Вектор \(\overrightarrow{AB}\) можно рассматривать как перемещение точки из положения \(A\) (начало движения) в положение \(B\) (конец движения). То есть траектория движения в этом случае не важна, важны только начало и конец!

\(\blacktriangleright\) Два вектора коллинеарны, если они лежат на одной прямой или на двух параллельных прямых.
В противном случае векторы называются неколлинеарными.

\(\blacktriangleright\) Два коллинеарных вектора называются сонаправленными, если их направления совпадают.
Если их направления противоположны, то они называются противоположно направленными.

Правила сложения коллинеарных векторов:

сонаправленных конца первого. Тогда их сумма – вектор, начало которого совпадает с началом первого вектора, а конец – с концом второго (рис. 1).

\(\blacktriangleright\) Для того, чтобы сложить два противоположно направленных вектора, можно отложить второй вектор от начала первого. Тогда их сумма – вектор, начало которого совпадает с началом обоих векторов, длина равна разности длин векторов, направление совпадает с направлением большего по длине вектора (рис. 2).


Правила сложения неколлинеарных векторов \(\overrightarrow {a}\) и \(\overrightarrow{b}\) :

\(\blacktriangleright\) Правило треугольника (рис. 3).

Нужно от конца вектора \(\overrightarrow {a}\) отложить вектор \(\overrightarrow {b}\) . Тогда сумма – это вектор, начало которого совпадает с началом вектора \(\overrightarrow {a}\) , а конец – с концом вектора \(\overrightarrow {b}\) .

\(\blacktriangleright\) Правило параллелограмма (рис. 4).

Нужно от начала вектора \(\overrightarrow {a}\) отложить вектор \(\overrightarrow {b}\) . Тогда сумма \(\overrightarrow {a}+\overrightarrow {b}\) – вектор, совпадающей с диагональю параллелограмма, построенного на векторах \(\overrightarrow {a}\) и \(\overrightarrow {b}\) (начало которого совпадает с началом обоих векторов).

\(\blacktriangleright\) Для того, чтобы найти разность двух векторов \(\overrightarrow {a}-\overrightarrow{b}\) , нужно найти сумму векторов \(\overrightarrow {a}\) и \(-\overrightarrow{b}\) : \(\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{a}+(-\overrightarrow{b})\) (рис. 5).

Задание 1 #2638

Уровень задания: Сложнее ЕГЭ

Дан прямоугольный треугольник \(ABC\) с прямым углом \(A\) , точка \(O\) – центр описанной около данного треугольника окружности. Координаты вектора \(\overrightarrow{AB}=\{1;1\}\) , \(\overrightarrow{AC}=\{-1;1\}\) . Найдите сумму координат вектора \(\overrightarrow{OC}\) .

Т.к. треугольник \(ABC\) - прямоугольный, то центр описанной окружности лежит на середине гипотенузы, т.е. \(O\) - середина \(BC\) .


Заметим, что \(\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}\) , следовательно, \(\overrightarrow{BC}=\{-1-1;1-1\}=\{-2;0\}\) .

Т.к. \(\overrightarrow{OC}=\dfrac12 \overrightarrow{BC}\) , то \(\overrightarrow{OC}=\{-1;0\}\) .

Значит, сумма координат вектора \(\overrightarrow{OC}\) равна \(-1+0=-1\) .

Ответ: -1

Задание 2 #674

Уровень задания: Сложнее ЕГЭ

\(ABCD\) – четырёхугольник, на сторонах которого отложены векторы \(\overrightarrow{AB}\) , \(\overrightarrow{BC}\) , \(\overrightarrow{CD}\) , \(\overrightarrow{DA}\) . Найдите длину вектора \(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA}\) .

\(\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}\) , \(\overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}\) , тогда
\(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DA}= \overrightarrow{AD} + \overrightarrow{DA} = \overrightarrow{AD} - \overrightarrow{AD} = \vec{0}\) .
Нулевой вектор имеет длину, равную \(0\) .

Вектор можно воспринимать как перемещение, тогда \(\overrightarrow{AB} + \overrightarrow{BC}\) – перемещение из \(A\) в \(B\) , а затем из \(B\) в \(C\) – в итоге это перемещение из \(A\) в \(C\) .

При такой трактовке становится очевидным, что \(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \vec{0}\) , ведь в итоге здесь из точки \(A\) переместились в точку \(A\) , то есть длина такого перемещения равна \(0\) , значит, и сам вектор такого перемещения есть \(\vec{0}\) .

Ответ: 0

Задание 3 #1805

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Диагонали \(AC\) и \(BD\) пересекаются в точке \(O\) . Пусть , , тогда \(\overrightarrow{OA} = x\cdot\vec{a} + y\cdot\vec{b}\)

\[\overrightarrow{OA} = \frac{1}{2}\overrightarrow{CA} = \frac{1}{2}(\overrightarrow{CB} + \overrightarrow{BA}) = \frac{1}{2}(\overrightarrow{DA} + \overrightarrow{BA}) = \frac{1}{2}(-\vec{b} - \vec{a}) = - \frac{1}{2}\vec{a} - \frac{1}{2}\vec{b}\] \(\Rightarrow\) \(x = - \frac{1}{2}\) , \(y = - \frac{1}{2}\) \(\Rightarrow\) \(x + y = -1\) .

Ответ: -1

Задание 4 #1806

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Точки \(K\) и \(L\) лежат на сторонах \(BC\) и \(CD\) соответственно, причем \(BK:KC = 3:1\) , а \(L\) – середина \(CD\) . Пусть \(\overrightarrow{AB} = \vec{a}\) , \(\overrightarrow{AD} = \vec{b}\) , тогда \(\overrightarrow{KL} = x\cdot\vec{a} + y\cdot\vec{b}\) , где \(x\) и \(y\) – некоторые числа. Найдите число, равное \(x + y\) .

\[\overrightarrow{KL} = \overrightarrow{KC} + \overrightarrow{CL} = \frac{1}{4}\overrightarrow{BC} + \frac{1}{2}\overrightarrow{CD} = \frac{1}{4}\overrightarrow{AD} + \frac{1}{2}\overrightarrow{BA} = \frac{1}{4}\vec{b} - \frac{1}{2}\vec{a}\] \(\Rightarrow\) \(x = -\frac{1}{2}\) , \(y = \frac{1}{4}\) \(\Rightarrow\) \(x + y = -0,25\) .

Ответ: -0,25

Задание 5 #1807

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Точки \(M\) и \(N\) лежат на сторонах \(AD\) и \(BC\) соответственно, причем \(AM:MD = 2:3\) , а \(BN:NC = 3:1\) . Пусть \(\overrightarrow{AB} = \vec{a}\) , \(\overrightarrow{AD} = \vec{b}\) , тогда \(\overrightarrow{MN} = x\cdot\vec{a} + y\cdot\vec{b}\)

\[\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AB} + \overrightarrow{BN} = \frac{2}{5}\overrightarrow{DA} + \overrightarrow{AB} + \frac{3}{4}\overrightarrow{BC} = - \frac{2}{5}\overrightarrow{AD} + \overrightarrow{AB} + \frac{3}{4}\overrightarrow{BC} = -\frac{2}{5}\vec{b} + \vec{a} + \frac{3}{4}\vec{b} = \vec{a} + \frac{7}{20}\vec{b}\] \(\Rightarrow\) \(x = 1\) , \(y = \frac{7}{20}\) \(\Rightarrow\) \(x\cdot y = 0,35\) .

Ответ: 0,35

Задание 6 #1808

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Точки \(P\) лежит на диагонали \(BD\) , точка \(Q\) лежит на стороне \(CD\) , причем \(BP:PD = 4:1\) , а \(CQ:QD = 1:9\) . Пусть \(\overrightarrow{AB} = \vec{a}\) , \(\overrightarrow{AD} = \vec{b}\) , тогда \(\overrightarrow{PQ} = x\cdot\vec{a} + y\cdot\vec{b}\) , где \(x\) и \(y\) – некоторые числа. Найдите число, равное \(x\cdot y\) .

\[\begin{gathered} \overrightarrow{PQ} = \overrightarrow{PD} + \overrightarrow{DQ} = \frac{1}{5}\overrightarrow{BD} + \frac{9}{10}\overrightarrow{DC} = \frac{1}{5}(\overrightarrow{BC} + \overrightarrow{CD}) + \frac{9}{10}\overrightarrow{AB} =\\ = \frac{1}{5}(\overrightarrow{AD} + \overrightarrow{BA}) + \frac{9}{10}\overrightarrow{AB} = \frac{1}{5}(\overrightarrow{AD} - \overrightarrow{AB}) + \frac{9}{10}\overrightarrow{AB} = \frac{1}{5}\overrightarrow{AD} + \frac{7}{10}\overrightarrow{AB} = \frac{1}{5}\vec{b} + \frac{7}{10}\vec{a}\end{gathered}\]

\(\Rightarrow\) \(x = \frac{7}{10}\) , \(y = \frac{1}{5}\) \(\Rightarrow\) \(x\cdot y = 0,14\) . и \(ABCO\) – параллелограмм; \(AF \parallel BE\) и \(ABOF\) – параллелограмм \(\Rightarrow\) \[\overrightarrow{BC} = \overrightarrow{AO} = \overrightarrow{AB} + \overrightarrow{BO} = \overrightarrow{AB} + \overrightarrow{AF} = \vec{a} + \vec{b}\] \(\Rightarrow\) \(x = 1\) , \(y = 1\) \(\Rightarrow\) \(x + y = 2\) .

Ответ: 2

Старшеклассники, которые готовятся к сдаче ЕГЭ по математике и при этом рассчитывают на получение достойных баллов, обязательно должны повторить тему «Правила сложения и вычитания нескольких векторов». Как видно из многолетней практики, подобные задания каждый год включаются в аттестационное испытание. Если у выпускника вызывают трудности задачи из раздела «Геометрия на плоскости», к примеру, в которых требуется применить правила сложения и вычитания векторов, ему обязательно стоит повторить или вновь разобраться в материале, чтобы успешно сдать ЕГЭ.

Образовательный проект «Школково» предлагает новый подход в подготовке к аттестационному испытанию. Наш ресурс выстроен таким образом, чтобы учащиеся смогли выявить наиболее сложные для себя разделы и восполнить пробелы в знаниях. Специалисты «Школково» подготовили и систематизировали весь необходимый материал для подготовки к сдаче аттестационного испытания.

Для того чтобы задачи ЕГЭ, в которых необходимо применить правила сложения и вычитания двух векторов, не вызывали затруднений, мы рекомендуем прежде всего освежить в памяти базовые понятия. Найти этот материал учащиеся смогут в разделе «Теоретическая справка».

Если вы уже вспомнили правило вычитания векторов и основные определения по данной теме, предлагаем закрепить полученные знания, выполнив соответствующие упражнения, которые подобрали специалисты образовательного портала «Школково». Для каждой задачи на сайте представлен алгоритм решения и дан правильный ответ. В теме «Правила сложения векторов» представлены различные упражнения; выполнив два-три сравнительно легких задания, учащиеся могут последовательно переходить к более сложным.

Оттачивать собственные навыки по таким, например, заданиям, как школьники имеют возможность в режиме онлайн, находясь в Москве или любом другом городе России. При необходимости задание можно сохранить в разделе «Избранное». Благодаря этому вы сможете быстро найти интересующие примеры и обсудить алгоритмы нахождения правильного ответа с преподавателем.

Определение

Сложение векторов иосуществляется поправилу треугольника .

Суммой двух векторов иназывают такой третий вектор, начало которого совпадает с началом, а конец - с концомпри условии, что конец вектораи начало векторасовпадают (рис. 1).

Для сложения векторов применяется также правило параллелограмма.

Определение

Правило параллелограмма - если два неколлинеарных вектора ипривести к общему началу, то векторсовпадает с диагональю параллелограмма, построенного на векторахи(рис. 2). Причем начало векторасовпадает с началом заданных векторов.

Определение

Вектор называетсяпротивоположным вектором к вектору , если онколлинеарен вектору , равен ему по длине, но направлен в противоположную сторону вектору.

Операция сложения векторов обладает следующими свойствами:

Определение

Разностью векторов иназывается вектортакой, что выполняется условие:(рис. 3).

Умножение вектора на число

Определение

Произведением вектора на число называется вектор, удовлетворяющий условиям:

Свойства умножения вектора на число:

Здесь и- произвольные векторы,,- произвольные числа.

Евкли́дово простра́нство (также Эвкли́дово простра́нство ) - в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии . В этом случае предполагается, что пространство имеет размерность равную 3.

В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов: конечномерное вещественное векторное пространство с введённым на нём положительно определённымскалярным произведением , либо метрическое пространство , соответствующее такому векторному пространству. В этой статье за исходное будет взято первое определение.

Мерное евклидово пространство обозначается также часто используется обозначение(если из контекста ясно, что пространство обладает евклидовой структурой).

Для определения евклидова пространства проще всего взять в качестве основного понятие скалярного произведения . Евклидово векторное пространство определяется как конечномерное векторное пространство над полем вещественных чисел , на векторах которого задана вещественнозначная функция обладающая следующими тремя свойствами:

Аффинное пространство , соответствующее такому векторному пространству, называется евклидовым аффинным пространством, или просто евклидовым пространством .

Пример евклидова пространства - координатное пространство состоящее из всевозможныхn -ок вещественных чисел скалярное произведение в котором определяется формулой

    Базис и координаты вектора

Ба́зис (др.-греч. βασις, основа) - множество таких векторов в векторном пространстве , что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого множества - базисных векторов .

В случае, когда базис бесконечен, понятие «линейная комбинация» требует уточнения. Это ведёт к двум основным разновидностям определения:

    Базис Га́меля , в определении которого рассматриваются только конечные линейные комбинации. Базис Гамеля применяется в основном в абстрактной алгебре (в частности в линейной алгебре).

    Базис Ша́удера , в определении которого рассматриваются и бесконечные линейные комбинации, а именно - разложение в ряды . Это определение применяется в основном в функциональном анализе, в частности для гильбертова пространства ,

В конечномерных пространствах обе разновидности базиса совпадают.

Координа́ты ве́ктора ― коэффициенты единственно возможной линейной комбинации базисных векторов в выбранной системе координат , равной данному вектору.

где - координаты вектора.

    Скалярное произведение.

операция над двумя векторами , результатом которой является число [когда рассматриваются векторы, числа часто называют скалярами ], не зависящее от системы координат и характеризующее длины векторов-сомножителей и угол между ними. Данной операции соответствует умножение длины вектора x на проекцию вектора y на вектор x . Эта операция обычно рассматривается как коммутативная и линейная по каждому сомножителю.

Скалярное произведение двух векторов равно сумме произведений их соответствующих координат:

    Векторное произведение

это псевдовектор , перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном евклидовом пространстве . Векторное произведение не обладает свойствами коммутативности и ассоциативности (является антикоммутативным ) и, в отличие от скалярного произведения векторов , является вектором. Широко используется во многих технических и физических приложениях. Например, момент импульса и сила Лоренца математически записываются в виде векторного произведения. Векторное произведение полезно для «измерения» перпендикулярности векторов - модуль векторного произведения двух векторов равен произведению их модулей, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.

    Векторное произведение двух векторов можно вычислить с помощью определителя матрицы

    Смешанное произведение

Сме́шанное произведе́ние векторов -скалярное произведение вектора навекторное произведение векторов и:

Иногда его называют тройным скалярным произведением векторов, по всей видимости из-за того, что результатом является скаляр (точнее - псевдоскаляр ).

Геометрический смысл: Модуль смешанного произведения численно равен объёму параллелепипеда , образованного векторами .смешанное произведение трех векторов можно найти через определитель

    Плоскость в пространстве

Плоскость - алгебраическая поверхность первого порядка: в декартовой системе координат плоскость может быть задана уравнением первой степени.

Некоторые характеристические свойства плоскости

    Плоскость - поверхность , содержащая полностью каждую прямую , соединяющую любые её точки ;

    Две плоскости являются либо параллельными, либо пересекаются по прямой.

    Прямая либо параллельна плоскости, либо пересекает ее в одной точке, либо находится на плоскости.

    Две прямые, перпендикулярные одной и той же плоскости, параллельны друг другу.

    Две плоскости, перпендикулярные одной и той же прямой, параллельны друг другу.

Аналогично отрезку и интервалу , плоскость, не включающую крайние точки, можно назвать интервальной плоскостью, или открытой плоскостью.

    Общее уравнение (полное) плоскости

где и- постоянные, причёмиодновременно не равны нулю; ввекторной форме:

где - радиус-вектор точки, векторперпендикулярен к плоскости (нормальный вектор).Направляющие косинусы вектора :

Пусть $\overrightarrow{a}$ и $\overrightarrow{b}$ - два вектора (рис.1, а).

Возьмем произвольную точку О и построим вектор $\overrightarrow{ОА} = \overrightarrow{a}$ . Затем от точки А отложим вектор $\overrightarrow{AB} = \overrightarrow{b}$. Вектор $\overrightarrow{OB}$, соединяющий начало первого слагаемого вектора с концом второго (рис.1, б), называется суммой этих векторов и обозначается $\overrightarrow{a} + \overrightarrow{b}$$ (правило треугольника ).

Ту же самую сумму векторов можно получить иным способом. Отложим от точки О векторы $\overrightarrow{ОА} = \overrightarrow{a} \,и\, \overrightarrow{ОС} = \overrightarrow{b} $ (рис.1, в). Построим на этих векторах как на сторонах параллелограмм ОABC. Вектор $\overrightarrow{ОВ}$, служащий диагональю этого параллелограмма, проведенной из вершины О, является, очевидно, суммой векторов $\overrightarrow{a} + \overrightarrow{b}$ {правило параллелограмма ). Из рисунка 1, в непосредственно следует, что сумма двух векторов обладает переместительным свойством: $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$

Действительно, каждый из векторов $\overrightarrow{a} + \overrightarrow{b} \,и\, = \overrightarrow{b} + \overrightarrow{a}$ равен одному и тому же вектору $\overrightarrow{OB}$ .

Пример 1. В треугольнике ABC АВ = 3, ВС = 4, ∠ В = 90°. Найти: $а)\,\ \overrightarrow{|АВ|} + \overrightarrow{|ВС|};\,\,\ б)\,\ |\overrightarrow{АВ} + \overrightarrow{ВС}|$ .

Решение

а) Имеем: $|\overrightarrow{АВ}| = АВ,\,\,\ |\overrightarrow{ВС}| = ВС$ и, значит, $|\overrightarrow{АВ}| + |\overrightarrow{BC}| = 7$ .

б) Так как $\overrightarrow{AB} + \overrightarrow{ВС} = \overrightarrow{АС} \,\,\,\, то\,\, |\overrightarrow{АВ} + \overrightarrow{ВС}| = |\overrightarrow{АС}| = АС$ .

Теперь, применяя теорему Пифагора, находим $$ AC = \sqrt{AB^2 + BC^2} = \sqrt{9 + 16} = 5 \\ т.е.\, |\overrightarrow{АВ} + \overrightarrow{ВС}| = 5. $$

Понятие суммы векторов можно обобщить на случай любого конечного числа слагаемых векторов.

Пусть, например, даны три вектора $\overrightarrow{a}, \overrightarrow{b} \,и\, \overrightarrow{c}$ (рис.2).

Построив сначала сумму векторов $\overrightarrow{a} + \overrightarrow{b}$ , а затем прибавив к этой сумме вектор $\overrightarrow{c}$, получим вектор $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c}$ . На рисунке 2 $$ \overrightarrow{ОА} = \overrightarrow{a}\,; \overrightarrow{АВ} = b\,; \overrightarrow{ОВ} = \overrightarrow{a} + \overrightarrow{b}\,; \overrightarrow{BC} = \overrightarrow{c} \\ и \\ \overrightarrow{ОС} = \overrightarrow{ОВ} + \overrightarrow{ВС} = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} $$ Из рисунка 2 видно, что тот же вектор $\overrightarrow{ОС}$ мы получим, если к вектору $\overrightarrow{ОА} = \overrightarrow{a}$ прибавим вектор $\overrightarrow{АВ} = \overrightarrow{b} + \overrightarrow{c}$ . Таким образом, $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$ , т. е. сумма векторов обладает сочетательным свойством. Поэтому сумму трех векторов $\overrightarrow{a}\,\,\overrightarrow{b}\,\,\overrightarrow{c}$ записывают просто $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ .

Разностью двух векторов $\overrightarrow{a} \,и\, \overrightarrow{b}$ называется третий вектор $\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{b}$ , сумма которого с вычитаемым вектором $\overrightarrow{b}$ дает вектор $\overrightarrow{a}$. Таким образом, если $\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{b}\,\, то\, \overrightarrow{c} + \overrightarrow{b} = \overrightarrow{a}$ .

Из определения суммы двух векторов вытекает правило построения вектора-разности (рис.3).

Откладываем векторы $\overrightarrow{ОА} = \overrightarrow{a} \,и\, \overrightarrow{OB} = \overrightarrow{b}$ из общей точки О. Вектор $\overrightarrow{BA}$ , соединяющий концы уменьшаемого вектора $\overrightarrow{a}$ и вычитаемого вектора $\overrightarrow{b}$ и направленный от вычитаемого к уменьшаемому, является разностью $\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{b}$ . Действительно, по правилу сложения векторов $\overrightarrow{ОВ} + \overrightarrow{ВА} = \overrightarrow{ОА} \text{ , или } \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{a}$ .

Пример 2. Сторона равностороннего треугольника ABC равна а. Найти: $а) |\overrightarrow{ВА} - \overrightarrow{ВС}|\,;\,\ б)\,\,\ |\overrightarrow{АВ} - \overrightarrow{АС}|$ .

Решение а) Так как $\overrightarrow{ВА} - \overrightarrow{ВС} = \overrightarrow{СА}\text{ , а }|\overrightarrow{СА}| = а\text{ , то }|\overrightarrow{ВА} - \overrightarrow{ВС}| = а$ .

б) Так как $\overrightarrow{АВ} - \overrightarrow{АС} = \overrightarrow{СВ}\text{ , а }|\overrightarrow{СВ}| = а\text{ , то }|\overrightarrow{АВ} - \overrightarrow{АС}| = а$ .

Произведением вектора $\overrightarrow{a}$(обозначается $=\lambda\overrightarrow{a}$ или $\overrightarrow{a}\lambda$) на действительное число $\lambda$ называется вектор $\overrightarrow{b}$, коллинеарный вектору $\overrightarrow{a}$, имеющий длину, равную $|\lambda||\overrightarrow{a}|$, и то же направление, что и вектор $\overrightarrow{a}$, если $\lambda > 0$ , и направление, противоположное направлению вектора $\overrightarrow{a}$, если $\lambda < 0$ . Так, например, $2\overrightarrow{a}$ есть вектор, имеющий то же направление, что и вектор $\overrightarrow{a}$ , а длину, вдвое большую, чем вектор $\overrightarrow{a}$ (рис.4).

В случае, когда $\lambda = 0$ или $\overrightarrow{a} = 0$ , произведение $\lambda\overrightarrow{a}$ представляет собой нулевой вектор. Противоположный вектор $-\overrightarrow{a}$ можно рассматривать как результат умножения вектора $\overrightarrow{a}$ на $\lambda = -1$ (см. рис.4): $$ -\overrightarrow{a} = \ (-1)\overrightarrow{a} $$ Очевидно, что $\overrightarrow{a} + (-\overrightarrow{a}) = \overrightarrow{0}$ .

Пример 3. Доказать, что если О, А, В и С - произвольные точки, то $\overrightarrow{ОА} + \overrightarrow{АВ} + \overrightarrow{ВС} + \overrightarrow{СО} = 0$ .

Решение. Сумма векторов $\overrightarrow{ОА} + \overrightarrow{АВ} + \overrightarrow{СВ} = \overrightarrow{ОС}$ , вектор $\overrightarrow{CO}$ - противоположный вектору $\overrightarrow{ОС}$ . Поэтому $\overrightarrow{ОС} + \overrightarrow{СО} = \overrightarrow{0}$ .

Пусть дан вектор $\overrightarrow{a}$. Рассмотрим единичный вектор $\overrightarrow{a_0}$ , коллинеарный вектору $\overrightarrow{a}$ и одинаково с ним направленный. Из определения умножения вектора на число следует, что $$ \overrightarrow{a} = |\overrightarrow{a}|\,\ \overrightarrow{a_0} $$ , т.е. каждый вектор равен произведению его модуля на единичный вектор того же направления. Далее из того же определения следует, что если $\overrightarrow{b} = \lambda\overrightarrow{a}$ , где $\overrightarrow{a}$ - ненулевой вектор, то векторы $\overrightarrow{a} \,и\, \overrightarrow{b}$ коллинеарны. Очевидно, что и обратно, из коллинеарности векторов $\overrightarrow{a} \,и\, \overrightarrow{b}$ следует, что $\overrightarrow{b} = \lambda\overrightarrow{a}$.

Пример 4. Длина вектора AB равна 3, длина вектора AC равна 5. Косинус угла между этими векторами равен 1/15. Найдите длину вектора AB + AC.

Видео-решение.

Сумма векторов. Длина вектора. Дорогие друзья, в составе типов задний экзамена присутствует группа задач с векторами. Задания довольно широкого спектра (важно знать теоретические основы). Большинство решается устно. Вопросы связаны с нахождением длины вектора, суммы (разности) векторов, скалярного произведения. Так же много заданий, при решении которых необходимо осуществить действия с координатами векторов.

Теория касающаяся темы векторов несложная, и её необходимо хорошо усвоить. В этой статье разберём задачи связанные с нахождением длины вектора, также суммы (разности) векторов. Некоторые теоретические моменты:

Понятие вектора

Вектор — это направленный отрезок.

Все векторы, имеющие одинаковое направление и равные по длине являются равными.


*Все представленные выше четыре вектора равны!

То есть, если мы будем при помощи параллельного переноса перемещать данный нам вектор, то всегда получим вектор равный исходному. Таким образом, равных векторов может быть бесчисленное множество.

Обозначение векторов

Вектор может быть обозначен латинскими заглавными буквами, например:


При данной форме записи сначала записывается буква обозначающая начало вектора, затем буква обозначающая конец вектора.

Ещё вектор обозначается одной буквой латинского алфавита (прописной):

Возможно также обозначение без стрелок:

Суммой двух векторов АВ и ВС будет являться вектор АС .

Записывается как АВ +ВС =АС .

Это правило называется – правилом треугольника .

То есть, если мы имеем два вектора – назовём их условно (1) и (2), и конец вектора (1) совпадает с началом вектора (2), то суммой этих векторов будет вектор, начало которого совпадает с началом вектора (1), а конец совпадает с концом вектора (2).

Вывод: если мы имеем на плоскости два вектора, то всегда сможем найти их сумму. При помощи параллельного переноса можно переместить любой из данных векторов и соединить его начало с концом другого. Например:

Перенесём вектор b , или по-другому – построим равный ему:

Как находится сумма нескольких векторов? По тому же принципу:

* * *

Правило параллелограмма

Это правило является следствием изложенного выше.

Для векторов с общим началом их сумма изображается диагональю параллелограмма, построенного на этих векторах.

Построим вектор равный вектору b так, чтобы его начало совпадало с концом вектора a , и мы можем построить вектор, который будет являться их суммой:

Ещё немного важной информации, необходимой для решения задач.

Вектор, равный по длине исходному, но противоположно направленный, обозначается также но имеет противоположный знак:

Эта информация крайне полезна для решения задач, в которых стоит вопрос о нахождении разности векторов. Как видите, разность векторов это та же сумма в изменнёном виде.

Пусть даны два вектора, найдём их разность:

Мы построили вектор противоположный вектору b, и нашли разность.

Координаты вектора

Чтобы найти координаты вектора, нужно из координат конца вычесть соответствующие координаты начала:

То есть, координаты вектора представляют собой пару чисел.

Если

И координаты векторов имеют вид:

То c 1 = a 1 + b 1 c 2 = a 2 + b 2

Если

То c 1 = a 1 – b 1 c 2 = a 2 – b 2

Модуль вектора

Модулем вектора называется его длина, определяется по формуле:

Формула для определения длины вектора, если известны координаты его начала и конца:

Рассмотрим задачи:

Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке О. Найдите длину разности векторов АО и ВО .

Найдём вектор, который будет являться результатом АО –ВО:

АО –ВО =АО +(–ВО )=АВ

То есть разность векторов АО и ВО будет являться вектор АВ. А его длина равна восьми.

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора АВ +AD .

Найдём вектор, который будет являться суммой векторов AD и AB BC равен вектору AD . Значит AB +AD =AB +BC =AC

AC это длина диагонали ромба АС , она равна 16.

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО +ВО .

Найдём вектор, который будет являться суммой векторов АО и ВО ВО равен вектору OD, з начит

AD это длина стороны ромба. Задача сводится к нахождению гипотенузы в прямоугольном треугольнике AOD. Вычислим катеты:

По теореме Пифагора:

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО –ВО .

Найдём вектор, который будет являться результатом АО –ВО :

АВ это длина стороны ромба. Задача сводится к нахождению гипотенузы АВ в прямоугольном треугольнике AOB. вычислим катеты:

По теореме Пифагора:

Стороны правильного треугольника ABC равны 3.

Найдите длину вектора АВ –АС .

Найдём результат разности векторов:

СВ равна трём, так как в условии сказано, что треугольник равносторонний и его стороны равны 3.

27663. Найдите длину вектора а (6;8).

27664. Найдите квадрат длины вектора АВ .

Для правильного отображения законов природы в физике требуется соответствующий математический инструментарий.

В геометрии и физике есть величины, характеризующиеся и числовым значением, и направлением.

Их целесообразно изображать направленными отрезками или векторами .

У таких величин есть начало (отображается точкой) и конец, обозначаемый стрелкой. Длина отрезка называется (длиной).

  • скорость;
  • ускорение;
  • импульс;
  • сила;
  • момент;
  • силы;
  • перемещение;
  • напряженность поля и др.

Координаты на плоскости

Зададим на плоскости отрезок, направленный из точки, А (x1,y1) в точку В (x2,y2). Его координатами a (a1, a2) являются числа а1=x2-x1, а2=y2-y1.

Модуль рассчитывается по теореме Пифагора:

У нулевого вектора начало совпадает с концом. Координаты и длина равны 0.

Сумма векторов

Существуют несколько правил для расчета суммы

  • правило треугольника;
  • правило многоугольника;
  • правило параллелограмма.

Правило сложения векторов можно объяснить на задачах из динамики и механики. Рассмотрим сложение векторов по правилу треугольника на примере сил, воздействующих на точечное тело и последовательных перемещений тела в пространстве.

Допустим, тело переместилось сначала из точки A в точку B, а затем из точки B в точку C. Итоговое перемещение есть отрезок, направленный от начальной точки A к конечной точке C.

Результат двух перемещений или их сумма s = s1+ s2. Такой способ называется правилом треугольника .

Стрелки выстраивают в цепочку одну за другой, при необходимости осуществляя параллельный перенос. Суммарный отрезок замыкает последовательность. Его начало совпадает с началом первого, конец - с концом последнего. В иностранных учебниках данный метод называется «хвост к голове» .

Координаты результата c = a + b равны сумме соответствующих координат слагаемых c (a1+ b1, a2+ b2).

Сумма параллельных (коллинеарных) векторов также определяется по правилу треугольника.

Если два исходных отрезка перпендикулярны друг другу, то результат их сложения представляет собой гипотенузу построенного на них прямоугольного треугольника. Длина суммы вычисляется по теореме Пифагора.

Примеры :

  • Скорость тела, брошенного горизонтально, перпендикулярна ускорению свободного падения.
  • При равномерном вращательном движении линейная скорость тела перпендикулярна центростремительному ускорению.

Сложение трех и более векторов производят по правилу многоугольника , «хвост к голове»

Предположим, что к точечному телу приложены силы F1 и F2.

Опыт доказывает, что совокупное воздействие этих сил равнозначно действию одной силы, направленной по диагонали построенного на них параллелограмма. Эта равнодействующая сила равна их сумме F = F1 + F 2. Приведенный способ сложения называется правилом параллелограмма .

Длина в этом случае вычисляется по формуле

Где θ – угол между сторонами.

Правила треугольника и параллелограмма взаимозаменяемы. В физике чаще применяют правило параллелограмма, так как направленные величины сил, скоростей, ускорений обычно приложены к одному точечному телу. В трехмерной системе координат применяется правило параллелепипеда.

Элементы алгебры

  1. Сложение является двоичной операцией: за один раз можно сложить только пару.
  2. Коммутативность : сумма от перестановки слагаемых не изменяется a + b = b + a. Это ясно из правила параллелограмма: диагональ всегда одна и та же.
  3. Ассоциативность : сумма произвольного числа векторов не зависит от порядка их сложения (a + b)+ c = a +(b + c).
  4. Суммирование с нулевым вектором не меняет ни направление, ни длину: a +0= a .
  5. Для каждого вектора есть противоположный . Их сумма равна нулю a +(-a)=0, а длины совпадают.

Вычитание направленного отрезка равносильно прибавлению противоположного. Координаты равны разности соответствующих координат. Длина равна:

Для вычитания можно использовать видоизмененное правило треугольника.

Умножение на скаляр

Результатом умножения на скаляр будет вектор.

Координаты произведения получаются перемножением на скаляр соответствующих координат исходного.

Скаляр - числовая величина со знаком плюс или минус, больше или меньше единицы.

Примеры скалярных величин в физике:

  • масса;
  • время;
  • заряд;
  • длина;
  • площадь;
  • объем;
  • плотность;
  • температура;
  • энергия.

Примеры :

  • Перемещение равномерно движущегося тела равно произведению времени и скорости s = vt .
  • Импульс тела - масса, умноженная на скорость p = mv .
  • Второй закон Ньютона . Произведение массы тела на ускорение равно приложенной равнодействующей силе ma=F.
  • Сила, действующая на заряженную частицу в электрическом поле, пропорциональна заряду F = qE.

Скалярное произведение направленных отрезков a и b равно произведению модулей на косинус угла между ними. Скалярное произведение взаимно перпендикулярных отрезков равно нулю.

Пример :

Работа является скалярным произведением силы и перемещения A = Fs .