Электрическое поле Земли

естественное электрическое поле Земли как планеты, которое наблюдается в твёрдом теле Земли, в морях, в атмосфере и магнитосфере. Э. п. 3. обусловлено сложным комплексом геофизических явлений. Распределение потенциала поля несёт в себе определённую информацию о строении Земли, о процессах, протекающих в нижних слоях атмосферы, в ионосфере, магнитосфере, а также в ближнем межпланетном пространстве и на Солнце.

Методика измерения Э. п. 3. определяется той средой, в которой наблюдается поле. Наиболее универсальный способ - определение разности потенциалов при помощи разнесённых в пространстве электродов. Этот способ применяется при регистрации земных токов (см. Теллурические токи), при измерении с летательных аппаратов электрического поля атмосферы, а с космических аппаратов - магнитосферы и космического пространства (при этом расстояние между электродами должно превышать Дебаевский радиус экранирования в космической плазме, т. е. составлять сотни метров).

Существование электрического поля в атмосфере Земли связано в основном с процессами ионизации воздуха и пространственным разделением возникающих при ионизации положительных и отрицательных электрических зарядов. Ионизация воздуха происходит под действием космических лучей ультрафиолетового излучения Солнца; излучения радиоактивных веществ, имеющихся на поверхности Земли и в воздухе; электрических разрядов в атмосфере и т. д. Многие атмосферные процессы: конвекция образование облаков, осадки и другие - приводят к частичному разделению разноимённых зарядов и возникновению атмосферных электрических полей (см. Атмосферное электричество). Относительно атмосферы поверхность Земли заряжена отрицательно.

Существование электрического поля атмосферы приводит к возникновению токов, разряжающих электрический «конденсатор» атмосфера - Земля. В обмене зарядами между поверхностью Земли и атмосферой значительную роль играют осадки. В среднем осадки приносят положительных зарядов в 1,1-1,4 раза больше, чем отрицательных. Утечка зарядов из атмосферы восполняется также за счёт токов, связанных с молниями и отеканием зарядов с остроконечных предметов (острий). Баланс электрических зарядов, приносимых на земную поверхность площадью 1 км 2 за год, можно характеризовать следующими данными:

Ток проводимости + 60 к/(км 2 ·год)

Токи осадков + 20 »

Разряды молний – 20 »

Токи с остриёв – 100 »

__________________________

Всего – 40 к/(км 2 ·год)

На значительной части земной поверхности - над океанами - токи с остриёв исключаются, и здесь будет положительный баланс. Существование статического отрицательного заряда на поверхности Земли (около 5,7․10 5 к ) говорит о том, что эти токи в среднем сбалансированы.

Электрические поля в ионосфере обусловлены процессами, протекающими как в верхних слоях атмосферы, так и в магнитосфере. Приливные движения воздушный масс, ветры, турбулентность - всё это является источником генерации электрического поля в ионосфере благодаря эффекту гидромагнитного динамо (см. Земной магнетизм) Примером может служить солнечно-суточная электрическая токовая система, которая вызывает на поверхности Земли суточные вариации магнитного поля. Величина напряжённости электрического поля в ионосфере зависит от местоположения точки наблюдения, времени суток, общего состояния магнитосферы и ионосферы, от активности Солнца. Она колеблется от нескольких единиц до десятков мв /м, а в высокоширотной ионосфере достигает ста и более мв/м. При этом сила тока доходит до сотен тысяч ампер. Из-за высокой электропроводности плазмы ионосферы и магнитосферы вдоль силовых линий магнитного поля Земли электрического поля ионосферы переносятся в магнитосферу, а магнитосферные поля в ионосферу.

Одним из непосредственных источников электрического поля в магнитосфере является Солнечный ветер . При обтекании магнитосферы солнечным ветром возникает эдс Е = v ×b ⊥ , где b - нормальная компонента магнитного поля на поверхности магнитосферы, v - средняя скорость частиц солнечного ветра.

Эта эдс вызывает электрические токи, замыкающиеся обратными токами, текущими поперёк хвоста магнитосферы (см. Земля). Последние порождаются положительными пространственными зарядами на утренней стороне хвоста магнитосферы и отрицательными - на его вечерней стороне. Величина напряженности электрического поля поперёк хвоста магнитосферы достигает 1 мв /м. Разность потенциалов поперёк полярной шапки составляет 20-100 кв.

Ещё один механизм возбуждения эдс в магнитосфере связан с коллапсом противоположно направленных силовых линий магнитного поля в хвостовой части магнитосферы; освобождающаяся при этом энергия вызывает бурное перемещение магнитосферной плазмы к Земле. При этом электроны дрейфуют вокруг Земли к утренней стороне, протоны - к вечерней. Разность потенциалов между центрами эквивалентных объемных зарядов достигает десятков киловольт. Это поле противоположно по направлению полю хвостовой части магнитосферы.

С дрейфом частиц непосредственно связано существование магнитосферного кольцевого тока вокруг Земли. В периоды магнитных бурь (См. Магнитные бури) и полярных сияний (См. Полярные сияния) электрические поля и токи в магнитосфере и ионосфере испытывают значительные изменения.

Магнитогидродинамические волны, генерируемые в магнитосфере, распространяются по естественным волноводным каналам вдоль силовых линии магнитного поля Земли. Попадая в ионосферу, они преобразуются в электромагнитные волны, которые частично доходят до поверхности Земли, а частично распространяются в ионосферном волноводе и затухают, На поверхности Земли эти волны регистрируются в зависимости от частоты колебаний либо как магнитные пульсации (10 -2 -10 гц ), либо как очень низкочастотные волны (колебания с частотой 10 2 -10 4 гц ).

Переменное магнитное поле Земли, источники которого локализованы в ионосфере и магнитосфере, индуцирует электрическое поле в земной коре. Напряжённость электрического поля в приповерхностном слое коры колеблется в зависимости от места и электрического сопротивления пород в пределах от нескольких единиц до нескольких сотен мв /км, а во время магнитных бурь усиливается до единиц и даже десятков в /км. Взаимосвязанные переменные магнитное и электрическое поля Земли используют для электромагнитного зондирования в разведочной геофизике, а также для глубинного зондирования Земли.

Определённый вклад в Э. н. З. вносит контактная разность потенциалов между породами различной электропроводности (термоэлектрический, электрохимический, пьезоэлектрический эффекты). Особую роль при этом могут играть вулканические и сейсмические процессы.

Электрические поля в морях индуцируются переменным магнитным полем Земли, а также возникают при движении проводящей морской воды (морских волн и течений) в магнитном поле. Плотность электрических токов в морях достигает 10 -6 а/м 2 . Эти токи могут быть использованы как естественные источники переменного магнитного поля для магнитовариационного зондирования на шельфе и в море.

Вопрос об электрическом заряде Земли как источнике электрического поля в межпланетном пространстве окончательно не решён. Считается, что Земля как планета электрически нейтральна. Однако эта гипотеза требует своего экспериментального подтверждения. Первые измерения показали, что напряженность электрического поля в околоземном межпланетном пространстве колеблется в пределах от десятых долей до нескольких десятков мв /м.

Лит.: Тихонов А. Н. Об определении электрических характеристик глубоких слоев земной коры, «Докл. АН СССР», 1950, т. 73, № 2; Тверской П. Н., Курс метеорологии, Л., 1962; Акасофу С. И., Чепмен С., Солнечно-земная физика, пер. с англ., ч. 2, М., 1975.

Ю. П. Сизов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Электрическое поле Земли" в других словарях:

    электрическое поле Земли - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Earth s electric field … Справочник технического переводчика

    электрическое поле Земли

    ЭЛЕКТРИЧЕСКОЕ ПОЛЕ, одна из форм электромагнитного поля. Создается электрическими зарядами или переменным магнитным полем. Характеризуется напряженностью электрического поля (или электрической индукцией). Напряженность электрического поля у… … Современная энциклопедия

    Атмосферное электричество совокупность электрических явлений в атмосфере, а также раздел физики атмосферы, изучающий эти явления. При исследовании атмосферного электричества изучают электрическое поле в атмосфере, её ионизацию и проводимость,… … Википедия

    Электрическое поле - Демонстрация поля электростатического заряда. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ, одна из форм электромагнитного поля. Создается электрическими зарядами или переменным магнитным полем. Характеризуется напряженностью электрического поля (или электрической… … Иллюстрированный энциклопедический словарь

    Стационарное электрическое поле, создаваемое электрическими объёмными зарядами (См. Электрический объёмный заряд) в атмосфере, собственным зарядом Земли и зарядами, индуцированными в атмосфере. Характеристики Э. п. а. напряжённость поля и …

    Поле, 1) обширное, ровное, безлесное пространство. 2) В сельском хозяйстве участки пашни, на которые разделены площадь севооборота, а также внесевооборотные (запольные) участки, используемые для выращивания с. х. растений. 3) Ограниченный… … Большая советская энциклопедия

    I Поле 1) обширное, ровное, безлесное пространство. 2) В сельском хозяйстве участки пашни, на которые разделены площадь Севооборота, а также внесевооборотные (запольные) участки, используемые для выращивания с. х. растений. 3)… … Большая советская энциклопедия

    электрическое земное поле - Žemės elektrinis laukas statusas T sritis fizika atitikmenys: angl. Earth’s electric field; geoelectric field vok. elektrisches Erdfeld, n; geoelektrisches Feld, n rus. электрическое земное поле, n; электрическое поле Земли, n pranc. champ… … Fizikos terminų žodynas

Гроза. Молния.

Прилагательное "грозный" образовано от существительного "гроза". После такого тонкого лингвистического наблюдения и глубокомысленного вывода сразу вспоминаются прекрасные стихи Ф.И. Тютчева: "Люблю грозу в начале мая..." Конечно, гроза бывает в любое время года, даже зимой, но весной, когда природа цветёт, гроза особенно красива, что и подметил поет.

Что же представляет собой красивое, величественное и одновременно опасное явление природы, называемое грозой? Об этом учёные и простые люди задумывались давно. Не понимая причин сущности грозы, люди в давние времена постоянно испытывали священный ужас перед этим явлением природы. И было от чего приходить в ужас: последствиями сильных гроз нередко бывали разрушения жилищ и хозяйственных построек, пожары, гибель людей и домашних животных.

Только в XVIII веке учёные установили, что молния - это искровой разряд атмосферного электричества. Изучением атмосферного электричества занимались многие ученые, в том числе М.В. Ломоносов, который высказал правильную догадку о вертикальных течениях в атмосфере и появлении электрических зарядов на облаках. На опытах, проведённых в 1752-1753 годах, М.В. Ломоносов и американский исследователь и государственный деятель Вениамин Франклин (1706-1790) одновременно и независимо друг от друга доказали, что грозовая молния - это гигантская электрическая искра, которая ничем кроме размеров и, соответственно, энергии не отличается от искры, проскакивающей между шарами лабораторной электрической машины.

Ломоносов построил "громовую машину", представлявшую собой конденсатор, который заряжался атмосферным электричеством через провод, конец которого был поднят над землёй на высоком шесте. Конденсатор находился в кабинете Ломоносова. Во время грозы можно было извлекать искры из конденсатора, когда к нему приближались руками. Во время таких опытов в 1753 году на глазах у Ломоносова погиб работавший вместе с ним его друг, немецкий ученый Георг Рихман.

Не менее опасный опыт проводил в Америке примерно в то же время Франклин. Он запустил во время грозы на бечёвке бумажного змея, который был снабжён железным остриём. К нижнему концу бечёвки был привязан металлический предмет (дверной ключ). Когда бечёвка намокла и превратилась в проводник электрического тока, Франклин смог извлечь из ключа электрические искры и зарядить лейденские банки для дальнейших опытов с электрической машиной. Ясно, что Франклин сильно рисковал, т.к. молния могла ударить в змей, и тогда электрический ток большой величины прошёл бы в землю через тело экспериментатора.

Опыты Ломоносова и Франклина показали, что грозовые облака сильно заряжены электричеством.

В дальнейшем было установлено, что разные части грозового облака несут заряды различных знаков. Чаще всего нижняя часть облака (обращённая к земле) бывает заряжена отрицательно, а верхняя положительно. Напомним, что Земля в целом обладает отрицательным зарядом. Если два облака сближаются разноимённо заряженными частями, то между ними проскакивает молния. Но грозовой разряд может произойти и иначе. Проходя над землёй, грозовое облако создаёт на её поверхности большие индукционные заряды. Облако и поверхность земли образуют как бы две обкладки большого конденсатора. Разность потенциалов между облаком и землёй достигает огромных значений, достигающих сотен миллионов вольт, и в воздухе возникает сильное электрическое поле. Если напряжённость этого поля достигает определенного предела, то происходит пробой, т.е. молния ударяет в землю. О возможных последствиях такого удара для людей и окружающих предметов мы уже упоминали.

Многочисленные и многолетние исследования показывают, что искровой разряд в молнии имеет следующие средние параметры:

Напряжение между облаком и землёй - 100 000 000 (сто миллионов) вольт;
Сила тока в молнии - 100 000 (сто тысяч) ампер;
Продолжительность электрического разряда - 10 -6 (одна миллионная) секунды;
Диаметр светящегося канала - 10-20 см.

Гром, возникающий после молнии, объясняется тем, что воздух внутри и вокруг канала молнии сильно нагревается и быстро расширяется, создавая звуковые волны. Когда эти волны отражаются от облаков или объектов на поверхности земли, то возникает эхо, воспринимаемое нашим слухом как громовые раскаты. Сокрушительный грохот этих раскатов косвенно говорит о том, насколько чудовищны значения электрических величин, породивших молнию.

Электрическое поле Земли.

Исследователями установлено, что между различными точками земной атмосферы, находящимися на разной высоте, имеется разность потенциалов, т.е. около земной поверхности существует электрическое поле. Величина изменения потенциала с высотой различна в разное время года и для разных местностей и имеет вблизи земной поверхности среднее значение 130 вольт на каждый метр. Другими словами, напряженность поля вблизи Земли равна 1,3 в/см. По мере подъема над Землёй поле это быстро ослабевает, и уже на высоте 1 км напряжённость его равна только 0,4 в/см, а на высоте 10 км оно становится ничтожно слабым. Знак этого изменения соответствует отрицательному заряду Земли. Таким образом, мы постоянно живём и работаем в электрическом поле довольно значительной напряженности.

Поскольку поле вблизи Земли имеет напряженность около 130 в/м, то между точками, в которых находятся голова и ноги каждого из нас, должно было бы быть напряжение свыше 200 вольт. Почему же мы не ощущаем этого поля, в то время как прикосновение к проводнику, включенному в сеть с напряжением 100-120 вольт может оказаться не просто болезненным, но и смертельно опасным? Оказывается, дело в том, что тело человека является проводником и поэтому поверхность его в поле при равновесии зарядов должна быть эквипотенциальной поверхностью, т.е. такой, для любой пары точек которой разность потенциалов равна нулю. Поэтому между отдельными точками поверхности тела (головой и ногами) не может быть разности потенциалов. Земной шар в целом является проводником, поэтому поверхность Земли есть также эквипотенциальная поверхность.

Опытное исследование электрического поля Земли и соответствующие расчеты показывают, что Земля в целом обладает отрицательным зарядом, средняя величина которого оценивается в полмиллиона кулонов (около 4,5x10 5). Этот заряд поддерживается приблизительно неизменным благодаря ряду процессов в атмосфере Земли и вне её (в мировом пространстве), которые ещё далеко не полностью выяснены.

Где же расположены соответствующие положительные заряды? Эти заряды находятся в так называемой ионосфере, т.е. в слое ионизированных (положительно заряженных) молекул, находящемся в нескольких десятках километров над Землёй. Объёмный положительный заряд этого слоя атмосферы и компенсирует отрицательный заряд Земли. Линии земного электрического поля идут от этого слоя к поверхности Земли (от положительного заряда к отрицательному).

Радуга.

Обычно после дождя на небе появляется радуга, эта красочная арка из воды и света. С незапамятных времён радуга волновала умы исследователей и мифотворцев. Аристотель, например, считал радугу отражением солнечного света облаками. Это, конечно, слишком большое упрощение действительного явления. По современным представлениям белый свет является смесью различных излучений со своими длинами волн. Попадая во взвешенную в воздухе водяную капельку, луч белого света преломляется как в призме. Попадая на внутреннюю стенку капли, он отражается и распадается на одноцветные излучения, которые под разными углами направляются к противоположной стенке. Эти излучения при выходе наружу обладают цветом, соответствующим их собственной длине волны. Они и образуют разноцветную палитру радуги. С помощью точных приборов исследователи определили, что угол отражения красного луча равен 137 о 58`, фиолетового - 139 о 43`. Так возникает хрупкая, неизменно повторяющаяся строгая последовательность цветов: по внутреннему краю радуги - фиолетовый, постепенно переходящий в синий, зелёный, желтый, оранжевый, и по наружному краю - красный.

Точно так же синий ореол над далёкими вершинами или над морским горизонтом возникает при столкновении лучей определённой длины волны с частицами, образованными молекулами воздуха. Если бы свет не отражался от капель и частиц, то небо казалось бы нам таким же чёрным, как и межпланетное пространство, которое наблюдают космонавты за пределами земной атмосферы.

Научное объяснение радуги дал ещё в 1635 году Рене Декарт в своем труде «Метеоры» в главе «О радуге», представленной на нашем сайте.

Световые волны - это электромагнитные колебания. Воспринятые глазом и обработанные мозгом, они создают воспринимаемую нами трёхмерную красочную картину мира. Радуга - это упорядоченная серия электромагнитных колебаний с длинами волн от 8x10 -5 см для красного цвета до 4x10 -5 см для фиолетового. Длины волн для других цветов находятся в промежутке между указанными величинами. Человеческий глаз - это немыслимо сложный физический прибор, способный обнаруживать различие в цвете, даже в оттенках цвета, которым соответствует совершенно незначительная разница в длине световых волн: около 10 -6 (около одной миллионной!) сантиметра. Вообще говоря, в природе никаких красок не существует, есть только волны разной длины. Видимые нами цвета - это измеренная глазом и истолкованная мозгом энергия световой волны. Удивительная игра красок реализуется нашим глазом лишь в узкой полосе частот световых колебаний. А как мог выглядеть окружающий мир, если бы человеческому глазу был доступен более широкий спектр частот для перевода их в цветовую гамму? Такую ситуацию мы вообразить не в состоянии.

А теперь несколько слов о других явлениях природы, связанных с функционированием биосферы. В продолжение темы атмосферных осадков необходимо сказать о снегопадах и выпадениях града. Физически оба этих вида осадков едины, т.к. представляют собой выпадение из облаков той же воды, превращенной низкими температурами воздуха в другое агрегатное состояние. При повышении температуры примерно до 0 о -1 о Цельсия снег и град снова превращается в воду, т.е. в жидкую фазу.

Для земледельцев обильные снегопады в начале зимы - признак хорошего будущего урожая: ведь семена озимых теперь хорошо укрыты от морозов. "Снег глубок - и хлеб хорош" - так исстари говорили в русских деревнях. А покрытые снегом деревья напоминают очаровательную зимнюю сказку. Сколько радости у детей, когда они имеют возможность слепить снежную бабу, или поиграть в снежки!

Но не только радость приносят снегопады. Если они слишком обильны, продолжительны и вьюжны - чего уж тут хорошего. Метровые сугробы и заносы на дорогах, перерывы в работе наземного и воздушного транспорта, обрывы электропроводов, сходы снежных лавин в горах, нередко приводящие к пленению, а иногда и гибели людей в снежной массе. Для диких животных и птиц затрудняется поиск корма. Всё это мы наблюдаем и переживаем почти ежегодно в самых разнообразных районах земного шара.

Крупный град, особенно если он выпадает весной, способен нанести большой вред урожаю садов и полей, а то и вызвать повреждения построек, автомобилей, стоящих под открытым небом и т.д.


Наша Земля и другие планеты имеют как магнитное поля, так и электрическое. О том что Земля имеет электрическое поле, было известно лет 150 тому назад. Электрический заряд планет в солнечной системе создается Солнцем благодаря эффектам электростатической индукции и ионизации вещества планет. Магнитное поле образуется за счет осевого вращения заряженных планет. Среднее магнитное поле Земли и планет зависит от средней поверхностной плотности отрицательного электрического заряда, угловой скорости осевого вращения и радиуса планеты. Поэтому Землю (и другие планеты), по аналогии с прохождением света через линзу, следует рассматривать как электрическую линзу, а не источник электрического поля.

Значит, Земля связана с Солнцем с помощью электрической силы, само Солнце связано с центром Галактики с помощью магнитной силы, а центр Галактики связан с центральным сгущением галактик посредством электрической силы.

Наша планета в электрическом отношении представляет собой подобие сферического конденсатора, заряженного примерно до 300 000 вольт. Внутренняя сфера - поверхность Земли - заряжена отрицательно, внешняя сфера - ионосфера - положительно. Изолятором служит атмосфера Земли.

Через атмосферу постоянно протекают ионные и конвективные токи утечки конденсатора, которые достигают многих тысяч ампер. Но, несмотря на это разность потенциалов между обкладками конденсатора не уменьшается.

Это означает, что в природе существует генератор (G), который постоянно восполняет утечку зарядов с обкладок конденсатора. Таким генератором является магнитное поле Земли, которое вращается вместе с нашей планетой в потоке солнечного ветра.

Как и в любом заряженном конденсаторе, в земном конденсаторе существует электрическое поле. Напряженность этого поля распределяется очень неравномерно по высоте: она максимальна у поверхности Земли и составляет примерно 150 В/м. С высотой она уменьшается приблизительно по закону экспоненты и на высоте 10 км составляет около 3% от значения у поверхности Земли.

Таким образом, почти всё электрическое поле сосредоточено в нижнем слое атмосферы, у поверхности Земли. Вектор напряженности электрического поля Земли E направлен в общем случае вниз. Электрическое поле Земли, как и любое электрическое поле, действует на заряды с определенной силой F, которая толкает положительные заряды вниз, к земле, а отрицательные - вверх, в облака.

Все это можно увидеть в природных явлениях. На Земле постоянно бушуют ураганы, тропические шторма и множество циклонов. Например, подъем воздуха во время урагана происходит в основном за счет разности плотности воздуха на периферии урагана и в его центре - тепловой башне, но не только. Часть подъемной силы (примерно одну треть) обеспечивает электрическое поле Земли, согласно закону Кулона.

Океан во время шторма представляет собой огромное поле, усыпанное остриями и ребрами, на которых концентрируются отрицательные заряды и напряженность электрического поля Земли. Испаряющиеся молекулы воды в таких условиях легко захватывают отрицательные заряды и уносят их с собой. А электрическое поле Земли в полном соответствии с законом Кулона двигает эти заряды вверх, добавляя воздуху подъемную силу.

Таким образом, глобальный электрический генератор Земли расходует часть своей мощности на усиление атмосферных вихрей на планете - ураганов, штормов, циклонов и пр. Кроме того, такой расход мощности никак не сказывается на величине электрического поля Земли.

Электрическое поле Земли подвержено колебаниям: зимой оно сильнее, чем летом, ежедневно оно достигает максимума в 19 часов по Гринвичу, также зависит от состояния погоды. Но эти колебания не превышают 30% от его среднего значения. В некоторых редких случаях при определенных погодных условиях напряженность этого поля может увеличиться в несколько раз.

Во время грозы электрическое поле изменяется в больших пределах и может изменить направление на противоположное, но это происходит на небольшой площади, непосредственно под грозовой ячейкой и в течение короткого времени.

Опыт показывает, что электрометр, соединенный с зондом, дает заметное отклонение даже и в том случае, когда поблизости нет специально заряженных тел. При этом отклонение электрометра тем больше, чем выше точка над поверхностью Земли. Это значит, что между различными точками атмосферы, находящимися на разной высоте, имеется разность потенциалов, т. е. околоземной поверхности существует электрическое поле. Изменение потенциала с высотой различно в разное время года и для разных местностей и имеет в среднем вблизи земной поверхности значение около 130 В/м. По мере подъема над Землей поле это быстро ослабевает, и уже на высоте 1 км напряженность его равна только 40 В/м, а на высоте 10 км оно становится ничтожно слабым. Знак этого изменения соответствует отрицательному заряду Земли. Таким образом, мы все время живем и работаем в заметном электрическом поле (см. упражнение 29.1).

Экспериментальное исследование этого поля и соответствующие расчеты показывают, что Земля в целом обладает отрицательным зарядом, среднее значение которого оценивается в полмиллиона кулонов. Этот заряд поддерживается приблизительно неизменным благодаря ряду процессов в атмосфере Земли и вне ее (в мировом пространстве), которые еще далеко не полностью выяснены.

Естественно возникает вопрос: если на поверхности Земли постоянно находится отрицательный заряд, то где расположены соответствующие положительные заряды? Где начинаются те линии электрического поля, которые оканчиваются на земной поверхности? Нетрудно видеть, что эти положительные заряды не могут находиться где-нибудь очень далеко от Земли, например на Луне, звездах или планетах. Если бы это было так, то поле вблизи Земли имело бы такой же вид, как поле изолированного шара на рис. 50. Напряженность этого поля убывала бы обратно пропорционально квадрату расстояния от центра Земли (а не от земной поверхности). Но радиус Земли равен примерно 6400 км, и поэтому изменение расстояния от центра Земли на несколько километров или несколько десятков километров могло бы лишь ничтожно мало изменить напряженность поля. Опыт же показывает, как мы отмечали выше, что напряженность электрического поля Земли очень быстро падает по мере удаления от нее. Это указывает на то, что положительный заряд, соответствующий отрицательному заряду Земли, находится где-то на не очень большой высоте над поверхностью Земли. Действительно, был обнаружен на высоте нескольких десятков километров над Землей слой положительно заряженных (ионизованных) молекул. Объемный положительный заряд этого «облака» зарядов компенсирует отрицательный заряд Земли. Линии земного электрического поля идут от этого слоя к поверхности Земли.

Рис. 50. Эквипотенциальные поверхности (сплошные линии) и линии поля (штриховые Линии) заряженного шара, удаленного от других предметов. Внутри шара, как и внутри любого проводника, поля нет

29.1. Так как поле вблизи Земли имеет напряженность около 130 В/м, то между точками, в которых находятся голова и ноги каждого из нас, должно было бы быть напряжение свыше 200 В. Почему же мы не ощущаем этого поля, тогда как прикосновение к полюсам батареи или сети о напряжением 220 В весьма болезненно и даже может быть опасно?

29.2. Измерения с электрическим зондом показывают, что приращение потенциала с высотой у поверхности Земли равно в среднем 100 В/м. Считая, что это поле вызвано зарядом Земли, вычислите заряд, находящийся на земном шаре, считая радиус Земли равным 6400 км.


Раздел: «СИЛЫ в ПРИРОДЕ - физика без формул»
Пособие для самообразования детей и взрослых
По материалам В.Григорьева и Г.Мякишева с дополнениями и пояснениями сайт

20 -я cтраница раздела

Глава четвертая
ЭЛЕКТРОМАГНИТНЫЕ СИЛЫ В ДЕЙСТВИИ

4. Свободные заряды и токи в природе

4-1. Заряженные частицы над нами и вокруг нас

Естественное состояние тел на поверхности Земли — как атомов и молекул, так и больших кусков вещества — электрическая нейтральность. Однако если вы зарядите электроскоп, то через некоторое время он потеряет весь своя заряд, какой бы тщательной ни была изоляция Значит, в воздухе вокруг нас немало заряженных частиц — ионов и пылинок. Шарик электроскопа «всасывает» в себя из атмосферы ионы противоположного знака и становится нейтральным.

Высоко над нами простирается толстый слой сильно ионизированного газа — ионосфера. Она начинается в нескольких десятках километров от поверхности Земли и достигает четырехсот километров в высоту. Электроскопом ее не обнаружишь. Для открытия ионосферы понадобилось изобретение радио. Слой сильно ионизированного газа хорошо проводит электрический ток и подобно металлической поверхности отражает радиоволны с длиной волны, превышающей 30 метров. Не будь ионосферного «зеркала» вокруг Земли, радиосвязь на коротких волнах была бы возможна только в пределах прямой видимости.

4-2. Три поставщика

Итак, ионы вокруг нас и над нами есть. Но ведь они недолговечны. Случайная встреча разноименных ионов,— и они перестают существовать. Значит, должны существовать какие-то непрерывно действующие процессы, поставляющие ионы.

Таких поставщиков целых три. У поверхности Земли — это излучение радиоактивных элементов, содержащихся в земной коре в небольших количествах. На больших высотах — ультрафиолетовое излучение Солнца. И, наконец, всю толщу атмосферы сверху донизу пронизывают потоки очень быстрых заряженных частиц — космические лучи. Небольшая часть их идет от Солнца, а остальные — из глубин космического пространства нашей Галактики.

Иногда с поверхности Солнца вырываются особенно мощные потоки заряженных частиц. На высоте нескольких сот километров над Землей их электромагнитные поля возбуждают атомы и заставляют излучать свет. Тогда мы видим северные (полярные) сияния. Разыгрываются они преимущественно на высоких широтах, и жителям умеренных поясов почти никогда не доводится наслаждаться изумительной красоты игрой световых столбов, переливающихся всеми цветами радуги.

4-3. Молния

Зато всем знаком грозовой разряд. Чудовищное накопление в облаке электричества одного знака вызывает искру, длина которой иногда превышает десятки километров. (Электроэнергия средней молнии, если считать по тарифу 3 рубля за кВт. час, "стоит" 150 рублей.) Прихотливо изменяя свой путь в зависимости от проводимости воздуха и предметов, в которые она попадает, молния часто производит поразительные эффекты. Наиболее удивительные из них приведены в книге «Атмосфера» французского астронома Фламмариона.

«Никакая театральная пьеса, никакие фокусы не могут соперничать,— пишет Фламмарион,— с молнией по неожиданности и странности ее эффектов. Она кажется каким-то особым веществом, чем-то средним между бессознательными силами природы и сознательной душою человека; это — какой-то дух, тонкий и причудливый, хитрый и тупой в то же время, ясновидящий или слепой, обладающий волей или подневольный, переходящий из одной крайности в другую, страшный и непонятный. С ним не сговоришься, его не поймаешь. Он действует и только. Действия его, без сомнения, так же, как и наши, только кажутся капризами, а на самом деле подчинены каким-то неизменным законам. Но до сих пор мы не могли уловить этих законов. Здесь он наповал убивает и сжигает человека, не только пощадив, но даже не коснувшись его одежды, которая остается нетронутой. Там он раздевает человека догола, не причинив ему ни малейшего вреда, ни одной царапины. В другом месте он ворует монеты, не повредив ни кошелька, ни кармана. То он срывает позолоту с люстры и переносит ее на штукатурку стен; то разувает путника и отбрасывает его обувь на десять метров в сторону, то, наконец, в одном селении пробуравливает в центре стопку тарелок и притом попеременно, через две штуки... Какой тут можно установить порядок».

Далее перечисляется около сотни различных случаев. Например: «У одного очень волосатого человека, застигнутого грозой около Э., молния сбрила волосы полосами, вдоль всего тела, скатала их в клубочки и глубоко засунула в толщу икряных мышц». Или еще: «Летом 1865 года один врач из окрестностей Вены, доктор Дрендингер, возвращался домой с железной дороги. Выходя из экипажа, он хватился своего портмоне; оказалось, что его украли.

Это портмоне было черепаховое, и на одной из его крышек находился инкрустированный стальной вензель доктора: два переплетенных между собой Д.

Несколько времени спустя доктора позвали к иностранцу, «убитому» молнией и найденному без чувств под деревом. Первое, что доктор заметил на ляжке больного, был его собственный вензель, как бы только что сфотографированный. Можно судить об его удивлении! Больной был приведен в чувство и перенесен в госпиталь. Там доктор заявил, что в карманах больного где-нибудь должно находиться1 его черепаховое портмоне, что оказалось вполне справедливым. Субъект был тот самый вор, который стащил портмоне, а электричество заклеймило его, расплавив металлический вензель».

Любопытно, что в приведенной Фламмарионом статистике число убитых женщин чуть ли не втрое меньше, чем мужчин. Это, конечно, объясняется не галантностью молнии, а просто тем, что в те времена (начало XX века) во Франции мужчины чаще бывали на полевых работах.

Недавно в американских газетах сообщалось о случае, достойном Фламмариона. Молния ударила в холодильник и зажарила в нем курицу, которая затем была благополучно охлаждена, так как холодильник остался исправным.

Можно, конечно, сомневаться в достоверности всех приведенных случаев, но нельзя не согласиться с тем, что молния действительно способна вытворять чудеса. Объяснить их не всегда оказывается возможным. Разряд длится всего лишь около стотысячной доли секунды, и к наблюдению его в таких исключительных случаях никакой подготовки не бывает. Повторить же потом событие заново невозможно: вы не создадите точно такую же молнию, не говоря уже о прочих условиях.

Но в принципе не так уж все таинственно, как казалось Фламмариону. В конце концов все сводится к таким обычным действиям тока, как нагревание, электромагнитное поле и химические реакции. Только ток громадный: десятки, а то и сотни тысяч ампер.

Главное не в том, чтобы разобраться в бесчисленных курьезах. Нужно понять, каким образом в грозовом облаке накопляется электрический заряд. Что вызывает электризацию водяных капель, и почему заряды противоположного знака пространственно разделены внутри облака? Здесь еще далеко не все ясно до конца.

Прежде всего, нет единого механизма заряжения капель.

Достоверно известно несколько таких механизмов, и трудно оценить, какой из них играет основную роль. Вот два из них. В электрическом поле Земли (мы уже упоминали, что земной шар заряжен отрицательно) капля воды поляризуется. На нижней ее части скопляется положительный заряд, а на верхней — отрицательный. Крупная капля при своем падении преимущественно захватывает отрицательные ионы воздуха и приобретает электрический заряд. Положительные ионы уносятся вверх восходящим потоком воздуха.

Другой механизм — это заряжение капель при их дроблении встречными потоками воздуха. Мелкие брызги заряжаются отрицательно и уносятся вверх, а крупные, заряженные положительно, падают вниз.

Оба эти механизма обеспечивают как заряжение капель, так и пространственное разделение зарядов противоположного знака внутри облака. Обычно в нижней части грозового облака накопляется отрицательный заряд (за исключением небольшой, положительно заряженной области), а в верхней — положительный.

Гораздо хуже обстоит дело с объяснением шаровой молнии, которая иногда появляется после сильного разряда линейной молнии. Обычно это светящийся шар диаметром 10 — 20 сантиметров. Нередко она напоминает «котенка средней величины, свернувшегося клубочком и катящегося без помощи ног». Касаясь предметов, шаровая молния может взорваться, причиняя значительные разрушения.

Шаровая молния, пожалуй, единственное макроскопическое явление на Земле, которое до сих пор не имеет сколько-нибудь достоверного объяснения. Разряд шарового типа не удается получить в лаборатории. В этом все дело.

4-4. Огни святого Эльма

Перед грозой или во время ее нередко на остриях и острых углах высоко поднятых предметов вспыхивают похожие на кисточки конусы света. Этот медленный и мирно совершающийся разряд называют с давних времен огнями; святого Эльма.

Еще у Тита Ливия можно прочесть, что когда флот Лизандра выходил из порта для того, чтобы напасть на афинян, на мачтах адмиральской галеры загорелись огни. Древние считали появление огней Эльма хорошим предзнаменованием.

Особенно часто свидетелями этого явления становятся альпинисты. Иногда даже не только металлические предметы, но и кончики волос на голове украшаются маленькими светящимися плюмажами. Если поднять руку, то по характерному жжению чувствуется, как из пальцев истекает электрический ток. Нередко ледорубы начинают гудеть подобно большому шмелю.

Огни святого Эльма не что иное, как форма коронного разряда, легко получаемого в лаборатории. Заряженное облако индуцирует на поверхности Земли под собой электрические заряды противоположного знака. Особенно большой заряд скапливается На остриях. Когда напряженность электрического поля достигнет критического значения 30 000 в/см (из-за влажности воздуха может быть и меньше), начинается разряд. Образовавшиеся возле острия вследствие обычной ионизации воздуха электроны ускоряются полем и, сталкиваясь с атомами и молекулами, разрушают их. Число электронов и ионов лавинообразно растет, и воздух начинает светиться.

4-5. Электрический заряд Земли

Грозовое облако недолго хранит свой заряд. Несколько ударов молнии — и облако разряжается.

Заряд земного шара, если не обращать внимание на незначительные колебания, остается неизменным. Избыточный отрицательный заряд Земли q Земли = —5,8 . 10 5 Кл (минус 580 000 кулонов — это колоссальный размер электрического заряда). У поверхности Земли электрическое поле не так уж мало: 130 В/м. На первый взгляд это довольно странно. Из-за атмосферных ионов воздух проводит электрический ток, и расчеты показывают, что примерно за полчаса земной шар должен полностью разрядиться. Поэтому главная трудность не в выяснении происхождения заряда, а в том, чтобы понять, почему он не исчезает.

Существуют две причины восстановления заряда Земли. Во-первых, удары молний. За сутки на Земле происходит более 40 тысяч гроз и ежесекундно около 1800 молний бьют в Землю. Нижняя часть облака несет отрицательный заряд и, следовательно, удар молнии — это передача земному шару некоторой порции отрицательного электричества.

Одновременно во время грозы возникают токи с многочисленных остроконечных предметов (огни святого Эльма), которые отводят от земной поверхности, положительный заряд.

Баланс здесь навести трудно, но в общем, по-видимому, концы с концами сходятся. Потеря отрицательного заряда участками земной поверхности, над которыми простирается чистое небо, компенсируется притоком отрицательных зарядов в местах, где свирепствуют грозы.

Ну, а откуда же взялся у Земли заряд, и почему он отрицательный? Здесь приходится строить догадки. По мысли Френкеля вначале небольшой заряд возник от случайных причин. Затем он начал расти за счет «грозового механизма», о котором шла речь, пока не установилось динамическое равновесие, существующее по сей день.

Заряд вначале мог бы быть положительным. Тогда водяные капли грозового облака поляризовались бы по-иному, и молнии сообщали бы Земле положительный заряд. В общем все было бы так, как и сейчас, но только роли положительных и отрицательных зарядов переменились бы.

Примечание SuperCook о происхождении избыточного отрицательного заряда заряда Земли.
На Земле много воды, часть ее испаряется и достигает верхних слоев атмосферы. Там ионизирующими излучениями Солнца молекулы воды H 2 O разрываются на ионы H + (т.е. протоны p + , ионы водорода) и OH — (ионы гидроксила).
Надо учитывать, что Земля вращается не в космическом вакууме межзвездного Космоса, а в верхних, уже весьма разреженных слоях атмосферы Солнца (которая, постепенно уменьшаясь, простирается далеко за орбиту Плутона). В солнечной атмосфере дуют мощные солнечные ветры, от взрывов на Солнце распространяются сверхзвуковые ударные волны.
Некоторая часть атмосферы Земли постоянно сдувается солнечным ветром. В частности, 260 миллионов лет назад — во времена расцвета динозавров и гигантских летающих ящеров с размахом крыльев до 18 метров — давление воздуха у поверхности Земли было 6,5 атм (сейчас лишь 1 атм).
Понятно, что гораздо более легкие протоны (положительные ионы водорода) сдуваются легче, чем в 17 раз более тяжелые отрицательные ионы гидроксила. Земля приобретает избыточный отрицательный заряд, а ионы гидроксила — через несколько ступеней взаимодействий и отщеплений электронов — соединяются в молекулы перекиси водорода H 2 O 2 .
Постоянно миллионы тонн образовавшейся перекиси водорода с дождями и снегом выпадают на землю, где постепенно разлагаются на воду и свободный кислород.
Поэтому любая планета Солнечной системы, имеющая достаточно много воды, будет иметь в своей атмосфере много свободного кислорода. Например, на спутнике Юпитера Европе, сплошь покрытой льдами над 100-километровой толщей воды, в атмосфере 11% кислорода (Европа много холоднее Земли, воды испаряется меньше, и там солнечный ветер уже послабее). У Европы тоже огромный отрицательный электрический заряд.


Что касается выработки кислорода зелеными растениями — ботанике известно, что полный кислородный цикл всякого растения, с учетом гниения его остатков, равен нулю.

4-6. Земной магнетизм

Магнитное поле Земли гораздо раньше привлекло к себе внимание людей, чем электрическое. Обнаруживается оно крайне просто, но его роль в жизни нашей планеты далеко не сводится к тому, чтобы помочь ее обитателям находить с помощью компаса верный путь в безбрежном океане, тайге или пустыне.

Если электрическое поле практически не выходит за пределы нижних слоев атмосферы, то магнитное простирается на 20 — 25 земных радиусов. Лишь на высоте в 100 000 километров оно перестает играть заметную роль, приближаясь к величине поля межпланетного пространства.

Магнитное поле образует третий «броневой пояс», окружающий Землю наряду с атмосферой и ионосферой. Оно не подпускает к Земле потоки космических частиц, если только их энергия не слишком велика. Лишь в области магнитных полюсов эти частицы беспрепятственно могут вторгаться в атмосферу.

На большой высоте магнитное поле невелико, но захватывает громадные области пространства. Действуя на заряженную частицу длительное время, оно значительно изменяет ее траекторию. Вместо прямой линии получается спираль, навивающаяся на силовые линии поля. Вдоль силовых линий магнитное поле гонит частицы к полюсам. Иногда, правда, если скорость частицы велика, она не успевает сделать даже одного витка, и тогда можно говорить лишь об искривлении траектории.

На летящую вдоль силовой линии частицу в соответствии с законом Ампера магнитное поле не действует. Вот почему частицы свободно могут подлетать к полюсам, откуда веером расходятся силовые линии. Не удивительно, что корпускулярные потоки от Солнца вызывают свечение верхних слоев воздушного океана преимущественно у полюсов.

Кстати, эти потоки частиц сами создают значительные магнитные поля и вызывают «магнитные бури», во время которых стрелка компаса начинает беспомощно метаться.

Радиационные пояса Земли, открытые с помощью космических ракет, — это не что иное, как заряженные частицы не слишком больших энергий, захваченные магнитной ловушкой, расставленной нашей планетой. Именно магнитное поле удерживает на большой высоте рои заряженных частиц, подобно ореолам окружающим Землю. Во внешнем поясе доминируют электроны, а во внутреннем, где напряженность поля больше,— протоны. Для полетов космонавтов на больших высотах эти пояса представляют реальную опасность.

Примечание SuperCook о происхождении земного магнетизма (предварительно см. выше "4-5. Электрический заряд Земли").
Источник всякого магнитного поля — это относительное движение электрических зарядов.
Огромный избыточный отрицательный заряд Земли, как и у всякой заряженной сферы, располагается на самой поверхности сферы.
У Земли есть крупный спутник Луна, которая тормозит вращение Земли и вызывает приливные волны. Но Земля — это не твердый шар, а густая кашеобразная расплавленная масса (температура внутри Земли от 6000 до 20000 градусов С), лишь сверху покрытая остывшей твердой корой. (Относительная толщина земной коры много меньше, чем толщина кожицы у яблока).
Приливные волны (у суши они около 0,5 м) сильнее тормозят внешние слои Земли, чем внутренние. Поэтому центральная часть Земли вращается вокруг земной оси быстрее.
Таким образом электрически нейтральная центральная часть провертывается относительно отрицательно заряженной поверхности Земли на один полный оборот каждые 120 лет (относительно поверхности это 40 см/с). С учетом колоссального избыточного заряда земной коры (минус 580 тыс. кулонов), такой относительной скорости вполне достаточно для создания мощного магнитного поля планеты.
Т.к. Луна вращается вокруг Земли (соответственно, и тормозит) не в плоскости земного экватора, а под углом к ней, магнитные полюса Земли располагаются не на географических полюсах. А т.к. Земля внутри не однородна (в частности, сейчас Западное полушарие немного тяжелее Восточного), магнитные полюса постоянно "бродят" по поверхности Земли. А вот полная "переполюсовка" магнитных полюсов невозможна — для этого Луна своим притяжением должна не тормозить (как сейчас), а ускорять осевое вращение Земли, т.е. вращаться вокруг Земли с большей угловой скоростью, чем Земля вращается вокруг своей оси.

4-7. Земной шар — сферическая динамомашина

По мнению авторов Григорьева и Мякишева, происхождение земного магнетизма (впрочем, выше в "4-6. Земной магнетизм" SuperCook по этой теме все разъяснил) — еще более запутанный вопрос, чем происхождение электрического поля. Его нельзя объяснить скоплением намагниченных пород. Интересная идея Френкеля, выдвинутая сравнительно недавно, позволяет, по-видимому, здесь кое-что понять. Земное ядро — это генератор электрического тока, действующий по принципу самовозбуждения, как и обычная динамомашина.

Вам, вероятно, нетрудно будет вспомнить, в чем состоит этот принцип. В динамомашинах ток возникает при движении проводников в магнитном поле, которое само создается этим же током. Если вначале тока нет, то при некоторой скорости вращения он возникнет и начнет нарастать. Ведь небольшое оста точное поле всегда есть. Оно создает ток, несколько увеличивающий магнитное поле. За счет этого возрастет ток, а затем и магнитное поле, и т. д. вплоть до некоторого предельного значения.

Чтобы можно было уподобить земной шар генератору, прежде всего надо допустить, что ядро Земли является жидким и способно проводить электрический ток. В этих предположениях нет ничего невероятного. Но откуда могут взяться движения проводящих масс ядра? У динамомашины мы просто раскручиваем якорь, а здесь нет никаких внешних воздействий.

Выход, однако, может быть найден. За счет радиоактивного распада неустойчивых элементов температура в центре ядра должна быть несколько выше, чем на его периферии. Из-за этого возникает конвекция: более горячие массы из центра ядра устремляются вверх, а холодные опускаются вниз. Но Земля вращается и скорость масс на поверхности ядра больше, чем в его глубинах. Поэтому поднимающиеся элементы жидкости тормозят вращение наружных слоев ядра, а опускающиеся, напротив, ускоряют внутренние. В результате внутренняя часть ядра вращается быстрее наружной и играет роль ротора генератора, в то время как наружная — роль статора.

В такой системе, как показывают расчеты, возможно самовозбуждение и появление вихревых электрических токов значительной величины. Эти токи, согласно гипотезе Френкеля, создают магнитное поле вокруг Земли/ Энергия на поддержание тока черпается из радиоактивного разогрева вещества, создающего конвекционные токи в ядре.

Так ли обстоит дело в действительности, сказать трудно. Во всяком случае правильнее называть Землю «большой динамомашиной», чем «большим магнитом», как это делается во многих книгах.

Магнитное поле окружает не только Землю, но может существовать и у других планет и звезд. Оно ставит «свой штамп» на световые волны, излученные атомами Солнца и звезд, давая тем самым физикам возможность обнаружить себя.

Луна, как показали измерения наших космических кораблей, если и имеет магнитное поле, то оно по крайней мере в 500 раз слабее земного. Имеют ли поля другие планеты солнечной системы, пока не известно. Но вот-вот космические аппараты доставят нам и эти сведения *).

*) Прим. SuperCook. По современным данным магнитное поле у Марса очень невелико, что вполне понятно — крайне мало тормозящее действие его двух маленьких спутников Фобоса и Деймоса, а также и весьма удаленного Солнца, своим гравитационным полем тоже вызывающего приливные волны на планетах.

4-8. Космическая электродинамика

Заговорив о магнитных полях планет и звезд, мы незаметно вступили в новую область, область космической электродинамики. Здесь пока еще мало достоверного; гораздо меньше, чем различных гипотез. Но многое, что вчера еще было любопытной догадкой, сегодня становится почти достоверным фактом. Главное, выяснилось, что электромагнитные силы играют в космосе совсем не малую роль, как это предполагалось ранее.

Бушующая поверхность и атмосфера Солнца... Гигантские языки раскаленного вещества взмывают вверх. Вихри и смерчи размером с нашу планету. Бури, непрерывные бури, но огненные, сверкающие. Бури не только вещества, но и магнитного поля.

Иногда из глубин Солнца парами выплывают черные пятна. Магнитное поле в этих участках возрастает в тысячи раз.

Неведомые силы порой уносят от Солнца целые сгустки заряженных частиц. Преодолевая гравитационное притяжение, они со скоростью нескольких тысяч километров в секунду врезаются в атмосферу Земли.

Трудно здесь физику усмотреть какую-то закономерность, какой-то порядок. Трудно понять природу сил в крутящейся массе материи. Это происходит далеко, очень далеко, и совсем не похоже на то, что мы можем видеть на нашей планете.

Трудно, но не невозможно. При тех температурах, которые есть на Солнце, не может быть ни нейтральных атомов, ни нейтральных молекул. Они просто не могут уцелеть, как не может уцелеть паровоз, на полном ходу врезающийся во встречный поезд.

А такой полностью ионизированный газ, или полностью ионизированная плазма, как говорят физики, превосходно проводит электрический ток. Это дает возможность электромагнитным силам развернуться и демонстрировать свою мощь на новом поприще.

В магнитном поле внутри движущейся высокотемпературной плазмы возбуждаются электрические токи немалой величины. Из-за хорошей проводимости они не склонны затухать. Поэтому в среде наряду с обычными силами упругости приобретают не меньшее значение силы магнитного взаимодействия токов. И если движение простой среды описывается законами гидродинамики, то здесь царствует магнитная гидродинамика.

Мы еще, конечно, очень далеки от того, чтобы понять все, происходящее на Солнце. Но есть уверенность, что основные явления, начиная от выброса целых масс материи и кончая появлением солнечных пятен, обязаны магнитным взаимодействиям.

Да и не только это! Межзвездный газ сильно ионизирован излучением. Плотность его мала (1 частица на кубический сантиметр), но это компенсируется громадными размерами облаков. С электрическими токами и, соответственно, магнитными полями в них нельзя не считаться.

Движущиеся облака заполняют собой всю Галактику, и поэтому вся она оказывается наполненной магнитным полем. И даже не только сама Галактика, но и соседние области пространства.

Магнитные поля здесь не велики, и мы их непосредственно воспринимать не можем. Но мы знаем, что они есть! Откуда же?

4-9. Радиоизлучение Галактики и космические лучи

Если бы мы могли видеть радиоволны, то на небе сверкало бы не одно, а целых три Солнца (точнее, «радиосолнца»). Одно из них в созвездии Кассиопеи, другое—в Лебеде и, наконец, это наше обычное Солнце *). Но кроме того мы заметили бы множество менее ярких «радиосолнц» и слабый рассеянный «радио свет», идущий к нам из всех уголков Галактики и даже из прилегающих к ней, казалось бы, пустых мест.

*) Солнце — рядовая звезда и только близость его к нам позволяет ему конкурировать по «радиояркости» с двумя первыми источниками, неизмеримо более мощными, чем Солнце.

Часть радиоволн возникает при столкновениях заряженных частиц раскаленного газа. Это тепловое (тормозное) излучение. Оно ничего не может рассказать нам о магнитных полях Галактики. Но есть другая, нетепловая часть, колыбелью которой служит магнитное поле. Оно заворачивает быстрые космические электроны, и, крутясь по спирали, эти электроны излучают электромагнитные волны, подобно тому как бешено вращающийся точильный камень рассыпает вокруг себя искры, если коснуться его поверхности лезвием ножа. Можно утверждать, что там, где рождаются радиоволны, обязательно есть магнитные поля!

Но откуда берутся в космосе быстрые электроны? Радиоизлучение рождено ими, и там, где находятся особо мощные источники радиоволн, мы должны искать космические ускорители. Значит, те далекие мощные «радиосолнца», о которых шла речь, и являются главным образом такими космическими ускорителями.

Мы привыкли к спокойной глубине чистого ночного неба. Ничто не кажется столь незыблемым, вечным, как «стройный хор» небесных светил. В общем-то так оно и есть. Но иногда происходят катастрофы; катастрофы чисто космических масштабов. Звезда, жившая миллиарды лет своей обычной жизнью, вдруг начинает по неизвестным причинам чудовищно распухать. (Если бы это случилось о нашим Солнцем **), то очень скоро орбиты всех планет оказались бы внутри него.) Яркость звезды (ее называют сверхновой) увеличивается в сотни миллионов раз, и ее можно видеть на небе среди бела дня. Постепенно блеск уменьшается, и на месте звезды остается туманное облако, иногда с трудом различимое в телескоп.

**) Солнцу подобный взрыв в действительности не угрожает. Его масса слишком мала.

В Галактике с ее миллиардами звезд такая вспышка наблюдается раз в 100 — 200 лет. С тех пор как изобрели телескоп, не появилось ни одной сверхновой.

Так вот, «радиосолнца» в большинстве своем это остатки сверхновых звезд. Лишь в направлении созвездия Лебедя мы, вероятно, наблюдаем следы еще более мощной катастрофы; взрыв целой галактики, подобной нашей.

Можно себе представить, что первоначальное ускорение заряженные частицы (электроны, протоны и ядра атомов) получают от гигантской ударной волны, сопровождающей взрыв сверхновой. В дальнейшем начинают действовать электромагнитные силы. Нарастающие магнитные поля индуцируют электрическое поле. Это поле может быть не таким уж большим, но из-за своих космических размеров ускоряет отдельные частицы до энергий, недоступных пока для ускорителей, созданных руками человека.

Некоторую долю космических лучей поставляют менее мощные индукционные электрические поля Солнца и других звезд.

Существует, вероятно, еще один механизм ускорения космических частиц. При встрече движущегося намагниченного облака межзвездного газа с быстрой частицей происходит процесс, аналогичный соударению двух шаров. Только роль обычных упругих сил играет взаимодействие частицы с индукционным электрическим полем, порожденным движущимся вместе с газом магнитным полем. При таком столкновении энергия частицы должна возрастать, подобно тому, как это происходит при столкновении легкого шара с очень тяжелым. После большого числа столкновений частица может набрать значительную энергию.

Беспорядочные магнитные поля Галактики не только ускоряют, но и рассеивают космические частицы. В результате на Землю они уже поступают равномерно со всех сторон, а не только из тех мест, где происходит их ускорение. Сверхмощные частицы залетают к нам, вероятно, из соседних галактик.

Мы не можем утверждать, что все в мире происходит так и только так, как мы вам только что рассказали. Это лишь наиболее естественная с современной точки зрения картина электромагнитных явлений во Вселенной. Написана она, можно заметить, весьма крупными мазками. И это получилось не только за счет того, что картина очень велика. Детали явлений остаются пока неясными для самих художников-ученых. Да и «краска» на картине еще «не просохла»: картина была создана совсем недавно, несколько лет назад, и лишь ее цельность вселяет надежду, что в основе своей она правильна.

4-10. Электрические рыбы

Итак, электрические рыбы. Это уникальные существа, отличающиеся от своих собратьев тем, что несут на себе живые гальванические элементы. Вырабатываемый ими электрический ток служит средством защиты или нападения.

Интересно, что среди ископаемых рыб электрических было гораздо больше, чем среди здравствующих ныне. Видимо, явное использование электромагнитных сил оказалось не столь эффективным, как совершенствование сил, проявляющихся неявно: в первую очередь мышечных.

Наиболее ярким представителем интересующей нас породы является электрический скат (торпедо, по его имени названо и известное морское оружие). Рыба эта, обитающая в теплых морях, весит около 100 килограммов и достигает около двух метров в длину. Его электрические органы, расположенные по бокам головы, весят больше пуда. Неутомленный скат способен дать ток в 8 ампер при напряжении в 300 вольт. Это представляет серьезную опасность для человека.

От электрических рыб трудно ожидать большой чувствительности к току. И действительно, скат легко переносит напряжения, смертельные для других рыб.

Электрические органы ската по своему строению до удивления походят на батарею гальванических элементов. Они состоят из многочисленных пластинок, собранных столбиками (последовательное соединение элементов), которые расположены друг возле друга во много рядов (параллельное соединение).

Одна сторона пластинки гладкая и несет на себе отрицательный заряд. Другая, с выступающими сосочками, заряжена положительно. Как и полагается, все устройство заключено в электроизолирующую ткань.

Мы не будем пытаться вникнуть в механизм возникновения электродвижущей силы в органах ската, как не разбирали в свое время принцип действия обычного гальванического элемента. Здесь еще много неясного. С уверенностью можно утверждать лишь одно: в основе работы электрических органов лежат химические силы, как и в гальваническом элементе.

Не будем мы также расширять круг знакомств среди электрических рыб.

Нельзя только не упомянуть еще об одном замечательном обитателе Нила — мормирусе или водяном слонике. Эта рыба снабжена удивительным локатором. В основании хвоста у нее расположен генератор переменного электрического тока, посылающий импульсы с частотой нескольких сот колебаний в секунду. Окружающие предметы искажают электромагнитное поле вокруг мормируса, что немедленно отмечается приемным устройством на его спине. Чувствительность локатора необычайно велика. Мормируса нельзя поймать в сеть. В аквариуме он начинает метаться, как только вы проведете несколько раз расческой по волосам.

Как работает локатор, пока не выяснено. Есть надежда, что детальное исследование этого вопроса поможет наладить подводную электромагнитную связь, что пока не удается из-за большого затухания электромагнитных волн в воде.

4-11. Природа нервного импульса

В конце концов скат и подобные ему рыбы со всем своим электрическим хозяйством — не более чем каприз природы. Свободному электричеству в живых организмах природа отвела несравненно более значительную роль. Это электричество обслуживает линии связи, передающие в мозг «телеграммы» от органов чувств обо всем, совершающемся во внешнем мире, и ответные приказания мозга любым мышцам и всем внутренним органам.

Нервы пронизывают все тело более или менее совершенных живых существ, и благодаря им организм выступает как единое целое, действующее подчас поразительно целесообразно. Стоит перерезать нерв, ведущий к какой-либо мышце, и она становится парализованной, подобно тому как перестает работать цилиндр мотора, если порвать провод, передающий импульсы тока запальной свече.

Это не просто внешняя аналогия. Еще со времен Гальвани было установлено, что передаваемый нервным волокнам сигнал (нервный импульс) представляет собой кратковременный электрический импульс. Правда, дело обстоит далеко не так просто, как можно подумать. Нерв не пассивный канал большой проводимости, как обыкновенная металлическая проволока. Скорее он напоминает то, что в технике называют релейной линией, когда поступающий сигнал передается только соседним участкам линии, где он усиливается и лишь затем скользит дальше, там снова усиливается и т. д. Благодаря этому сигнал может быть передан без ослабления на значительные расстояния, несмотря на естественное затухание.

Что же такое нерв? У Р. Джерарда можно прочесть: «Если паука, которого мы видим с земли висящим на паутинной нити на высоте шестиэтажного здания, уменьшить в размерах еще примерно раз в двадцать (включая нить, на которой он висит), он очень напоминал бы нервную клетку, или нейрон. Тело нервной клетки не отличается от других клеток ни своими размерами, ни какими-либо другими особенностями... Однако нейрон, в отличие от обычных, нелюбопытных клеток, имеет не только клеточное тело — он рассылает для исследования отдаленных частей организма тонкие нитеподобные отростки. Большинство отростков распространяется на небольшие расстояния... Однако один тонкий отросток диаметром менее 0,01 миллиметра, точно одержимый страстью к странствованиям, отходит от нейрона на громадные расстояния, измеряемые сантиметрами и даже метрами.

Все нейроны центральной нервной системы собраны вместе в головном и спинном мозгу, где они образуют серое вещество... И только длинные отростки — аксоны соединяют их с остальными частями тела. Пучки этих аксонов, или осевых отростков, отходящих от близких друг к другу нервных клеток, образуют нервы». Особое вещество — миэлин окутывает тонким слоем большинство аксонов, подобно тому как изоляционная лента обматывает электрический провод.

Сам аксон можно упрощенно представить себе как длинную цилиндрическую трубку с поверхностной мембраной, разделяющей два водных раствора разного химического состава и разной концентрации. Мембрана подобна стенке с большим количеством полуоткрытых дверей, сквозь которые ионы растворов могут протискиваться только с большим трудом. Самое удивительное и непонятное в том, что электрическое поле «притворяет эти дверцы», а с его ослаблением они открываются шире.

В состоянии бездействия внутри аксона находится избыток ионов калия; снаружи — ионов натрия. Отрицательные ионы сконцентрированы главным образом на внутренней поверхности мембраны и поэтому она заряжена отрицательно, а наружная поверхность — положительно.

При раздражении нерва происходит частичная деполяризация мембраны (уменьшение зарядов на ее поверхностях), что ведет к снижению электрического поля внутри нее. Вследствие этого «приоткрываются дверцы» для ионов натрия и они начинают проникать внутрь волокна. В конце концов внутренняя часть аксона заряжается на этом участке положительно.

Так возникает нервный импульс. Собственно говоря, это импульс напряжения *), вызванный протеканием тока через мембрану.

*) Мы надеемся, что все более или менее представляют себе, что такое напряжение в электрической сети. Здесь слово напряжение имеет точно такой же смысл.

В этот момент «приоткрываются дверцы» для калиевых ионов. Проходя на поверхность аксона, они постепенно восстанавливают то напряжение (около 0,05 вольта), которое было у невозбужденного нерва.

Одновременно часть ионов с соседнего участка «прорывается сквозь дверцы соседей». Из-за этого поле здесь также начинает ослабевать, и весь процесс повторяется на новом участке аксона. В результате по нерву человека к мозгу, не затухая, со скоростью около 120 метров в секунду движется нервный импульс.

Ионы натрия и калия, смещенные при прохождении импульса со своих насиженных мест, постепенно возвращаются обратно непосредственно сквозь стенку за счет химических процессов, механизм которых пока еще не выяснен.

Вызывает восхищенное удивление, что все поведение высших животных, все творческие усилия человеческого мозга основаны в конечном счете на этих чрезвычайно слабых токах и тончайших, микроскопических химических реакциях.

4-12. Биотоки мозга

Здесь мы касаемся святая-святых живой природы — человеческого мозга. В мозгу непрерывно совершаются электрические процессы. Если на лоб и затылок наложить металлические пластины, соединенные через усилитель с регистрирующим прибором, то можно зафиксировать непрерывные электрические колебания коры головного мозга *). Их ритм, форма и интенсивность существенно зависят от состояния человека.

*) Естественно, что колебания наблюдаются не только в мозге человека, но и в мозге любых животных.

В мозгу сидящего спокойно с закрытыми глазами, не думающего ни о чем человека совершается около 10 колебаний в секунду. Когда человек открывает глаза, мозговые волны исчезают и вновь появляются, когда глаза закрыты. Когда человек засыпает, ритм колебаний замедляется. По характеру колебаний можно очень точно определить момент начала и конца сновидения.

При заболеваниях мозга характер электрических колебаний меняется особенно резко. Так, патологические колебания при эпилепсии могут служить верным признаком заболевания.

Все это доказывает, что мозговые клетки находятся в состоянии постоянной активности, и большие количества их, по выражению Джерарда, «колеблются вместе, подобно скрипкам огромного оркестра». Поступающие в мозг нервные импульсы не идут проторенными путями, а меняют всю картину распределения колебаний в коре больших полушарий.

Характер электрической активности мозга меняется с возрастом в течение всей жизни и обучения.

Надо полагать, что электрические колебания не просто сопутствуют работе мозга, как шум — движению автомобиля, а являются существеннейшим моментом всей его жизнедеятельности. У электронной вычислительной машины, способной выполнять отдельные функции мозга даже лучше, чем он сам, именно электромагнитные процессы определяют всю работу.