При прохождении света через прозрачные кристаллы (за исключением кристаллов кубической системы) наблюдается явление, суть которого заключается в том, что световой луч, преломляясь в кристалле, разделяется на два луча, линейно поляризованных во взаимно перпендикулярных плоскостях и распространяющихся с различной скоростью. Это явление называется двойным лучепреломлением, а кристаллы, обладающим таким свойством, – двояко преломляющими кристаллами. Такие кристаллы обладают двумя разными способами преломления, т.е. двумя показателями преломления в зависимости от поляризации

света. Образовавшиеся лучи расходятся в пространстве. Это расхождение тем больше, чем длиннее их путь в кристалле. Один из этих лучей лежит в плоскости падения, подчиняется обычному закону преломления и называется обыкновенным лучом (обозначается о ). Этот луч поляризован в плоскости, перпендикулярной плоскости падения. Второй луч называется необыкновенным лучом (обозначается е ). Для этого луча отношение синусов углов падения и преломления не остается постоянным при изменении угла падения. Необыкновенный луч не лежит в плоскости падения, поляризован в плоскости падения и преломляется даже при нормальном падении (рис. 11.7). После выхода из кристалла о - и е -лучи распространяются параллельно друг другу.

Однако в двояко преломляющих кристаллах имеется такое направление, вдоль которого обыкновенный и необыкновенный лучи распространяются не разделяясь с одинаковой скоростью. Это направление называется оптической осью кристалла (на рис. 11.7 – ось ОО ). Кристаллы, обладающие одной такой осью, называются одноосными кристаллами. Если внешняя преломляющая грань одноосного кристалла вырезана перпендикулярно оптической оси, то луч, падающий нормально, будет распространяться в кристалле с одинаковой скоростью, независимо от его поляризации (рис. 11.8, а ). Поляризационное состояние света при этом не

меняется, естественный свет остается таким же естественным. Направление колебаний электрического вектора у поляризованной волны не меняется. Пространственное разделение лучей не происходит при нормальном падении и в том случае, когда оптическая ось ОО будет параллельна внешней грани кристалла (рис. 11.8, б ). Однако в этом случае различно поляризованная волна ведет себя по-разному.

а ) б )

Если в падающем на такой кристалл линейно поляризованном свете электрический вектор перпендикулярен оптической оси кристалла, то свет будет распространяться с той же скоростью , что и в предыдущем случае. Если же электрический вектор параллелен оси, свет будет распространяться со скоростью отличной от скорости . В такой световой волне скорости обыкновенного и необыкновенного лучей различны (). Пространственное раздвоение лучей возникает, если оптическая ось ОО направлена под углом к преломляющей поверхности (как на рис. 11.8, а ).

Кристаллы, у которых , называются оптически положительными, а у которых – оптически отрицательными.

Явление двойного лучепреломления объясняется тем, что в анизотропных средах (кристаллах) поляризуемость, а значит, и диэлектрическая проницаемость и показатель преломления (и скорость света ) зависят от направления. В одноосных кристаллах показатель преломления в направлении оптической оси и в направлениях, перпендикулярных ей, имеют разные значения n || ¹ n ^ . Предположим теперь, что из воздуха на поверхность кристалла под углом a падает неполяризованная световая волна. Предположим далее, что плоскость падения параллельна оптической оси. Представим падающую волну в виде двух некогерентных плоских волн таких, что в одной из них вектор E колеблется в плоскости падения, а в другой – перпендикулярно ей. Очевидно, что и в кристалле будут распространяться две волны. В одной из них вектор E колеблется в плоскости падения, а в другой – перпендикулярно этой плоскости. Так как n || ¹ n ^ , то в соответствии с инвариантом преломления углы преломления a 2 || и a 2 ^ этих волн будут различны – произойдет пространственное разделение волн, поляризованных вдоль и поперек оптической оси. Следовательно, если на кристалл падает естественный (неполяризованный) свет, то в нем произойдет разложение падающего на кристалл луча на два непараллельных луча, каждый из которых полностью линейно поляризован.

Двояко преломляющими свойствами обладают длинные игловидные кристаллы, содержащие вытянутые несферические молекулы, расположенные так, что их большие оси параллельны друг другу. Направление этих осей совпадает с оптической осью кристалла. Такая структура молекул способствует тому, что колебания электронов в них возбудить легче вдоль оси молекулы, чем поперек нее. Поэтому взаимно перпендикулярная поляризация волн, падающих на кристалл и приводит к различным эффектам.

В анизотропных кристаллах поглощение зависит от ориентации плоскости поляризации, поэтому обыкновенный и необыкновенный лучи будут поглощаться в разной степени. Это явление называется дихроизмом. В кристалле турмалина, например, дихроизм настолько сильно выражен, что обыкновенный луч практически полностью поглощается уже при толщине пластинки 1 мм. Поэтому естественный луч, падающий на пластинку турмалина, выходит из нее полностью поляризованным в одном направлении (в плоскости падения). Если же различие в поглощении не столь значительно, то обыкновенный луч ликвидируют, выводя его из кристалла в другом направлении, а затем добиваясь его полного поглощения в оправе, в которую заключен кристалл (так получают так называемые призмы Николя).

В заключение отметим, что тот факт, что после прохождения двояко преломляющего кристалла световой луч разлагается на два взаимно перпендикулярно поляризованных луча, так же подтверждает, что любое поляризационное состояние фотона может быть представлено как суперпозиция двух (и только двух) независимых состояний. Если бы это было не так и состояний было больше двух, после прохождения кристалла кванты оказались бы частично поглощенными либо распались бы не на два, а на большее число групп. Эти два независимых состояния могут быть выбраны по-разному. Убедится в этом можно, повернув кристалл на некоторый угол вокруг оси, совпадающей с направлением падающего луча. При таком повороте плоскости поляризации лучей тоже повернуться и на тот же угол.

Все прозрачные кристаллы (кроме кристаллов кубической системы, которые оптически изотропны) обладают способностью двойного лучепреломления , т. е. раздваивания каждого падающего на них светового пучка. Это явление, в 1669 г. впервые обнаружен­ное датским ученым Э. Бартолином (1625-1698) для исландского шпата (разновидность кальцита СаСОз), объясняется особенностями распространения света в анизотропных средах и непосредственно вытекает из уравнений Максвелла.

Если на толстый кристалл исландского шпата направить узкий пучок света, то из кристалла выйдут два пространственно разделенных луча, параллельных друг другу и падающему лучу (рис. 277). Даже в том случае, когда первичный пучок падает на кристалл нормально, преломленный пучок разделяется на два, причем один из них является продолжением первичного, а второй отклоняется (рис. 278). Второй из этих лучей получил название необыкновенного (e ), а первый - обыкновенного (о ).

В кристалле исландского шпата имеется единственное направление, вдоль которого двойное лучепреломление не наблюдается. Направление в оптически анизотропном кристалле, по которому луч света распространяется, не испытывая двойного лучепреломления, называется оптической осью кристалла . В данном случае речь идет именно о направлении, а не о прямой линии, проходящей через какую-то точку кристалла. Любая прямая, проходящая параллельно данному направлению, является оптической осью кристалла. Кристаллы в зависимости от типа их симметрии бывают одноосные и двуосные, т.е. имеют одну или две оптические оси (к первым и относится исландский шпат).

Исследования показывают, что вышедшие из кристалла лучи плоскополяризованы во взаимно перпендикулярных плоскостях. Плоскость, проходящая через направление луча света и оптическую ось кристалла, называется главной плоскостью (или главным сечением кристалла). Колебания светового вектора (вектора напряженности Е электрического поля) в обыкновенном луче происходят перпендикулярно главной плоскости, в необыкновенном - в главной плоскости (рис. 278).

Неодинаковое преломление обыкновенного и необыкновенного лучей указывает на различие для них показателей преломления. Очевидно, что при любом направлении обыкновенного луча колебания светового вектора перпендикулярны оптической оси кристалла, поэтому обыкновенный луч распространяется по всем направлениям с оди­наковой скоростью и, следовательно, показатель преломления n o для него есть величина постоянная. Для необыкновенного же луча угол между направлением колебаний светового вектора и оптической осью отличен от прямого и зависит от направления луча, поэтому необыкновенные лучи распространяются по различным направлениям с разными скоростями. Следовательно, показатель преломления п e необыкновенного луча является переменной величиной, зависящей от направления луча. Таким образом, обыкновенный луч подчиняется закону преломления (отсюда и название «обыкновенный»), а для необыкновенного луча этот закон не выполняется. После выхода из кристалла, если не принимать во внимание поляризацию во взаимно перпендикулярных плоскостях, эти два луча ничем друг от друга не отличаются.

Как уже рассматривалось, обыкновенные лучи распространяются в кристалле по всем направлениям с одинаковой скоростью v o =c /n o , а необыкновенные - с разной скоростью v e =с /п e (в зависимости от угла между вектором Е и оптической осью). Для луча, распространяющегося вдоль оптической оси, n o =n e , v o =v e , т.е. вдоль оптической оси существует только одна скорость распространения света. Различие в v e и v o для всех направлений, кроме направления оптической оси, и обусловливает явление двойного лучепреломления света в одноосных кристаллах.

Допустим, что в точке S внутри одноосного кристалла находится точечный источ­ник света. На рис. 279 показано распространение обыкновенного и необыкновенного лучей в кристалле (главная плоскость совпадает с плоскостью чертежа, OO " - направление оптической оси). Волновой поверхностью обыкновенного луча (он распространяется с v o =const ) является сфера, необыкновенного луча (v e ¹ const ) - эллипсоид вращения. Наибольшее расхождение волновых поверхностей обыкновенного и необыкновен­ного лучей наблюдается в направлении, перпендикулярном оптической оси. Эллипсоид и сфера касаются друг друга в точках их пересечения с оптической осью OO ". Если v e (n e >n o ), то эллипсоид необыкновенного луча вписан в сферу обыкновенного луча (эллипсоид скоростей вытянут относительно оптической оси) и одноосный кристалл называется положительным (рис. 279, а ). Если v e >v o (n e ), то эллипсоид описан вокруг сферы (эллипсоид скоростей растянут в направлении, перпендикулярном оп­тической оси) и одноосный кристалл называется отрицательным (рис. 279, б ). Рассмот­ренный выше исландский шпат относится к отрицательным кристаллам.

В качестве примера построения обыкновенного и необыкновенного лучей рассмот­рим преломление плоской волны на границе анизотропной среды, например положи­тельной (рис. 280). Пусть свет падает нормально к преломляющей грани кристалла, а оптическая ось OO " составляет с нею некоторый угол. С центрами в точках А и В построим сферические волновые поверхности, соответствующие обыкновенному лучу, и эллипсоидальные - необыкновенному лучу. В точке, лежащей на OO ", эти поверх­ности соприкасаются. Согласно принципу Гюйгенса, поверхность, касательная к сферам, будет фронтом (а-а) обыкновенной волны, поверхность, касательная к эллипсо­идам, - фронтом (b -b ) необыкновенной волны. Проведя к точкам касания прямые, получим направления распространения обыкновенного (о ) и необыкновенного (е ) лучей. Таким образом, в данном случае обыкновенный луч пойдет вдоль первоначаль­ного направления, необыкновенный же отклонится от первоначального направления.

ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ - раздвоение светового луча при прохождении через анизотропную среду, обусловленное зависимостью показателя преломления (а следовательно, и скорости волны) от её и ориентации волнового вектора относительно кристаллографич. осей, т. е. от направления распространения (см. Кристаллооптика, Оптическая анизотропия) . При падении световой волны на поверхность в последней возникают две преломлённые волны, имеющие разную поляризацию и идущие в разных направлениях с разл. скоростями. Отношение амплитуд этих волн зависит от поляризации падающей волны. Различают линейное и эллиптическое Д. л. в зависимости от свойств и .

В прозрачных немагн. кристаллах без дисперсии пространственной происходит линейное Д. л. - возникают две линейно поляризов. волны, векторы индукции к-рых D 1 и D 2 взаимно ортогональны и соответственно ортогональны векторам магн. поля H 1 и H 2 . Д. л. в кристаллах можно описать, приведя тензор диэлектрической проницаемости к главным осям и задав значения: - "главные показатели преломления"; величину Д. л. обычно описывают макс. разностью этих показателей преломления. При прохождении света через границу двух анизотропных сред происходит более сложное преобразование двух падающих волн в две преломлённые.

В прозрачных магн. кристаллах без пространств. дисперсии также имеет место линейное Д. л., однако векторы индукций (электрической D и магнитной В )в двух волнах не ортогональны ( ).

Д. л. в этом случае является следствием того, что электрич. и магн. проницаемости описываются разл. тензорами; в гипотетич. среде, где (-скаляр), Д. л. отсутствовало бы (но скорости волн зависели бы от направления).

В прозрачных немагн. кристаллах с пространств. дисперсией первого порядка - гиротропией - падающая волна распадается на две волны (идущие по разным направлениям с разными скоростями), поляризованные эллиптически, причём соответственные оси эллипсов D 1 и D 2 ортогональны, а направления обхода этих эллипсов противоположны - происходит эллиптическое Д. л. В нек-рой области частот возможно появление даже большего числа волн - 3 или 4.

В кристаллах, обладающих поглощением, картина Д. л. более сложна. Как известно, волны в поглощающих средах неоднородны; векторы E, D и H, В в общем случае поляризованы эллиптически, причём эллипсы различны и ориентированы по-разному. Поэтому в общем случае имеет место эллиптическое Д. л.; эллипсы векторов двух волн D 1 и D 2 подобны, ортогональны и имеют одно направление обхода, но разные размеры вследствие анизотропии поглощения (см. Дихроизм ).То же имеет место для векторов B 1 и B 2 , но эллипсы их отличаются от первых формой и ориентацией (ориентации совпадают лишь при круговой поляризации).

В зависимости от свойств симметрии анизотропной среды в ней имеется несколько избранных направлений, в к-рых Д. л. отсутствует; эти направления наз. оптич. осями. Могут быть оси изотропные, вдоль к-рых волны любой поляризации распространяются с одинаковой скоростью, и оси круговые, вдоль к-рых без Д. л. может распространяться лишь волна определ. знака круговой поляризации. Прозрачные кристаллы низших сингоний обычно имеют две изотропные оси, при симметрии выше 222 D 2 (см. Симметрия кристаллов )они сливаются в одну. При наличии поглощения кристаллы низших сингоний имеют одну изотропную ось (в частном случае ромбич. сингоний - две) и (или) несколько круговых.

Д. л. может наблюдаться не только в естественно-анизотропной среде, но и в среде с искусств. анизотропией, вызванной асимметричными деформациями, внутр. натяжениями (см. Фотоупругость) , приложением акустич. поля (см. Акустооптика ),приложением электрических (см. Керра эффект )или магнитных (см. Коттона - Мутона эффект )полей, анизотропным нагревом. В жидкостях возможно создание Д. л. в потоке, если молекулы жидкости или растворённого вещества обладают несферич. формой и анизотропной поляризуемостью .

Явление, аналогичное Д. л, наблюдается и в др. диапазонах эл--магн. волн, напр. в диапазоне СВЧ в плазме, находящейся в магн. поле (а следовательно, анизотропной); см. Волны в плазме .

Лит.: Федоров Ф. И., Оптика анизотропных сред. Минск, 1958, Кизель В. А., Отражение света, M , 1973, гл. 1, 2; Федоров Ф. И., Филиппов В. В., Отражение и преломление света прозрачными кристаллами, Минск. 1976; Дорожкин Л. M. и др., Измерение показателей преломления монокристаллов методом равных отклонений, "Краткие сообщения по физике", 1977, № 3, с. 8; Stаmnеs J., Shеrman G., Reflection and refraction of an arbitrary wave at a plane interface separating two uniaxial crystals, "J. Opt. Soc. Amer.", 1977, v. 67, p. 683; Halevi P., Mendoza-Hernfindez A., Temporal and spatial behavior of the Poynting vector in dissepative media refraction from vacuum into a medium, "J. Opt. Soc. Amer.", 1981, v. 71, p. 1238.

В . А. Кизель .

Cтраница 1


Явление двойного лучепреломления в кальците открыл Бартолин в 1669 г. Гюйгенс в 1690 г. дал формальную теорию явления, выдвинув предположение, что оба луча имеют разную скорость; однако причину этого он объяснить не мог. В 1808 г. Малюс возродил представления Ньютона, объяснив особенности лучей, возникающих при двойном лучепреломлении, их полярными свойствами - аналогично полюсам магнита.  

Явление двойного лучепреломления также может быть использовано для получения плоскополяризованного света.  

Явление двойного лучепреломления заключается в том, что упавшая на кристалл волна внутри кристалла разделяется на две волны, распространяющиеся в общем случае в различных направлениях, с различными скоростями и имеющие различную поляризацию. Это явление наблюдается лишь в анизотропных средах и возникает вследствие зависимости скорости света от направления светового вектора волны. У двоякопреломляю-щих веществ имеются одно или два направления, вдоль которых свет с любым направлением светового вектора распространяется с одной и той же скоростью. Эти направления называются оптическими осями. Для кристаллов с одной оптической осью (одноосных кристаллов) плоскость, проходящая через оптическую ось и световой луч, называется главной плоскостью. Скорость одной из волн в таких кристаллах не зависит от направления ее распространения. Эта волна называется обыкновенной, плоскость ее колебаний перпендикулярна главной плоскости. У другой волны, которая называется необыкновенной, световой вектор лежит в главной плоскости, а ее скорость зависит от направления распространения.  

Явление двойного лучепреломления связано с молекулярной анизотропией, которая может быть следствием начальной анизотропной структуры, как это наблюдается в кристаллах, или же результатом деформации.  

Явление двойного лучепреломления в потоке заключается в том, что некоторые жидкости (например, оргавнческие вязкие жидкости с удлиненной формой молекул) при течении обнаруживают оптическую анизотропию. Особенно сильно двойное лучепреломление проявляется при течении золей с палочкообразными час.  

Явление двойного лучепреломления в потоке заключается в том, что некоторые жидкости (например, оргавнческие вязкие жидкости с удлиненной формой молекул) при течении обнаруживают оптическую анизотропию.  

Явление двойного лучепреломления в потоке заключается в том, что [ [ екоторые жидкости (например, органические вязкие жидкости с удлиненной формой молекул) при течении обнаруживают оптическую анизотропию. Особенно сильно двойное лучепреломление [ проявляется при течении золей с палочкообразными час.  

Явление двойного лучепреломления в изделиях из полистирола Винтергерст и Хеккель рассматривают как следствие молекулярной ориентации, происходящей в процессе литья под давлением.  

Явление двойного лучепреломления в потоке заключается в том, что некоторые жидкости (например, органические вязкие жидкости с удлиненной формой молекул) при течении обнаруживают оптическую анизотропию, выражающуюся в появлении двойного лучепреломления. Особенно сильно двойное лучепреломление проявляется при течении золей с палочкообразными частицами и растворов высокомолекулярных соединений.  

Явление двойного лучепреломления легко продемонстриро вать с помощью листка целлофана. Целлофан состоит из длинных молекул - волокон, и его структура неизотропна, поскольку волокна по большей части вытянуты в одном направлении. Для наблюдения явления двойного лучепреломления необходим пучок линейно поляризованного света, который нетрудно получить, пропуская неполяризованный свет через пластинку поляроида.  

Явление двойного лучепреломления впервые было обнаружено в кристаллах. Оно обусловлено анизотропией структуры и, в частности, зависимостью диэлектрической проницаемости е или показателя преломления п (п е) от направления в кристалле, и заключается в том, что при прохождении через кристалл световой луч раздваивается. Направление одного из лучей (обыкновенный луч) при выходе из кристалла удовлетворяет обычному закону преломления и лежит в одной плоскости с падающим лучом и нормалью; второй луч (называемый необыкновенным) проходит в кристалле под другим углом. В результате из кристалла выходят два луча, имеющих направления, параллельные первоначальному. Например, при рассматривании точки через кристалл исландского шпата, на котором впервые было обнаружено явление двойного лучепреломления (1670 г.), наблюдается ее раздваивание. Кроме того, обыкновенный и необыкновенный лучи поляризуются во взаимно перпендикулярных плоскостях.  

Явление двойного лучепреломления можно наблюдать под микроскопом, поместив материал, содержащий сферолиты, между скрещенными поляроидами. Присутствие сферолитов непосредственно свидетельствует о кристалличности данного материала. Заметим, что двойное лучепреломление само по себе без сферолитной структуры не является достаточным доказательством присутствия кристаллов, поскольку двойное лучепреломление наблюдается и в ориентированных аморфных областях.  

Явление двойного лучепреломления в потоке, обнаруженное впервые Максвеллом в 1870 г. , заключается в том, что в ламинарном потоке под действием сдвигового напряжения жидкость или раствор становятся оптически анизотропными.  

Явление двойного лучепреломления является оптическим свойством кристаллических тел. При пропускании света через прозрачную кристаллическую пластинку световая волна разлагается на две плоско-поляризованные волны, имеющие взаимно перпендикулярные плоскости колебаний и распространяющиеся внутри кристалла с различными скоростями.  

Явление двойного лучепреломления обладает целым рядом особенностей. Мы отметим только, что при этом явлении поляризуются оба преломленных луча.  

исландского шпата в 1669 году. Если луч света падает перпендикулярно к поверхности кристалла, то на этой поверхности он расщепляется на два луча. Первый луч продолжает распространяться прямо, и называется обыкновенным (o - ordinary), второй же отклоняется в сторону, и называется необыкновенным (e - extraordinary).

Энциклопедичный YouTube

    1 / 3

    двойное лучепреломление

    эффект фарадея

    Поляризованный свет и звёздный магнетизм

    Субтитры

Описание

Направление колебания вектора электрического поля необыкновенного луча лежит в плоскости главного сечения (плоскости, проходящей через луч и оптическую ось кристалла). Оптическая ось кристалла - направление в оптически анизотропном кристалле, по которому луч света распространяется, не испытывая двойного лучепреломления.

Нарушение закона преломления света необыкновенным лучом связано с тем, что скорость распространения света (а значит и показатель преломления) волн с такой поляризацией , как у необыкновенного луча, зависит от направления. Для обыкновенной волны скорость распространения одинакова во всех направлениях.

Можно подобрать условия, при которых обыкновенный и необыкновенный лучи распространяются по одной траектории, но с разными скоростями. Тогда наблюдается эффект изменения поляризации. Например, линейно поляризованный свет, падающий на пластинку можно представить в виде двух составляющих (обыкновенной и необыкновенной волн), двигающихся с разными скоростями. Из-за разности скоростей этих двух составляющих, на выходе из кристалла между ними будет некоторая разность фаз, и в зависимости от этой разности свет на выходе будет иметь разные поляризации. Если толщина пластинки такова, что на выходе из неё один луч на четверть волны (четверть периода) отстаёт от другого, то поляризация превратится в круговую (такая пластинка называется четвертьволновой), если один луч от другого отстанет на полволны, то свет останется линейно поляризованным, но плоскость поляризации повернётся на некоторый угол, значение которого зависит от угла между плоскостью поляризации падающего луча и плоскостью главного сечения (такая пластинка называется полуволновой).

Природа явления

Качественно явление можно объяснить следующим образом. Из уравнений Максвелла для материальной среды следует, что фазовая скорость света в среде обратно пропорциональна величине диэлектрической проницаемости ε среды. В некоторых кристаллах диэлектрическая проницаемость - тензорная величина - зависит от направления электрического вектора, то есть от состояния поляризации волны, поэтому и фазовая скорость волны будет зависеть от её поляризации.

Согласно классической теории света, возникновение эффекта связано с тем, что переменное электромагнитное поле света заставляет колебаться электроны вещества, и эти колебания влияют на распространение света в среде, а в некоторых веществах заставить электроны колебаться проще в некоторых определённых направлениях.

Искусственное двойное лучепреломление. Помимо кристаллов двойное лучепреломление наблюдается и в изотропных средах, помещённых в электрическое поле (эффект Керра), в магнитное поле (эффект Коттона - Мутона , эффект Фарадея), под действием механических напряжений (фотоупругость). Под действием этих факторов изначально изотропная среда меняет свои свойства и становится анизотропной. В этих случаях оптическая ось среды совпадает с направлением электрического поля, магнитного поля, направлением приложения силы.

Положительные и отрицательные кристаллы

  • Отрицательные кристаллы - одноосные кристаллы, в которых скорость распространения обыкновенного луча света меньше, чем скорость распространения необыкновенного луча. В кристаллографии отрицательными кристаллами называют также жидкие включения в кристаллах, имеющие ту же форму, что и сам кристалл.
  • Положительные кристаллы - одноосные кристаллы, в которых скорость распространения обыкновенного луча света больше, чем скорость распространения необыкновенного луча.