Большинство факторов, оказывающих влияние на производственный процесс, не остаются неизменными. Поэтому числовые данные, собранные в результате наблюдения, не могут быть одинаковыми, но обязательно подчиняются определенным закономерностям, называемым распределением.

Если измерять контролируемый параметр непрерывно, можно построить его график плотности распределения. Однако на практике проводят измерения только в определенные промежутки времени и не всех изделий, а только некоторых. Поэтому по результатам измерений строят обычно гистограмму - ступенчатую фигуру, контуры которой дают приблизительное представление о графике плотности, то есть о характере распределения изучаемого параметра.

Гистограмма – это столбиковая диаграмма, служащая для графического представления имеющейся количественной информации.

Обычно основой для построения гистограммы служит интервальная таблица частот, в которой весь диапазон измеренных значений случайной величины разбит на некоторое число интервалов, и для каждого интервала указано количество значений, попавших на данный интервал.

Последовательность построения гистограммы следующая.

1. Находят наибольшее (X max ) и наименьшее (X min ) значения случайной величины и вычисляют размах изменения R

R = X max X min .

2. Задают некоторое число разрядов k . При n < 100 можно принять k = 6.

3. Определяют ширину разряда h = . Для упрощения расчётов полученное значение h округляют в любую сторону.

4. Устанавливают границы разрядов и подсчитывают число измерений в каждом из них. При подсчёте значения Х , находящегося на границе разряда, его следует всегда относить к разряду, расположенному слева или справа.

5. Устанавливают m i – число значений Х , попавших в данный разряд.

6. Определяют частоту появления величины p i в данном разряде

p i = ,

где n – общее число всех опытных данных.

7. В системе координат p i = f (X ) на ширине разряда h откладывают величину p i как высоту и строят прямоугольник.

Результат заносят в таблицу

Таблица. Гистограмма распределения

Интер валы

m i

p i =

Очевидно, что площадь элементарного прямоугольника

s i = hy i = p i ,

а площадь всей гистограммы

S = = = 1.

Таким образом, гистограмма представляет собой совокупность прямоугольников.

Рис. Гистограмма (1 ) и полигон (2 ) распределения величины Х

Анализ гистограммы сводится к её сравнению с типовыми случаями.

Обычный тип (симметричный или колоколообразный). Наивысшая частота оказывается в середине основания гистограммы (и постепенно снижается к обоим концам). Форма симметрична. Такая гистограмма по внешнему виду приближается к нормальной (гауссовской) кривой, и можно предполагать, что ни один из факторов, влияющих на исследуемый процесс, не преобладает над другими.

Эта форма гистограммы встречается чаще всего. В этом случае среднее значение случайной величины (применительно к технологической операции – это показатель уровня настроенности) близко к середине основания гистограммы, а степень ее рассеяния относительно среднего значения (для технологических операций – это показатель точности) характеризуется крутизной снижения столбцов.

Рис. Обычный тип гистограммы

Гребенка (мультимодальный тип). Классы через один имеют более низкие частоты.

Такая форма гистограммы встречается, кода число единичных наблюдении, попадающих в класс, колеблется от класса к классу или когда действует определенное правило округления данных Возможно требуется осуществить расслоение данных, то есть определить дополнительные признаки для группировки наблюдаемых значений.

Рис. Гребёнка

Положительно (отрицательно) скошенное распределение . Среднее значение гистограммы локализуется справа (слева) от середины основания гистограммы. Частоты довольно резко спадают

При движении влево (вправо) и, наоборот, медленно вправо (влево). Форма асимметрична.

Такая форма гистограммы встречается, когда нижняя (верхняя) граница регулируется либо теоретически, либо по значению допуска или когда левое (правое) значение недостижимо. В этом случае также можно предполагать, что на процесс оказывает преобладающее влияние какой-либо фактор, в частности, подобная форма встречается, когда имеет место замедленный (ускоренный) износ режущего инструмента.

Подобная гистограмма характерна также для распределения Рэлея, которое характеризует форму либо несимметричность изделия.

Рис. Положительно скошенное распределение

Распределение с обрывом слева (справа). Среднее арифметическое гистограммы локализуется далеко слева (справа) от середины основания. Частоты резко спадают при движении влево (вправо) и, наоборот, медленно вправо (влево). Форма асимметрична.

Рис. Распределение с обрывом слева

Это одна из тех форм, которые часто встречаются при 100 %-ном просеивании изделий из-за плохой воспроизводимости процесса, а также когда проявляется резко выраженная положительная (отрицательная) асимметрия.

Плато (равномерное и прямоугольное распределения). Частоты в разных классах образуют плато, поскольку все классы имеют более или менее одинаковые ожидаемые частоты.

Рис. Плато

Такая форма встречается в смеси нескольких распределений, имеющих различные средние, но может также указывать на какой-либо преобладающий фактор, например, равномерный износ режущего инструмента.

Двухпиковый тип (бимодальный тип). В окрестностях середины основания частота низкая, зато есть по пику с каждой стороны.

Такая форма встречается, когда смешиваются два распределения с далеко отстоящими средними значениями, то есть имеет смысл провести расслоение данных. Такую же форму гистограммы можно наблюдать и в случае, когда какой-либо преобладающий фактор меняет свои характеристики, например, если режущий инструмент имеет сначала ускоренный, а затем замедленный износ.

Рис. Двухпиковый тип

Распределение с изолированный пиком . Наряду с распределением обычного типа появляется маленький изолированный пик.

Рис. Распределение с изолированным пиком

Такая форма появляется при наличии малых включений данных из другого распределения или ошибки измерения. При получении подобной гистограммы следует прежде всего проверить достоверность данных, а в том случае, когда результаты измерений не вызывают сомнения, продумать обоснованность выбранного способа разбиения наблюдаемых значений на интервалы.

Кроме того, по гистограмме можно провести оценку процесса.

При использовании гистограмм для оценки качества процесса на шкале значений наблюдаемого параметра отмечают нижнюю и верхнюю границы поля допуска (поля спецификации) и через эти точки проводят две прямые параллельные столбцам гистограммы.

Если вся гистограмма оказывается внутри границ поля допуска, процесс статистически устойчив и не требует никакого вмешательства.

Если левая и правая границы гистограммы совпадают с границами поля допуска, то желательно уменьшить разброс процесса, так как любое воздействие может привести к появлению изделий, не удовлетворяющих допуску.

Если часть столбцов гистограммы оказывается за границами поля допуска, то необходимо провести регулировку процесса так, чтобы сместить среднее ближе к центру поля допускаили уменьшить вариации, чтобы добиться меньшего разброса.

Федеральное агентство по образованию

ГОУ ВПО « Уральский государственный технический университет-УПИ имени первого Президента России Б.Н. Ельцина»

Кафедра теоретических основ радиотехники

РАСПРЕДЕЛЕНИЕ РЭЛЕЯ

по дисциплине «Вероятностные модели»

Группа: Р-37072

Студентка: Решетникова Н.Е.

Преподаватель: Трухин М.П.

Екатеринбург, 2009 год

История появления 3

Функция плотности вероятности 4

Интегральная функция распределения 6

Центральные и абсолютные моменты 8

Характеристическая функция 10

Кумулянты(семиинварианты) 11

Область применения 12

Список использованной литературы 13

История появления

12 ноября 1842 г. в Лэнгфорд-Грове (графство Эссекс) родился лорд Джон Уильям Рэлей (John William Rayleigh), английский физик, нобелевский лауреат. Получил домашнее образование. Окончил Тринити-колледж Кембриджского университета, работал там же до 1871 г. В 1873 г. создал лабораторию в родовом имении Терлин-Плейс. В 1879 г. стал профессором экспериментальной физики Кембриджского университета, в 1884 г. – секретарем Лондонского королевского общества. В 1887-1905 гг. – профессор Королевской ассоциации, с 1905 г. – президент Лондонского королевского общества, с 1908 г. – президент Кембриджского университета.

Будучи всесторонне эрудированным естествоиспытателем, он отметился во многих отраслях науки: теория колебаний, оптика, акустика, теория теплового излучения, молекулярная физика, гидродинамика, электричество и другие области физики. Исследуя акустические колебания (колебания струн, стержней, пластинок и др.), он сформулировал ряд фундаментальных теорем линейной теории колебаний (1873), позволяющих делать качественные заключения о собственных частотах колебательных систем, и разработал количественный метод возмущений для нахождения собственных частот колебательной системы. Рэлей впервые указал на специфичность нелинейных систем, способных совершать незатухающие колебания без периодического воздействия извне, и на особый характер этих колебаний, которые впоследствии были названы автоколебаниями.

Он объяснил различие групповой и фазовой скоростей и получил формулу для групповой скорости (формула Рэлея).

Распределение же Рэлея появилось в 1880 году вследствие рассмотрения задачи сложения множества колебаний со случайными фазами, в которой он получил функцию распределения для результирующей амплитуды. Метод, разработанный при этом Рэлеем, надолго определил дальнейшее развитие теории случайных процессов.

Функция плотности вероятности

Вид функции распределения:

σ- параметр.

Таким образом, в зависимости от параметра σ меняется не только амплитуда, но и дисперсия распределения. С уменьшением σ амплитуда растет и график «сужается», а с увеличением σ увеличивается разброс и уменьшается амплитуда.

Интегральная функция распределения

Интегральная функция распределения, по определению равная интегралу от плотности вероятности равна:

График интегральной функции распределения при различных параметрах σ:

В зависимости от σ график функции распределения выглядит так:

Таким образом, при изменении параметра σ происходит изменение графика. При уменьшении σ график становится более крутым, а при увеличении σ более пологим:

Центральные и абсолютные моменты

Законы распределения полностью описывают случайную величину X с вероятностной точки зрения (содержат полную информацию о случайной величине). На практике часто нет необходимости в таком полном описании, достаточно указать значения отдельных параметров (числовых характеристик), определяющих те или иные свойства распределения вероятностей случайной величины.

Среди числовых характеристик математическое ожидание играет наиболее существенную роль и рассматривается как результат применения операции усреднения к случайной величине Х , обозначаемой как
.

Начальным моментом s – го порядка случайной величины X называется математическое ожидание s – й степени этой величины:

.

Для непрерывной случайной величины:

Математическое ожидание для величины, распределенной по закону Рэлея равно:

Значение математического ожидания для разных значений параметра σ:

Центрированной случайной величиной X называется её отклонение от математического ожидания
.

Центральным моментом s ого порядка случайной величины X называется математическое ожидание s – й степени центрированной величины
:

Для непрерывной случайной величины

.

Второй центральный момент. Дисперсия есть характеристика рассеяния случайной величины около ее математического ожидания

Для случайной величины, распределенной по закону Рэлея дисперсия(второй центральный момент), равна:

Характеристическая функция

Характеристической функцией случайной величины Х называется функция

Эта функция представляет собой математическое ожидание от некоторой комплексной случайной величины
, являющейся функцией от случайной величины Х. При решении многих задач удобнее пользоваться характеристической функцией, а не законом распределения.

Зная закон распределения можно найти характеристическую функцию по формуле:

Как видим, данная формула представляет собой не что иное, как обратное преобразование Фурье для функции плотности распределения. Очевидно, что с помощью прямого преобразования Фурье можно по характеристической функции найти закон распределения.

Характеристическая функция для случайной величины, распределенной по закону Рэлея:

,

где
- интеграл вероятности комплексного аргумента.

Кумулянты(семиинварианты)

Функция
называется кумулянтной функцией случайной величины Х. Кумулянтная функция является полной вероятностной характеристикой случайной величины, также, как и. Смысл введения кумулянтной фукнции заключается в том, что эта функция зачастую оказывается наиболее простой среди полных вероятностных характеристик.

При этом число называется кумулянтом порядка случайной величины Х.

Область применения

Распределение Рэлея применяется для описания большого числа задач, например:

    Задача сложения колебаний со случайными фазами;

    Распределение энергии излучения абсолютно черного тела;

    Для описания законов надежности;

    Для описания некоторых радиотехнических сигналов;

    Закону распределения Релея подчиняются амплитудные значения шумо­вых коле­баний (помех) в радиоприем­нике;

    Используется для описания случайной огибающей узкополосного случайного процесса(шума).

Список использованной литературы

    Р.Н. Вадзинский «Справочник по вероятностным распределениям», С.-П. «Наука», 2001 год.

    Г.А. Самусевич, учебное пособие «Теория вероятностей и математическая статистика», УГТУ-УПИ, 2007 год.

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Чувашский государственный университет имени И.Н. Ульянова»

Факультет дизайна и компьютерных технологий

Кафедра компьютерных технологий

по дисциплине «Надежность, эргономика и качество АСОиУ»

на тему «Основные математические модели, используемые в теории надежности »

Выполнил:

студент гр. зДиКТ-25-08

Люсенков И.В.

Проверил:

Григорьев В.Г.

Чебоксары

Введение

    Основные математические модели, используемые в теории надежности……. 3

    Распределение Вейбулла…………………………………………………………. 3

    Экспоненциальное распределение………………………………………………. 4

    Распределение Рэлея……………………………………………………………… 5

    Нормальное распределение (распределение Гаусса)………………………….. 5

    Определение закона распределения ……………………………………………. 6

    Выбор числа показателей надежности …………………………………………. 7

    Точность и достоверность статистической оценки показателей надежности… 10

    Особенности программ на надежность………………………………………… 11

    Литература……………………………………………………………………… 13

Основные математические модели, используемые в теории надежности

В приведенных выше математических соотношениях зачастую использовалось понятие плотности вероятности и закон распределения.

Закон распределения - устанавливаемая определенным образом связь между возможными значениями случайной величины и соответствующими их вероятностями.

Плотность распределения (вероятностей) - широко распространенный способ описания закона распределения

Распределение Вейбулла

Распределение Вейбула является двухпараметрическим распределением. Согласно этому распределению плотность вероятности момента отказа

где δ - параметр формы (определяется подбором в результате обработки экспериментальных данных, δ > 0);

λ - параметр масштаба,

От значения коэффициента формы во многом зависит график функции плотности вероятности.

Интенсивность отказов определяется по выражению

(2)

Вероятность безотказной работы

(3)

Отметим, что при параметре δ = 1 распределение Вейбулла переходит в экспоненциальное, а при δ = 2 - в распределение Рэлея.

При δ <1 интенсивность отказов монотонно убывает (период приработки), а при δ >1 монотонно возрастает (период износа). Следовательно, путем подбора параметра δ можно получить, на каждом из трех участков, такую теоретическую кривую λ(t), которая достаточно близко совпадает с экспериментальной кривой, и тогда расчет требуемых показателей надежности можно производить на основе известной закономерности.

Экспоненциальное распределение

Как было отмечено экспоненциальное распределение вероятности безотказной работы является частным случаем распределения Вейбулла, когда параметр формы δ = 1. Это распределение однопараметрическое, то есть для записи расчетного выражения достаточно одного параметра λ = const . Для этого закона верно и обратное утверждение: если интенсивность отказов постоянна, то вероятность безотказной работы как функция времени подчиняется экспоненциальному закону:

(4)

Среднее время безотказной работы при экспоненциальном законе распределения интервала безотказной работы выражается формулой:

(5)

Таким образом, зная среднее время безотказной работы Т 1 (или постоянную интенсивность отказов λ), можно в случае экспоненциального распределения найти вероятность безотказной работы для интервала времени от момента включения объекта до любого заданного момента t.

Распределение Рэлея

Плотность вероятности в законе Рэлея имеет следующий вид

(6)

где δ * - параметр распределения Рэлея.

Интенсивность отказов равна:

. (7)

Характерным признаком распределения Рэлея является прямая линия графика λ(t), начинающаяся с начала координат.

Вероятность безотказной работы объекта в этом случае определится по выражению

(8)

Нормальное распределение (распределение Гаусса)

Нормальный закон распределения характеризуется плотностью вероятности вида

(9)

где m x , σ x - соответственно математическое ожидание и среднеквадратическое отклонение случайной величины Х.

При анализе надежности РЭСИ в виде случайной величины, кроме времени, часто выступают значения тока, электрического напряжения и других аргументов. Нормальный закон - это двухпараметрический закон, для записи которого нужно знать m x и s x .

Вероятность безотказной работы определяется по формуле

(10)

а интенсивность отказов - по формуле

(11)

В данном пособии показаны только наиболее распространенные законы распределения случайной величины. Известен целый ряд законов, так же используемых в расчетах надежности: гамма-распределение, χ 2 -распределение, распределение Максвелла, Эрланга и др.

Реализация некоторых методов видоизменения гистограмм в системе Matlab

Как уже не раз отмечалось, одной из важнейших характеристик изображения является гистограмма распределения яркостей его элементов. Ранее мы уже кратко рассматривали теоретические основы видоизменения гистограмм, поэтому в этой работе больше внимания уделим практическим аспектам реализации некоторых методов преобразования гистограмм в системе Matlab. При этом отметим, что видоизменение гистограмм является одним из методов улучшения визуального качества изображений.

Шаг 1: Считывание исходного изображения.

Считаем из файла исходное изображение в рабочее пространство Matlab и выведем его на экран монитора.

L=imread("lena.bmp");

figure, imshow(L);

Так как исследуемое исходное изображение полутоновое, то будем рассматривать только одну составляющую многомерного массива .

Рис. 1. Исходное изображение.

Поскольку в работе рассматриваются гистограммные методы преобразования, то построим также гистограмму исходного изображения.

Рис.2. Гистограмма исходного изображения.

Шаг 2: Равномерное преобразование гистограммы.

Равномерное преобразование гистограммы осуществляется по формуле

где ,- минимальное и максимальное значения элементов массива интенсивностейисходного изображения;

Функция распределения вероятностей исходного изображения, которая аппроксимируется гистограммой распределения . Другими словами, речь идет о кумулятивной гистограмме изображения.

В среде Matlab это можно реализовать следующим образом. Вычисляем кумулятивную гистограмму исходного изображения

CH=cumsum(H)./(N*M);

Вектор значений гистограммы исходного изображения, а ,- размеры данного изображения, которые определяются с помощью функции size

L1(i,j)=CH(ceil(255*L(i,j)+eps));

figure, imshow(L1);

Значение eps используется вместе с функцией ceil для того, чтобы избежать присвоения индексам кумулятивной гистограммы нулевых значений. Результат применения метода равномерного преобразования гистограммы представлен на рис. 3.

Рис. 3. Исходное изображение, обработанное методом равномерного преобразования гистограммы.

Гистограмма, преобразованного согласно формуле (1) изображения, представлена на рис. 4. Она действительно занимает почти весь динамический диапазон и является равномерной.

Рис. 4. Гистограмма изображения, представленного на рис. 3.

О равномерной передаче уровней интенсивностей элементов изображения свидетельствует также и его кумулятивная гистограмма (рис. 5).

Рис.5. Кумулятивная гистограмма изображения, представленного на рис. 3.

Шаг 3: Экспоненциальное преобразование гистограммы.

Экспоненциальное преобразование гистограммы осуществляется по формуле

где - некоторая константа, характеризующая крутизну экспоненциального преобразования.

В Matlab преобразования по формуле (2) можно реализовать следующим образом.

L2(i,j)=-(1/alfa1)*log10(1-CH(ceil(255*L(i,j)+eps)));

figure, imshow(L2);

Рис. 6. Исходное изображение после обработки методом экспоненциального преобразования гистограммы.

Гистограмма изображения, обработанного методом экспоненциального преобразования, представлена на рис. 7.

Рис. 7. Гистограмма изображения, обработанного методом экспоненциального преобразования.

Наиболее четко экспоненциальный характер преобразований проявляется на кумулятивной гистограмме обработанного изображения, которая представлена на рис. 8.

Рис. 8. Кумулятивная гистограмма изображения, обработанного методом экспоненциального преобразования.

Шаг 4: Преобразование гистограммы по закону Рэлея.

Преобразование гистограммы по закону Рэлея осуществляется согласно выражению

,

где - некоторая константа, характеризующая гистограмму распределения интенсивностей элементов результирующего изображения.

Приведем реализацию данных преобразований в среде Matlab.

L3(i,j)=sqrt(2*alfa2^2*log10(1/(1-CH(ceil(255*L(i,j)+eps)))));

figure, imshow(L3);

Рис. 9. Исходное изображение, обработанное методом преобразования гистограммы по закону Рэлея.

Гистограмма изображения, обработанного методом преобразования по закону Рэлея, представлена на рис. 10.

Рис. 10. Гистограмма изображения, обработанного методом преобразования по закону Рэлея.

Кумулятивная гистограмма изображения, обработанного методом преобразования по закону Рэлея, представлена на рис. 11.

Рис. 11. Кумулятивная гистограмма изображения, обработанного методом преобразования по закону Рэлея.

Шаг 5: Преобразование гистограммы по закону степени .

Преобразование гистограммы изображения по закону степени реализуется согласно выражению

.

В среде Matlab этот метод можно реализовать следующим образом.

L4(i,j)=(CH(ceil(255*L(i,j)+eps)))^(2/3);

figure, imshow(L4);

Рис. 12. Исходное изображение, обработанное методом преобразования гистограммы по закону степени .

Гистограмма распределения интенсивностей элементов обработанного изображения представлена на рис. 13.

Рис. 13. Гистограмма изображения, обработанного методом преобразования гистограммы по закону степени .

Кумулятивная гистограмма обработанного изображения, которая наиболее четко демонстрирует характер передачи уровней серого, представлена на рис. 14.

Рис. 14. Кумулятивная гистограмма изображения, обработанного методом преобразования по закону степени .

Шаг 6: Гиперболическое преобразование гистограммы.

Гиперболическое преобразование гистограммы реализуется согласно формуле

где - некоторая константа, относительно которой осуществляется гиперболическое преобразование гистограммы. Фактически параметрравен минимальному значению интенсивности элементов изображения.

В среде Matlab этот метод может быть реализован следующим образом

L5(i,j)=.01^(CH(ceil(255*L(i,j)+eps))); % в данном случае А=0,01

figure, imshow(L5);

Рис. 15. Исходное изображение, обработанное методом гиперболического преобразования.

Гистограмма распределения интенсивностей элементов обработанного таким образом изображения представлена на рис. 16.

Рис. 16. Гистограмма изображения, обработанного методом гиперболического преобразования.

Кумулятивная гистограмма, форма которой соответствует характеру проводимых преобразований, представлена на рис. 17.

Рис. 17. Кумулятивная гистограмма изображения, обработанного методом гиперболического преобразования.

В данной работе были рассмотрены некоторые методы видоизменения гистограмм. Результатом применения каждого метода является то, что гистограмма распределения яркостей элементов обработанного изображения принимает определенную форму. Такого рода преобразования могут применяться для устранения искажений при передаче уровней квантирования, которым были подвергнуты изображения на этапе формирования, передачи или обработки данных.

Отметим также, что рассмотренные методы могут быть реализованы не только глобально, но и в скользящем режиме. Это приведет к усложнению вычислений, поскольку нужно будет анализировать гистограмму на каждом локальном участке. Однако, с другой стороны, такие преобразования, в отличие от глобальной реализации, позволяют увеличивать детальность локальных участков.

В последующих главах мы встретим несколько различных типов случайных величин. В этом разделе мы перечислим эти новые часто встречающиеся случайные величины, их ФПВ, ПФР и моменты. Мы начнём с биномиального распределения, которое является распределением дискретной случайной величины, а затем представим распределение некоторых непрерывных случайных величин.

Биномиальное распределение. Пусть - дискретная случайная величина, которая принимает два возможных значения, например или , с вероятностью и соответственно. Соответствующая ФПВ для показана на рис. 2.1.6.

Рис. 2.1.6. Функция распределения вероятностей

Теперь предположим, что

где , , - статистически независимые и идентично распределенные случайные величины с ФПВ, показанной на рис. 2.1.6. Какова функция распределения ?

Чтобы ответить на этот вопрос, заметим, что изначально - это ряд целых чисел от 0 до . Вероятность того, что , просто равна вероятности того, что все . Так как статистически независимы, то

.

Вероятность того, что , равна вероятности того, что одно слагаемое , а остальные равны нулю. Так как это событие может возникнуть различными путями,

.

(2.1.84)

различных комбинаций, которые приводят к результату , получаем

где - биномиальный коэффициент. Следовательно, ФПВ можно выразить как

, (2.1.87)

где означает наибольшее целое число , такое, что .

ИФР (2.1.87) характеризует биномиальное распределение случайной величины.

Первые два момента равны

а характеристическая функция

. (2.1.89)

Равномерное распределение. ФПВ и ИФР равномерно распределенной случайной величины показан на рис. 2.1.7.

Рис. 2.1.7. Графики ФПВ и ИФР для равномерно распределенной случайной величины

Первые два момента равны

,

, (2.1.90)

,

а характеристическая функция равна

(2.1.91)

Гауссовское распределение. ФПВ гауссовской или нормально распределенной случайной величины определяется формулой

, (2.1.92)

где - математическое ожидание, а - дисперсия случайной величины. ИФР равна

где - функция ошибок, которая определяется выражением

. (2.1.94)

ФПВ и ПФР иллюстрируется на рис. 2.1.8.

Рис. 2.1.8. Графики ФПВ (а) и ИФР (b) гауссовской случайной величины

ИФР можно также выразить через дополнительную функцию ошибок, т.е.

,

Заметим, что , , и . Для дополнительная функция ошибок пропорциональна площади под частью гауссовской ФПВ. Для больших значений дополнительная функция ошибок может быть аппроксимирована рядом

, (2.1.96)

причем ошибка аппроксимации меньше, чем последнее удерживаемое слагаемое.

Функция, которая обычно используется для площади под частью гауссовской ФПВ, обозначается через и определяется как

, . (2.1.97)

Сравнивая (2.1.95) и (2.1.97), находим

. (2.1.98)

Характеристическая функция гауссовской случайной величины со средним и дисперсией равна

Центральные моменты гауссовской случайной величины равны

(2.1.100)

а обычные моменты можно выразить через центральные моменты

. (2.1.101)

Сумма статически независимых гауссовских случайных величин также является гауссовской случайной величиной. Чтобы это продемонстрировать, предположим

где , - независимые случайные величины со средним и дисперсиями . Используя результат (2.1.79), мы находим, что характеристическая функция равна

Следовательно, является гауссовской случайной величиной со средним и дисперсией .

Хи-квадрат-распределение. Случайная величина с хи-квадрат-распределением порождается гауссовской случайной величиной, в том смысле, что ее формирование можно рассматривать как преобразование последней. Для конкретности, пусть , где - гауссовская случайная величина. Тогда имеет хи-квадрат-распределение. Мы различаем два вида хи-квадрат распределения. Первое называется центральным хи-квадрат-распределением, и получается, когда имеет нулевое среднее значение. Второе называется нецентральным хи-квадрат-распределением, и получается, когда имеет ненулевое среднее значение.

Сначала рассмотрим центральное хи-квадрат-распределение. Пусть - гауссовская случайная величина с нулевым средним и дисперсией . Поскольку , результат даётся функцией (2.1.47) с параметрами и . Таким образом, получаем ФПВ в виде

, . (2.1.105)

которое не может быть выражено в замкнутом виде. Характеристическая функция, однако, может быть выражена в замкнутой форме:

. (2.1.107)

Теперь предположим, что случайная величина определяется как

где , , - статистически независимые и одинаково распределенные гауссовские случайные величины с нулевыми средними и дисперсией . Вследствие статистической независимости характеристическая функция

Обратное преобразование этой характеристической функции дает ФПВ

, , (2.1.110)

где - гамма-функция, определённая как

,

Целое число, , (2.1.111)

Эта ФПВ является обобщением (2.1.105) и названа хи-квадрат- (или гамма-) ФПВ с степенями свободы. Она иллюстрируется рис. 2.1.9.

Случай, когда равны

Первые два момента равны

, (2.1.112)

ИФР равна

, (2.1.113)

Рис. 2.1.9 Графики ФПВ для случайной величины с хи-квадрат-распределением для нескольких значений степеней свободы

Этот интеграл преобразуется к неполной гамма-функции, которая была табулирована Пирсоном (1965).

Если четно, интеграл (2.11.113) можно выразить в замкнутом виде.

В частности, пусть , где - целое. Тогда, используя повторно интегрирование по частям, получаем

, . (2.1.114)

Теперь рассмотрим нецентральное хи-квадрат-распределение, которое является результатом возведения в квадрат гауссовской случайной величины с ненулевым средним. Если - гауссовская случайная величина со средним и дисперсией , случайная величина имеет ФПВ

, (2.1.115)

Этот результат получается при использовании (2.1.47) для гауссовской ФПВ с распределением (2.1.92). Характеристическая функция для ФПВ

. (2.1.116)

Для обобщения результатов предположим, что является суммой квадратов гауссовских случайных величин, определенных (2.1.108). Все , , предполагаются статистически независимыми со средними , , и одинаковыми дисперсиями . Тогда характеристическая функция, получаемая из (2.1.116), при использовании соотношения (2.1.79) равна

. (2.1.117)

Обратное преобразование Фурье от этой характеристической функции даёт ФПВ

где введено обозначение

а - модифицированная функция Бесселя первого рода порядка , которую можно представить бесконечным рядом

, . (2.1.120)

ФПВ, определяемая (2.1.118), называется нецентральным хи-квадрат-распределение с степенимя свободы. Параметр назван параметром нецентральности распределения. ИФР для нецентрального хи-квадрат-распределения с степенями свобода

Этот интеграл не выражается в замкнутой форме. Однако, если - целое чмсло, ИФР можно выразить через обобщенную -функцию Маркума, которая определяется как

, (2.1.122)

, (2.1.123)

Если заменить переменную интегрирования в (1.2.121) на , причём , и положить, что , тогда можно легко найти

. (2.1.124)

В заключение заметим, что первые два момента для центрального хи-квадрат распеделения случайных величин равны

,

.

Релеевское распределение. Релеевское распределение часто используется как модель для статистических сигналов, переданных через радиоканалы, таких как, например, в сотовой радиосвязи. Это распределение тесно связано с центральных хи-квадрат-распределением. Чтобы это проиллюстрировать, положим, что , где и - статистически независимые гауссовские случайные величины с нулевыми средними одинаковой дисперсией . Из изложенного выше следует, что имеет хи-квадрат-распределение с двумя степенями свободы. Следовательно, ФПВ для

, . (2.1.126)

Теперь предположим, что мы определяем новую случайную величину

. (2.1.127)

Выполнив простые преобразования в (2.1.126), получим для ФПВ

, . (2.1.128)

Это ФПВ для релеевской случайной величины. Соответствующая ИФР равна

, . (2.1.129)

Моменты от равны

, (2.1.130)

а дисперсия

. (2.1.131)

Характеристическая функция для распределённой по Релею случайной величины

. (2.1.132)

Этот интеграл можно выразить так:

где - это вырожденная гипергеометрическая функция, определяемая как

, … (2.1.134)

Боули (1990) показал, что можно выразить как

. (2.1.135)

Как обобщение полученных выше выражений рассмотрим случайную величину

где , , статистически независимые одинаково распределенные гауссовские случайные величины с нулевым средним. Ясно, что имеет хи-квадрат-распределение с степенями свободы. Его ФПВ задаётся формулой (2.1.100). Простые преобразования переменной в (2.1.110) приводят к ФПВ для в виде

, . (2.1.137)

Как следствие фундаментальной зависимости между центральным хи-квадрат-распределением и релеевским распределением, соответствующая ИФР достаточно простая. Так, для любого ИФР для можно представить в форме неполной гамма-функции. В специальном случае, когда чётко, т.е. когда , ИФР для может быть представлено в замкнутой форме

, . (2.1.138)

В заключении приведём формулу для -го момента

, , (2.1.139)

справедливую для любого .

Распределение Райса. В то время как распределение Релея связано с центральным хи-квадрат-распределением, распределение Райса связано с нецентральным хи-квадрат-распределением. Чтобы проиллюстрировать эту связь, положим , где и - статистически независимые гауссовские случайные величины со средним , и одинаковой дисперсией . Из предыдущего рассмотрения мы знаем, что имеет нецентральное хи-квадрат-распределение с параметром отклонения . ФПВ для получаем из (2.1.118), а при находим

, . (2.1.140)

Теперь введём новую переменную .

ФПВ для получается из (2.1.140) путём замены переменной

, . (2.1.141)

Функция (2.1.141) называется распределением Райса.

Как будет показано в гл. 5, эта ФПВ характеризует статистику огибающей гармонического сигнала подверженному воздействию узкополосного гауссовского шума. Она также используется для статистики сигнала, перееденного через некоторые радиоканалы. ИФР для легко найти из (2.1.124) для случая, когда . Это даёт

, , (2.1.142)

где определяется (2.1.123).

Для обобщения приведённого выше результата пусть определяется (2.1.136), где , - статистически независимые случайные величины со средним , и одинаковыми дисперсиями . Случайная величина имеет нецентральное хи-квадрат-распределение с -степенями свободы нецентральным параметром , определяемое (2.1.119). Еe ФПВ определяется (2.1.118), следовательно, ФПВ для равна

, , (2.1.143)

а соответствующая ИФР

где определяется (2.1.121). В частном случае, когда - целое число, имеем

, , (2.1.145)

которое следует из (2.1.124). В заключении отметим, что -й момент от

, , (2.1.146)

где - вырожденная гипергеометрическая функция.

-распределение Накагами. И распределение Релея, и распределение Райса часто используется для описания статистики флуктуаций сигнала на выходе многопутевого канала с замираниями. Эта модель канала рассматривается в гл. 14. Другое распределение, часто используется для характеристики статистических сигналов, передаваемых через многопутевые каналы с замираниями - это -распределение Накагами. ФПВ для этого распределения дано Накагами (1960)

, , (2.1.147)

где определяется как

а параметр определяется как отношение моментов и назван параметром замираний:

, . (2.1.149)

Нормализованную версию для (2.1.147) можно получить путём введения другой случайной величины (см. задачу 2.15). -й момент от равен

.

При можно видеть, что (2.1.147) приводит к распределению Релея. При значениях удовлетворяющих условию , получаем ФПВ, которая имеет более протяжённые хвосты, чем при распределении Релея. При значениях хвосты ФПВ распределения Накагами убывают быстрее, чем для распределения Релея. Рисунок 2.1.10 иллюстрирует ФПВ для различных значений .

Многомерное гауссовское распределение. Из многих многопараметрических или многомерных распределений, которые могут быть определены, многопараметрическое распределение Гаусса наиболее важное и наиболее часто используется на практике. Введём это распределение и рассмотрим его основные свойства.

Предположим, что , являются гауссовскими случайными величинами со средними , , дисперсиями , и ковариациями , . Ясно, что , . Пусть - это матрица ковариаций размерности с элементами . Пусть определяет вектор-столбец случайных величин и пусть означает вектор-столбец средних значений , . Совместная ФПВ гауссовских случайных величин , , определяется так., то видим, что если гауссовские случайные величины не коррелированны, они также статистически независимы. являются некоррелированными и, следовательно, статистически независимыми. в виде является диагональной. Следовательно, мы должны потребовать мы получаем собственные векторы

Следовательно,

.

Легко показать, что и , где диагональные элементы равны и .