицы испытывали на себе действие электрических полей другой. Только в этом случае будут возможны переходы электронов и соответствующие перегруппировки атомов, в результате которых образуются молекулы новых веществ. Таким образом, скорость химических реакций пропорциональна числу столкновений, которое происходит между молекулами, а число столкновений, в свою очередь, пропорционально концентрации реагирующих веществ. На основании экспериментального материала норвежские учёные Гульдберг и Вааге и независимо от них русский учёный Бекетов в 1867 году сформулировали основной закон химической кинетики – закон действующих масс (ЗДМ): при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степени их стехиометрических коэффициентов. Для общего случая:

закон действующих масс имеет вид:

Запись закона действующих масс для данной реакции называют основным кинетическим уравнением реакции . В основном кинетическом уравнении k – константа скорости реакции, которая зависит от природы реагирующих веществ и температуры.

Большинство химических реакций является обратимыми. В ходе таких реакций продукты их по мере накопления реагируют друг с другом с образованием исходных веществ:

Скорость прямой реакции:

Скорость обратной реакции:

В момент равновесия:

Отсюда закон действующих масс в состоянии равновесия примет вид:

,

где K – константа равновесия реакции.

3) Влияние температуры на скорость реакции . Скорость химических реакций, как правило, при превышении температуры возрастает. Рассмотрим это на примере взаимодействия водорода с кислородом.

2Н 2 + О 2 = 2Н 2 О

При 20 0 С скорость реакции практически равна нулю и понадобилось бы 54 млрд.лет, чтобы взаимодействие прошло на 15%. При 500 0 С для образования воды потребуется 50 минут, а при 700 0 С реакция протекает мгновенно.

Зависимость скорости реакции от температуры выражается правилом Вант-Гоффа : при увеличении температуры на 10 о скорость реакции увеличивается в 2 – 4 раза. Правило Вант-Гоффа записывается:


4) Влияние катализаторов . Скорость химических реакций можно регулировать с помощью катализаторов – веществ, изменяющих скорость реакции и остающихся после реакции в неизменном количестве. Изменение скорости реакции в присутствии катализатора называется катализом. Различают положительный (скорость реакции увеличивается) и отрицательный (скорость реакции уменьшается) катализ. Иногда катализатор образуется в ходе реакции, такие процессы называют автокаталитическими. Различают гомогенный и гетерогенный катализ.

При гомогенном катализе катализатор и реагирующие вещества находятся в одной фазе. Например:

При гетерогенном катализе катализатор и реагирующие вещества находятся в разных фазах. Например:

Гетерогенный катализ связан с ферментативными процессами. Все химические процессы, протекающие в живых организмах, катализируются ферментами, которые представляют собой белки с определёнными специализированными функциями. В растворах, в которых идут ферментативные процессы, нет типичной гетерогенной среды, в связи с отсутствием чётко выраженной поверхности раздела фаз. Такие процессы относят к микрогетерогенному катализу.

Цель работы: изучение скорости химической реакции и ее зависимости от различных факторов: природы реагирующих веществ, концентрации, температуры.

Химические реакции протекают с различной скоростью. Скоростью химической реакции называют изменением концентрации реагирующего вещества в единицу времени. Она равно числу актов взаимодействия в единицу времени в единице объёма для реакции, протекающих в гомогенной системе (для гомогенных реакций), или на единице поверхности раздела фаз для реакций, протекающих в гетерогенной системе (для гетерогенных реакций).

Средняя скорость реакции v ср . в интервале времени от t 1 до t 2 определяется отношением:

где С 1 и С 2 – молярная концентрация любого участника реакции в моменты времени t 1 и t 2 соответственно.

Знак “–“ перед дробью относиться к концентрации исходных веществ, ΔС < 0, знак “+” – к концентрации продуктов реакции, ΔС > 0.

Основные факторы, влияющие на скорость химической реакции: природа реагирующих веществ, их концентрация, давление (если в реакции участвуют газы), температура, катализатор, площадь поверхности раздела фаз для гетерогенных реакций.

Большинство химических реакций представляют собой сложные процессы, протекающие в несколько стадий, т.е. состоящие из нескольких элементарных процессов. Элементарные или простые реакции – это реакции, протекающие в одну стадию.

Для элементарных реакций зависимость скорости реакции от концентрации выражается законом действия масс.

При постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам.

Для реакции в общем виде

а А + b В… → с С,

cогласно закону действия масс v выражается соотношением

v = К∙с(А) а ∙ с(В) b ,

где с(А) и с(В) – молярные концентрации реагирующих веществ А и В;

К – константа скорости данной реакции, равная v , если с(А) а =1 и с(В) b =1, и зависящая от природы реагирующих веществ, температуры, катализатора, площади поверхности раздела фаз для гетерогенных реакций.

Выражение зависимости скорости реакции от концентрации называют кинетическим уравнением.

В случае сложных реакций закон действия масс применим к каждой отдельной стадии.

Для гетерогенных реакций в кинетическое уравнение входят только концентрации газообразных и растворенных веществ; так, для горения угля

С (к) + О 2 (г) → СО 2 (г)

уравнение скорости имеет вид

v = К∙с(О 2)

Несколько слов о молекулярности и кинетическом порядке реакции.

Понятие «молекулярность реакции» применяют только к простым реакциям. Молекулярность реакции характеризует число частиц, участвующих в элементарном взаимодействии.


Различают моно-, би- и тримолекулярные реакции, в которых участвуют соответственно одна, две и три частицы. Вероятность одновременного столкновения трех частиц мала. Элементарный процесс взаимодействия более чем трех частиц неизвестен. Примеры элементарных реакций:

N 2 O 5 → NO + NO + O 2 (мономолекулярная)

H 2 + I 2 → 2HI (бимолекулярная)

2NO + Cl 2 → 2NOCl (тримолекулярная)

Молекулярность простых реакций совпадает с общим кинетическим порядком реакции. Порядок реакции определяет характер зависимости скорости от концентрации.

Общий (суммарный) кинетический порядок реакции – сумма показателей степеней при концентрациях реагирующих веществ в уравнении скорости реакции, определенная экспериментально.

С повышением температуры скорость большинства химических реакций увеличивается. Зависимость скорости реакции от температуры приближено определяется правилом Вант-Гоффа.

При повышении температуры на каждые 10 градусов скорость большинства реакций увеличивается в 2–4 раза.

где и – скорость реакции соответственно при температурах t 2 и t 1 (t 2 >t 1 );

γ – температурный коэффициент скорости реакции, это число, показывающее, во сколько раз увеличивается скорость химической реакции при увеличении температуры на 10 0 .

С помощью правила Вант-Гоффа возможно лишь примерно оценить влияние температуры на скорость реакции. Более точное описание зависимости скорости реакции температуры осуществимо в рамках теории активации Аррениуса.

Одним из методов ускорения химической реакции является катализ, который осуществляется при помощи веществ (катализаторов).

Катализаторы – это вещества, которые изменяют скорость химической реакции вследствие многократного участия в промежуточном химическом взаимодействии с реагентами реакции, но после каждого цикла промежуточного взаимодействия восстанавливают свой химический состав.

Механизм действия катализатора сводится к уменьшению величины энергии активации реакции, т.е. уменьшению разности между средней энергией активных молекул (активного комплекса) и средней энергией молекул исходных веществ. Скорость химической реакции при этом увеличивается.

Некоторые химические реакции происходят практически мгновенно (взрыв кислородно-водородной смеси, реакции ионного обмена в водном растворе), вторые — быстро (горение веществ, взаимодействие цинка с кислотой), третьи — медленно (ржавление железа, гниение органических остатков). Известны настолько медленные реакции, что человек их просто не может заметить. Так, например, преобразование гранита в песок и глину происходит в течение тысяч лет.

Другими словами, химические реакции могут протекать с разной скоростью .

Но что же такое скорость реакции ? Каково точное определение данной величины и, главное, ее математическое выражение?

Скоростью реакции называют изменение количества вещества за одну единицу времени в одной единице объема. Математически это выражение записывается как:

Где n 1 и n 2 – количество вещества (моль) в момент времени t 1 и t 2 соответственно в системе объемом V .

То, какой знак плюс или минус (±) будет стоять перед выражением скорости, зависит от того, на изменение количества какого вещества мы смотрим – продукта или реагента.

Очевидно, что в ходе реакции происходит расход реагентов, то есть их количество уменьшается, следовательно, для реагентов выражение (n 2 — n 1) всегда имеет значение меньше нуля. Поскольку скорость не может быть отрицательной величиной, в этом случае перед выражением нужно поставить знак «минус».

Если же мы смотрим на изменение количества продукта, а не реагента, то перед выражением для расчета скорости знак «минус» не требуется, поскольку выражение (n 2 — n 1) в этом случае всегда положительно, т.к. количество продукта в результате реакции может только увеличиваться.

Отношение количества вещества n к объему, в котором это количество вещества находится, называют молярной концентрацией С :

Таким образом, используя понятие молярной концентрации и его математическое выражение, можно записать другой вариант определения скорости реакции:

Скоростью реакции называют изменение молярной концентрации вещества в результате протекания химической реакции за одну единицу времени:

Факторы, влияющие на скорость реакции

Нередко бывает крайне важно знать, от чего зависит скорость той или иной реакции и как на нее повлиять. Например, нефтеперерабатывающая промышленность в буквальном смысле бьется за каждые дополнительные полпроцента продукта в единицу времени. Ведь учитывая огромное количество перерабатываемой нефти, даже полпроцента вытекает в крупную финансовую годовую прибыль. В некоторых же случаях крайне важно какую-либо реакцию замедлить, в частности коррозию металлов.

Так от чего же зависит скорость реакции? Зависит она, как ни странно, от множества различных параметров.

Для того чтобы разобраться в этом вопросе прежде всего давайте представим, что происходит в результате химической реакции, например:

A + B → C + D

Написанное выше уравнение отражает процесс, в котором молекулы веществ А и В, сталкиваясь друг с другом, образуют молекулы веществ С и D.

То есть, несомненно, для того чтобы реакция прошла, как минимум, необходимо столкновение молекул исходных веществ. Очевидно, если мы повысим количество молекул в единице объема, число столкновений увеличится аналогично тому, как возрастет частота ваших столкновений с пассажирами в переполненном автобусе по сравнению с полупустым.

Другими словами, скорость реакции возрастает при увеличении концентрации реагирующих веществ.

В случае, когда один из реагентов или сразу несколько являются газами, скорость реакции увеличивается при повышении давления, поскольку давление газа всегда прямо пропорционально концентрации составляющих его молекул.

Тем не менее, столкновение частиц является, необходимым, но вовсе недостаточным условием протекания реакции. Дело в том, что согласно расчетам, число столкновений молекул реагирующих веществ при их разумной концентрации настолько велико, что все реакции должны протекать в одно мгновение. Тем не менее, на практике этого не происходит. В чем же дело?

Дело в том, что не всякое соударение молекул реагентов обязательно будет эффективным. Многие соударения являются упругими – молекулы отскакивают друг от друга словно мячи. Для того чтобы реакция прошла, молекулы должны обладать достаточной кинетической энергией. Минимальная энергия, которой должны обладать молекулы реагирующих веществ для того, чтобы реакция прошла, называется энергией активации и обозначается как Е а. В системе, состоящей из большого количества молекул, существует распределение молекул по энергии, часть из них имеет низкую энергию, часть высокую и среднюю. Из всех этих молекул только у небольшой части молекул энергия превышает энергию активации.

Как известно из курса физики, температура фактически есть мера кинетической энергии частиц, из которых состоит вещество. То есть, чем быстрее движутся частицы, составляющие вещество, тем выше его температура. Таким образом, очевидно, повышая температуру мы по сути увеличиваем кинетическую энергию молекул, в результате чего возрастает доля молекул с энергией, превышающей Е а и их столкновение приведет к химической реакции.

Факт положительного влияния температуры на скорость протекания реакции еще в 19м веке эмпирически установил голландский химик Вант Гофф. На основании проведенных им исследований он сформулировал правило, которое до сих пор носит его имя, и звучит оно следующим образом:

Скорость любой химической реакции увеличивается в 2-4 раза при повышении температуры на 10 градусов.

Математическое отображение данного правила записывается как:

где V 2 и V 1 – скорость при температуре t 2 и t 1 соответственно, а γ – температурный коэффициент реакции, значение которого чаще всего лежит в диапазоне от 2 до 4.

Часто скорость многих реакций удается повысить, используя катализаторы .

Катализаторы – вещества, ускоряющие протекание какой-либо реакции и при этом не расходующиеся.

Но каким же образом катализаторам удается повысить скорость реакции?

Вспомним про энергию активации E a . Молекулы с энергией меньшей, чем энергия активации в отсутствие катализатора друг с другом взаимодействовать не могут. Катализаторы, изменяют путь, по которому протекает реакция подобно тому, как опытный проводник проложит маршрут экспедиции не напрямую через гору, а с помощью обходных троп, в результате чего даже те спутники, которые не имели достаточно энергии для восхождения на гору, смогут перебраться на другую ее сторону.

Не смотря на то что катализатор при проведении реакции не расходуется, тем не менее он принимает в ней активное участие, образуя промежуточные соединения с реагентами, но к концу реакции возвращается к своему изначальному состоянию.

Кроме указанных выше факторов, влияющих на скорость реакции, если между реагирующими веществами есть граница раздела (гетерогенная реакция), скорость реакции будет зависеть также и от площади соприкосновения реагентов. Например, представьте себе гранулу металлического алюминия, которую бросили в пробирку с водным раствором соляной кислоты. Алюминий – активный металл, который способен реагировать с кислотами неокислителями. С соляной кислотой уравнение реакции выглядит следующим образом:

2Al + 6HCl → 2AlCl 3 + 3H 2

Алюминий представляет собой твердое вещество, и это значит, что реакция с соляной кислотой идет только на его поверхности. Очевидно, что если мы увеличим площадь поверхности, предварительно раскатав гранулу алюминия в фольгу, мы тем самым предоставим большее количество доступных для реакции с кислотой атомов алюминия. В результате этого скорость реакции увеличится. Аналогичным образом увеличения поверхности твердого вещества можно добиться измельчением его в порошок.

Также на скорость гетерогенной реакции, в которой реагирует твердое вещество с газообразным или жидким, часто положительно влияет перемешивание, что связано с тем, что в результате перемешивания достигается удаление из зоны реакции скапливающихся молекул продуктов реакции и «подносится» новая порция молекул реагента.

Последним следует отметить также огромное влияние на скорость протекания реакции и природы реагентов. Например, чем ниже в таблице Менделеева находится щелочной металл, тем быстрее он реагирует с водой, фтор среди всех галогенов наиболее быстро реагирует с газообразным водородом и т.д.

Резюмируя все вышесказанное, скорость реакции зависит от следующих факторов:

1) концентрация реагентов: чем выше, тем больше скорость реакции

2) температура: с ростом температуры скорость любой реакции увеличивается

3) площадь соприкосновения реагирующих веществ: чем больше площадь контакта реагентов, тем выше скорость реакции

4) перемешивание, если реакция происходит меду твердым веществом и жидкостью или газом перемешивание может ее ускорить.

7.1. Гомогенные и гетерогенные реакции

Химические вещества могут находиться в разных агрегатных состояниях, при этом их химические свойства в разных состояниях одинаковы, однако активность отличается (что на прошлой лекции было показано на примере теплового эффекта химической реакции).

Рассмотрим различные комбинации агрегатных состояний, в которых могут находиться два вещества А и Б.

A (г.), Б (г.)

A (тв.), Б (тв.)

A (ж.), Б (тв.)

смешиваются

A(тв.), Б (г.)

A (ж.), Б (г.)

смешиваются

(раствор)

гетерогенная

гетерогенная

гетерогенная

гомогенная

гетерогенная

гетерогенная

гомогенная

Hg(ж.) + HNO3

H2 O + D2 O

Fe + O2

H2 S + H2 SO4

CO + O2

Фазой называется область химической системы, в пределах которой все свойства системы постоянны (одинаковы) или непрерывно меняются от точки к точке. Отдельными фазами являются каждое из твердых веществ, кроме того существуют фазы раствора и газа.

Гомогенной называетсяхимическая система , в которой все вещества находятся в одной фазе (в растворе или в газе). Если фаз несколько, то система называется

гетерогенной.

Соответственно химическая реакция называетсягомогенной , еслиреагенты находятся в одной фазе. Еслиреагенты находятся в разных фазах, тохимическая реакция называетсягетерогенной .

Нетрудно понять, что поскольку для возникновения химической реакции требуется контакт реагентов, то гомогенная реакция происходит одновременно во всем объеме раствора или реакционного сосуда, тогда как гетерогенная реакция происходит на узкой границе между фазами - на поверхности раздела фаз. Таким образом, чисто теоретически гомогенная реакция происходит быстрее, чем гетерогенная.

Таким образом, мы переходим к понятию скорость химической реакции .

Скорость химической реакции. Закон действующих масс. Химическое равновесие.

7.2. Скорость химической реакции

Раздел химии, который изучает скорости и механизмы химических реакций является разделом физической химии и называется химической кинетикой .

Скоростью химической реакции называется изменение количества вещества в единицу времени в единице объема реагирующей системы (для гомогенной реакции) или на единице площади поверхности (для гетерогенной реакции).

Таким образом, если объем

или площадь

поверхности раздела фаз

не изменяются, то выражения для скоростей химических реакций имеют вид:

hom o

Отношение изменения количества вещества к объему системы можно интерпретировать как изменение концентрации данного вещества.

Отметим, что для реагентов в записи выражения для скорости химической реакции ставят знак «минус», так как концентрация реагентов уменьшается, а скорость химической реакции – вообще-то величина положительная.

Дальнейшие умозаключения базируются на простых физических соображениях, которые рассматривают химическую реакцию как следствие взаимодействия нескольких частиц.

Элементарной (или простой) называют химическую реакцию, происходящую в одну стадию. Если стадий несколько, то подобные реакции называют сложными, или составными, или брутто-реакциями.

В 1867 году для описания скорости химической реакции был предложен закон действующих масс : скорость элементарной химической реакции пропорциональная концентрациям реагирующих веществ в степенях стехиометрических коэффициентов.n A +m B P,

A, B – реагенты, P – продукты, n ,m – коэффициенты.

W =k n m

Коэффициент k называется константой скорости химической реакции,

характеризует природу взаимодействующих частиц и не зависит от концентрации частиц.

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Величины n иm называютсяпорядком реакции по веществу А и B соответственно, а

их сумма (n +m ) –порядком реакции .

Для элементарных реакций порядок реакции может быть 1, 2 и 3.

Элементарные реакции с порядком 1 называют мономолекулярными, с порядком 2 – бимолекулярными, с порядком 3 – тримолекулярными по числу участвующих молекул. Элементарных реакций выше третьего порядка неизвестно – расчеты показывают, что одновременная встреча четырех молекул в одной точке слишком невероятное событие.

Поскольку сложная реакция состоит из некоторой последовательности элементарных реакций, то её скорость может быть выражена через скорости отдельных стадий реакции. Поэтому для сложных реакций порядок может быть любым , в том числе, дробным или нулевым (нулевой порядок реакции говорит о том, что реакция происходит с постоянной скоростью и не зависит от концентрации реагирующих частицW =k ).

Самую медленную из стадий сложного процесса обычно называют лимитирующей стадией (скоростьлимитирующей стадией).

Представьте себе, что большое количество молекул пошли в бесплатный кинотеатр, но на входе стоит контролер, который проверяет возраст каждой молекулы. Поэтому в двери кинотеатра заходит поток вещества, а в кинозал молекулы проникают по одной, т.е. очень медленно.

Примерами элементарных реакций первого порядка являются процессы термического или радиоактивного распада, соответственно константа скорости k характеризует либо вероятность разрыва химической связи, либо вероятность распада в единицу времени.

Примеров элементарных реакций второго порядка очень много – это наиболее привычный нам способ течения реакций – частица А налетела на частицу B, произошло какое-то превращение и что-то там получилось (обратите внимание, что продукты в теории ни на что не влияют – все внимание уделяется только реагирующим частицам).

Напротив, элементарных реакций третьего порядка довольно мало, так как трём частицам одновременно встретиться удается довольно редко.

В качестве иллюстрации посмотрим предсказательную силу химической кинетики.

Скорость химической реакции. Закон действующих масс. Химическое равновесие.

Кинетическое уравнение первого порядка

(иллюстративный дополнительный материал)

Рассмотрим гомогенную реакцию первого порядка, константа скорости которой равна k , начальная концентрация вещества A равна [A]0 .

По определению скорость гомогенной химической реакции равна

K [ A ]

изменению концентрации в единицу времени. Раз вещество A –

реагент, ставим знак «минус».

Такое уравнение называется дифференциальным (есть

производная)

[ A ]

Для его решения в левую часть переносим величины

концентраций, а в правую – времени.

Если равны производные двух функций, то сами функции

должны отличаться не более, чем на константу.

Для решения данного уравнения берут интеграл левой части (по

концентрации) и правой части (по времени). Чтобы не пугать

ln[ A ] = −kt +C

слушателей, ограничимся ответом.

Значок ln – натуральный логарифм, т.е. число b, такое что

= [ A ] ,e = 2,71828…

ln[ A ]- ln0 = - kt

Константу C находят из начальных условий:

при t = 0 начальная концентрация равна [A]0

[ A ]

Раз логарифм –

это степень числа, используем свойства степеней

[ A ]0

e a− b=

Теперь избавимся от противного логарифма (см. определение

логарифма на 6-7 строчек выше),

для чего возведем число

в степень левой части уравнения и правой части уравнения.

[ A ]

E − kt

Умножим на [A]0

[ A ]0

Кинетическое уравнение первого порядка.

[ A ]= 0 × e − kt

На основании

полученного кинетического уравнения первого

порядка может

рассчитана

концентрация вещества

в любой момент времени

Для целей нашего курса данный вывод носит ознакомительный характер, для того чтобы продемонстрировать Вам применение математического аппарата для расчета хода химической реакции. Следовательно, грамотный химик не может не знать математику. Учите математику!

Скорость химической реакции. Закон действующих масс. Химическое равновесие. График зависимости концентрации реагентов и продуктов от времени может быть качественно изображен следующим образом (на примере необратимой реакции первого порядка)

Факторы, которые влияют на скорость реакции

1. Природа реагирующих веществ

Например, скорость реакции следующих веществ: H2 SO4 , CH3 COOH, H2 S, CH3 OH – с гидроксид-ионом будет различаться в зависимости от прочности связи H-O. Для оценки прочности данной связи можно использовать величину относительного положительного заряда на атоме водорода: чем больше заряд, тем легче будет идти реакция.

2. Температура

Жизненный опыт подсказывает нам, что скорость реакции от температуры зависит и увеличивается с ростом температуры. Например, процесс скисания молока быстрее происходит при комнатной температуре, а не в холодильнике.

Обратимся к математическому выражению закона действующих масс.

W =k n m

Раз левая часть этого выражения (скорость реакции) от температуры зависит, следовательно, правая часть выражения также зависит от температуры. При этом концентрация, разумеется, от температуры не зависит: например, молоко сохраняет свою жирность 2,5% и в холодильнике, и при комнатной температуре. Тогда, как говаривал Шерлок Холмс оставшееся решение и есть верное, каким бы странным оно ни казалось: от температуры зависит константа скорости!

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Зависимость константы скорости реакции от температуры выражается посредством уравнения Аррениуса:

− E a

k = k0 eRT ,

в котором

R = 8,314 Дж·моль-1 ·К-1 – универсальная газовая постоянная,

E a – энергия активации реакции (см. ниже), её условно считают не зависящей от температуры;

k 0 – предэкспоненциальный множитель (т.е. множитель, который стоит перед экспонентойe ), величина которого тоже почти не зависит от температуры и определяется, в первую очередь, порядком реакции.

Так, величина k0 составляет примерно для реакции первого порядка 1013 с-1 , для реакции второго порядка – 10 -10 л·моль-1 ·с-1 ,

для реакции третьего порядка – 10 -33 л2 ·моль-2 ·с-1 . Эти значения запоминать не обязательно.

Точные значения k0 для каждой реакции определяют экспериментально.

Понятие энергии активации становится ясным из следующего рисунка. Фактически энергия активации представляет собой энергию, которой должна обладать реагирующая частица, для того, чтобы реакция произошла.

При этом если мы нагреваем систему, то энергия частиц повышается (пунктирный график), тогда как переходное состояние (≠) остается на прежнем уровне. Разница в энергии между переходным состоянием и реагентами (энергия активации) сокращается, а скорость реакции согласно уравнению Аррениуса возрастает.

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Кроме уравнения Аррениуса, существует уравнение Вант-Гоффа, которое

характеризует зависимость скорости реакции от температуры посредством температурного коэффициента γ:

Температурный коэффициент γ показывает, во сколько раз вырастет скорость химической реакции при изменении температуры на 10o .

Уравнение Вант-Гоффа:

T 2− T 1

W (T 2 )= W (T 1 )× γ10

Обычно коэффициент γ находится в диапазоне от 2 до 4. По этой причине химики часто пользуются приближением, что увеличение температуры на 20o приводит к возрастанию скорости реакции на порядок (т.е. в 10 раз).

При определении понятия скорости химической реакции необходимо различать гомогенные и гетерогенные реакции. Если реакция протекает в гомогенной системе, например, в растворе или в смеси газов, то она идет во всем объеме системы. Скоростью гомо­ген­ной реакции называется количес­тво вещества, вступающего в реакцию или образующегося в результате ре­ак­ции за единицу времени в единице объема системы. Поскольку отношение числа молей вещества к объему, в котором оно распределено, есть молярная концентрация вещества, скорость гомоген­ной реакции можно также определить как изменение концентрации в едини­цу времени какого-либо из веществ: исходного реагента или продукта реак­ции . Чтобы результат расчета всегда был положительным, независимо, от того, производится он по реагенту или продукту, в формуле используется знак «±»:

В зависимости от характера реакции время может быть выражено не только в секундах, как требует система СИ, но также в минутах или часах. В ходе реакции величина ее скорости не постоянна, а непрерывно изменяется: уменьшается, так как уменьшаются концентрации исходных веществ. Выше­при­веденный расчет дает среднее значение скорости реакции за некоторый интервал времени Δτ = τ 2 – τ 1 . Истинная (мгновенная) скорость определяется как предел к которому стремится отношение ΔС / Δτ при Δτ → 0, т. е. истин­ная скорость равна производной концентрации по времени.

Для реакции, в уравнении которой есть стехиометрические коэффици­енты, отличающиеся от единицы, значения скорости, выраженные по разным веществам, неодинаковы. Например для реакции А + 3В = D + 2Е расход вещества А равен одному молю, вещества В – трем молям, приход вещества Е – двум молям. Поэтому υ (А) = ⅓υ (В) = υ (D) =½υ (Е) или υ (Е) . = ⅔υ (В) .

Если реакция протекает между веществами, находящимися в различ­ных фазах гетерогенной системы, то она может идти только на поверхности раздела этих фаз. Например, взаимодействие раствора кислоты и куска ме­талла происходит только на поверхности металла. Скоростью гетерогенной реакции называется количество вещества, вступающего в реакцию или образующегося в результате реакции за единицу времени на единице поверхности раздела фаз:

.

Зависимость скорости химической реакции от концентрации реаги­рую­щих веществ выражается законом действующих масс: при постоянной тем­пе­ратуре скорость химической реакции прямо пропорциональна произве­де­нию молярных концентраций реагирующих веществ, возведенных в степе­ни, равные коэффициентам при формулах этих веществ в уравнении реакции . Тогда для реакции


2А + В → продукты

справедливо соотношение υ ~ ·С А 2 ·С В, а для перехода к равенству вводится коэффициент пропорциональности k , называемый константой скорости реакции :

υ = k ·С А 2 ·С В = k ·[А] 2 ·[В]

(молярные концентрации в формулах могут обозначаться как буквой С с со­ответствующим индексом, так и формулой вещества, заключенной в квадрат­ные скобки). Физический смысл константы скорости реакции – скорость реакции при концентрациях всех реагирующих веществ, равных 1 моль/л. Размерность константы скорости реакции зависит от числа сомно­жи­телей в правой части уравнения и может быть с –1 ; с –1 ·(л/моль); с –1 ·(л 2 /моль 2) и т. п., то есть такой, чтобы в любом случае при вычислениях скорость реакции выражалась в моль·л –1 ·с –1 .

Для гетерогенных реакций в уравнение закона действия масс входят концентрации только тех веществ, которые находятся в газовой фазе или в растворе. Концентрация вещества, находящегося в твердой фазе, представ­ляет постоянную величину и входит в константу скорости, например, для процесса горения угля С + О 2 = СО 2 закон действия масс записывается:

υ = k I ·const··= k ·,

где k = k I ·const.

В системах, где одно или несколько веществ являются газами, скорость реакции зависит также и от давления. Например, при взаимодействии водо­рода с парами иода H 2 + I 2 =2HI скорость химической реакции будет определяться выражением:

υ = k ··.

Если увеличить давление, например, в 3 раза, то во столько же раз уменьшится объем, занимаемый системой, и, следовательно, во столько же раз увеличатся концентрации каждого из реагирующих веществ. Скорость реакции в этом случае возрастет в 9 раз

Зависимость скорости реакции от температуры описывается прави­лом Вант-Гоффа: при повышении температуры на каждые 10 градусов скорость реакции увеличивается в 2‑4 раза . Это означает, что при повыше­нии темпера­туры в арифметической прогрессии скорость химической реакции возрастает в геометрической прогрессии. Основанием в формуле прогрессии является температурный коэффициент скорости реакции γ, показывающий, во сколько раз увеличива­ется скорость данной реакции (или, что то же самое – константа скорости) при росте температуры на 10 градусов. Математически правило Вант-Гоффа выражается формулами:

или

где и – скорости реакции соответственно при начальной t 1 и конечной t 2 температурах. Правило Вант-Гоффа может быть также выражено следую­щими соотношениями:

; ; ; ,

где и – соответственно скорость и константа скорости реакции при тем­пературе t ; и – те же величины при температуре t +10n ; n – число «десятиградусных» интервалов (n =(t 2 –t 1)/10), на которые изменилась температура (может быть числом целым или дробным, положительным или отрицательным).

Примеры решения задач

Пример 1. Как изменится скорость реакции 2СO + О 2 = 2СО 2 , протекающей в закрытом сосуде, если увеличить давление в 2 раза?

Решение:

Скорость указанной химической реакции определяется выражением:

υ нач = k ·[СО] 2 ·[О 2 ].

Увеличение давления приводит к увеличению концентрации обоих реагентов в 2 раза. С учетом этого перепишем выражение закона действующих масс:

υ 1 = k · 2 · = k ·2 2 [СО] 2 ·2[О 2 ] = 8k ·[СО] 2 ·[О 2 ] = 8 υ нач.

Ответ: Скорость реакции увеличится в 8 раз.

Пример 2. Вычислить, во сколько раз увеличится скорость реакции, если повысить температуру системы от 20 °С до 100 °С, приняв значение температурного коэффициента скорости реакции равным 3.

Решение:

Отношение скоростей реакции при двух разных температу­рах связано с температурным коэффициентом и изменением температуры формулой:

Вычисление:

Ответ: Скорость реакции увеличится в 6561 раз.

Пример 3. При изучении гомогенной реакции А + 2В = 3D установле­но, что в течение 8 минут протекания реакции количество вещества А в реак­торе уменьшилось с 5,6 моль, до 4,4 моль. Объем реакционной массы состав­лял 56 л. Вычислить среднюю скорость химической реакции за исследован­ный промежуток времени по веществам А, В и D.

Решение:

Используем формулу в соответствии с определением понятия «средняя скорость химической реакции» и подставляем численные значения, получая среднюю скорость по реагенту А:

Из уравнения реакции следует, что по сравнению со скоростью убыли вещества А скорость убыли вещества В вдвое больше, а скорость увеличения количества продукта D – втрое больше. Следовательно:

υ (А) = ½υ (В) =⅓υ (D)

и тогда υ (В) = 2υ (А) = 2·2,68·10 –3 = 6, 36·10 –3 моль·л –1 ·мин –1 ;

υ (D) = 3υ (А) = 3·2,68·10 –3 = 8, 04·10 –3 моль·л –1 ·мин –1

Ответ: υ (А) =2,68·10 –3 моль·л –1 ·мин –1 ; υ (В) = 6, 36·10 –3 моль·л –1 ·мин –1 ; υ (D) = 8, 04·10 –3 моль·л –1 ·мин –1 .

Пример 4. Для определения константы скорости гомогенной реакции А + 2В → продукты было проведено два опыта при различных концентрациях вещества В и измерена скорость реакции.