Начальный уровень

Решение уравнений, неравенств, систем с помощью графиков функций. Визуальный гид (2019)

Многие задания, которые мы привыкли вычислять чисто алгебраически, можно намного легче и быстрее решить, в этом нам поможет использование графиков функций. Ты скажешь «как так?» чертить что-то, да и что чертить? Поверь мне, иногда это удобнее и проще. Приступим? Начнем с уравнений!

Графическое решение уравнений

Графическое решение линейных уравнений

Как ты уже знаешь, графиком линейного уравнения является прямая линия, отсюда и название данного вида. Линейные уравнения достаточно легко решать алгебраическим путем - все неизвестные переносим в одну сторону уравнения, все, что нам известно - в другую и вуаля! Мы нашли корень. Сейчас же я покажу тебе, как это сделать графическим способом.

Итак, у тебя есть уравнение:

Как его решить?
Вариант 1 , и самый распространенный - перенести неизвестные в одну сторону, а известные в другую, получаем:

А теперь строим. Что у тебя получилось?

Как ты думаешь, что является корнем нашего уравнения? Правильно, координата точки пересечения графиков:

Наш ответ -

Вот и вся премудрость графического решения. Как ты с легкостью можешь проверить, корнем нашего уравнения является число!

Как я говорила выше, это самый распространенный вариант, приближенный к алгебраическому решению, но можно решать и по-другому. Для рассмотрения альтернативного решения вернемся к нашему уравнению:

В этот раз не будем ничего переносить из стороны в сторону, а построим графики напрямую, так как они сейчас есть:

Построил? Смотрим!

Что является решением на этот раз? Все верно. Тоже самое - координата точки пересечения графиков:

И, снова наш ответ - .

Как ты видишь, с линейными уравнениями все предельно просто. Настало время рассмотреть что-нибудь посложнее... Например, графическое решение квадратных уравнений.

Графическое решение квадратных уравнений

Итак, теперь приступим к решению квадратного уравнения. Допустим, тебе нужно найти корни у этого уравнения:

Конечно, ты можешь сейчас начать считать через дискриминант, либо по теореме Виета, но многие на нервах ошибаются при переумножении или в возведении в квадрат, особенно, если пример с большими числами, а калькулятора, как ты знаешь, у тебя на экзамене не будет… Поэтому, давай попробуем немного расслабиться и порисовать, решая данное уравнение.

Графически найти решения данного уравнения можно различными способами. Рассмотрим различные варианты, а уже ты сам выберешь, какой больше всего тебе понравится.

Способ 1. Напрямую

Просто строим параболу по данному уравнению:

Чтобы сделать это быстро, дам тебе одну маленькую подсказку: удобно начать построение с определения вершины параболы. Определить координаты вершины параболы помогут следующие формулы:

Ты скажешь «Стоп! Формула для очень похожа на формулу нахождения дискриминанта» да, так оно и есть, и это является огромным минусом «прямого» построения параболы, чтобы найти ее корни. Тем не менее, давай досчитаем до конца, а потом я покажу, как это сделать намного (намного!) проще!

Посчитал? Какие координаты вершины параболы у тебя получились? Давай разбираться вместе:

Точно такой же ответ? Молодец! И вот мы знаем уже координаты вершины, а для построения параболы нам нужно еще … точек. Как ты думаешь, сколько минимум точек нам необходимо? Правильно, .

Ты знаешь, что парабола симметрична относительно своей вершины, например:

Соответственно, нам необходимо еще две точки по левой или правой ветви параболы, а в дальнейшем мы эти точки симметрично отразим на противоположную сторону:

Возвращаемся к нашей параболе. Для нашего случая точка. Нам необходимо еще две точки, соответственно, можно взять положительные, а можно взять отрицательные? Какие точки тебе удобней? Мне удобней работать с положительными, поэтому я рассчитаю при и.

Теперь у нас есть три точки, и мы спокойно можем построить нашу параболу, отразив две последние точки относительно ее вершины:

Как ты думаешь, что является решением уравнения? Правильно, точки, в которых, то есть и. Потому что.

И если мы говорим, что, то значит, что тоже должен быть равен, или.

Просто? Это мы закончили с тобой решение уравнения сложным графическим способом, то ли еще будет!

Конечно, ты можешь проверить наш ответ алгебраическим путем - посчитаешь корни через теорему Виета или Дискриминант. Что у тебя получилось? То же самое? Вот видишь! Теперь посмотрим совсем простое графическое решение, уверена, оно тебе очень понравится!

Способ 2. С разбивкой на несколько функций

Возьмем все тоже наше уравнение: , но запишем его несколько по-другому, а именно:

Можем мы так записать? Можем, так как преобразование равносильно. Смотрим дальше.

Построим отдельно две функции:

  1. - графиком является простая парабола, которую ты с легкостью построишь даже без определения вершины с помощью формул и составления таблицы для определения прочих точек.
  2. - графиком является прямая, которую ты так же легко построишь, прикинув значения и в голове даже не прибегая к калькулятору.

Построил? Сравним с тем, что вышло у меня:

Как ты считаешь, что в данном случае является корнями уравнения? Правильно! Координаты по, которые получились при пересечении двух графиков и, то есть:

Соответственно, решением данного уравнения являются:

Что скажешь? Согласись, этот способ решения намного легче, чем предыдущий и даже легче, чем искать корни через дискриминант! А если так, попробуй данным способом решить следующее уравнение:

Что у тебя получилось? Сравним наши графики:

По графикам видно, что ответами являются:

Справился? Молодец! Теперь посмотрим уравнения чууууть-чуть посложнее, а именно, решение смешанных уравнений, то есть уравнений, содержащих функции разного вида.

Графическое решение смешанных уравнений

Теперь попробуем решить следующее:

Конечно, можно привести все к общему знаменателю, найти корни получившегося уравнения, не забыв при этом учесть ОДЗ, но мы опять же, попробуем решить графически, как делали во всех предыдущих случаях.

В этот раз давай построим 2 следующих графика:

  1. - графиком является гипербола
  2. - графиком является прямая, которую ты легко построишь, прикинув значения и в голове даже не прибегая к калькулятору.

Осознал? Теперь займись построением.

Вот что вышло у меня:

Глядя на этот рисунок, скажи, что является корнями нашего уравнения?

Правильно, и. Вот и подтверждение:

Попробуй подставить наши корни в уравнение. Получилось?

Все верно! Согласись, графически решать подобные уравнения одно удовольствие!

Попробуй самостоятельно графическим способом решить уравнение:

Даю подсказку: перенеси часть уравнения в правую сторону, чтобы с обоих сторон оказались простейшие для построения функции. Намек понял? Действуй!

Теперь посмотрим, что у тебя вышло:

Соответственно:

  1. - кубическая парабола.
  2. - обыкновенная прямая.

Ну и строим:

Как ты уже давно у себя записал, корнем данного уравнения является - .

Прорешав такое большое количество примеров, уверена, ты осознал как можно легко и быстро решать уравнения графическим путем. Настало время разобраться, как решать подобным способом системы.

Графическое решение систем

Графическое решение систем по сути ничем не отличается от графического решения уравнений. Мы так же будем строить два графика,и их точки пересечения и будут являться корнями данной системы. Один график - одно уравнение, второй график - другое уравнение. Все предельно просто!

Начнем с самого простого - решение систем линейных уравнений.

Решение систем линейных уравнений

Допустим, у нас есть следующая система:

Для начала преобразуем ее таким образом, чтобы слева было все, что связано с, а справа - что связано с. Иными словами, запишем данные уравнения как функцию в привычном для нас виде:

А теперь просто строим две прямые. Что в нашем случае является решением? Правильно! Точка их пересечения! И здесь необходимо быть очень-очень внимательным! Подумай, почему? Намекну: мы имеем дело с системой: в системе есть и, и … Намек понял?

Все верно! Решая систему, мы должны смотреть обе координаты, а не только, как при решении уравнений! Еще один важный момент - правильно их записать и не перепутать, где у нас значение, а где значение! Записал? Теперь давай все сравним по порядку:

И ответы: и. Сделай проверку - подставь найденные корни в систему и убедись, правильно ли мы ее решили графическим способом?

Решение систем нелинейных уравнений

А что если вместо одной прямой, у нас будет квадратное уравнение? Да ничего страшного! Просто ты вместо прямой построишь параболу! Не веришь? Попробуй решить следующую систему:

Какой наш следующий шаг? Правильно, записать так, чтобы нам было удобно строить графики:

А теперь так вообще дело за малым - построил быстренько и вот тебе решение! Строим:

Графики получились такими же? Теперь отметь на рисунке решения системы и грамотно запиши выявленные ответы!

Все сделал? Сравни с моими записями:

Все верно? Молодец! Ты уже щелкаешь подобные задачи как орешки! А раз так, дадим тебе систему посложнее:

Что мы делаем? Правильно! Записываем систему так, чтобы было удобно строить:

Немного тебе подскажу, так как система выглядит ну очень не простой! Строя графики, строй их «побольше», а главное, не удивляйся количеству точек пересечения.

Итак, поехали! Выдохнул? Теперь начинай строить!

Ну как? Красиво? Сколько точек пересечения у тебя получилось? У меня три! Давай сравнивать наши графики:

Так же? Теперь аккуратно запиши все решения нашей системы:

А теперь еще раз посмотри на систему:

Представляешь, что ты решил это за каких-то 15 минут? Согласись, математика - это все-таки просто, особенно, когда глядя на выражение, не боишься ошибиться, а берешь и решаешь! Ты большой молодец!

Графическое решение неравенств

Графическое решение линейных неравенств

После последнего примера тебе все по плечу! Сейчас выдохни - по сравнению с предыдущими разделами этот будет очень-очень легким!

Начнем мы, как обычно с графического решения линейного неравенства. Например, вот этого:

Для начала проведем простейшие преобразования - раскроем скобки полных квадратов и приведем подобные слагаемые:

Неравенство нестрогое, поэтому - не включается в промежуток, и решением будут являться все точки, которые находятся правее, так как больше, больше и так далее:

Ответ:

Вот и все! Легко? Давай решим простое неравенство с двумя переменными:

Нарисуем в системе координат функцию.

Такой график у тебя получился? А теперь внимательно смотрим, что там у нас в неравенстве? Меньше? Значит, закрашиваем все, что находится левее нашей прямой. А если было бы больше? Правильно, тогда закрашивали бы все, что находится правее нашей прямой. Все просто.

Все решения данного неравенства «затушеваны» оранжевым цветом. Вот и все, неравенство с двумя переменными решено. Это значит, что координаты и любой точки из закрашенной области - и есть решения.

Графическое решение квадратных неравенств

Теперь будем разбираться с тем, как графически решать квадратные неравенства.

Но прежде, чем перейти непосредственно к делу, давай повторим некоторый материал, касающийся квадратной функции.

А за что у нас отвечает дискриминант? Правильно, за положение графика относительно оси (если не помнишь этого, то тогда точно прочти теорию о квадратичных функциях).

В любом случае, вот тебе небольшая табличка-напоминалка:

Теперь, когда мы освежили в памяти весь материал, перейдем к делу - решим графически неравенство.

Сразу тебе скажу, что есть два варианта его решения.

Вариант 1

Записываем нашу параболу как функцию:

По формулам определяем координаты вершины параболы (точно так же, как и при решении квадратных уравнений):

Посчитал? Что у тебя получилось?

Теперь возьмем еще две различных точки и посчитаем для них:

Начинаем строить одну ветвь параболы:

Симметрично отражаем наши точки на другую ветвь параболы:

А теперь возвращаемся к нашему неравенству.

Нам необходимо, чтобы было меньше нуля, соответственно:

Так как в нашем неравенстве стоит знак строго меньше, то конечные точки мы исключаем - «выкалываем».

Ответ:

Долгий способ, правда? Сейчас я покажу тебе более простой вариант графического решения на примере того же неравенства:

Вариант 2

Возвращаемся к нашему неравенству и отмечаем нужные нам промежутки:

Согласись, это намного быстрее.

Запишем теперь ответ:

Рассмотрим еще один способ решения, который упрощает и алгебраическую часть, но главное не запутаться.

Умножим левую и правую части на:

Попробуй самостоятельно решить следующее квадратное неравенство любым понравившимся тебе способом: .

Справился?

Смотри, как график получился у меня:

Ответ: .

Графическое решение смешанных неравенств

Теперь перейдем к более сложным неравенствам!

Как тебе такое:

Жуть, правда? Честно говоря, я понятия не имею, как решить такое алгебраически… Но, оно и не надо. Графически ничего сложного в этом нет! Глаза боятся, а руки делают!

Первое, с чего мы начнем, это с построения двух графиков:

Я не буду расписывать для каждого таблицу - уверена, ты отлично справишься с этим самостоятельно (еще бы, столько прорешать примеров!).

Расписал? Теперь строй два графика.

Сравним наши рисунки?

У тебя так же? Отлично! Теперь расставим точки пересечения и цветом определим, какой график у нас по идее должен быть больше, то есть. Смотри, что получилось в итоге:

А теперь просто смотрим, в каком месте у нас выделенный график находится выше, чем график? Смело бери карандаш и закрашивай данную область! Она и будет решением нашего сложного неравенства!

На каких промежутках по оси у нас находится выше, чем? Верно, . Это и есть ответ!

Ну вот, теперь тебе по плечу и любое уравнение, и любая система, и уж тем более любое неравенство!

КОРОТКО О ГЛАВНОМ

Алгоритм решения уравнений с использованием графиков функций:

  1. Выразим через
  2. Определим тип функции
  3. Построим графики получившихся функций
  4. Найдем точки пересечения графиков
  5. Корректно запишем ответ (с учетом ОДЗ и знаков неравенств)
  6. Проверим ответ (подставим корни в уравнение или систему)

Более подробно о построении графиков функций, смотри в теме « ».

1. По двум известным параметрам состояния влажного воздуха найти остальные.

Например, при известных t и φ найти i , d , ν , Р п , t R , t М при известных t и i найти φ , i , d , ν , Р п , t R , t М , где t R - температура, соответствующая точке росы °С; t М - температура мокрого термометра, °С.

На практических работах исходные данные t и φ и t и i задаются преподавателем. Отчетные данные представляются в виде таблицы 2.

Рисунок 2. Процесс изменения состояния воздуха

Рисунок 3. Процесс смешение воздуха

2. По известным начальным и конечным параметрам состояния воздуха (например, t 1 , φ 1 и t 2) найти изменение теплосодержания (энтальпий) Δi = i 2 – i 1 кДж/кг; влагосодержаний Δd = d 2 – d 1 и др.

При изменении параметров состояния воздуха возможны два случая: когда процесс 1-2 полностью протекает в области перегретого пара (рис.2), т.е. выше кривой φ = 100%, и когда процесс 1-2 частично заходит в область влажного пара, т.е. ниже кривой φ = 100% (рис.3).

В процессе 1-2 (рис.3) происходит охлаждение и осушение воздуха, т.е. снижается температура и уменьшается влагосодержание воздуха от d 1 до d 2 . При этом одна часть влаги в количестве (d 1 d 4 ) выпадает в виде росы, а вторая - (d 5 d 4 ) в виде тумана.

Начальные и конечные параметры состояния воздуха задаются преподавателем в соответствии с приложением 1. При заданном количестве обрабатываемого воздуха определяются тепловая нагрузка на калорифер (воздухоохладитель), влажностная нагрузка на увлажняющее (осушающее) устройство.

Отчетные данные представляются в виде табл.3. Дается объяснение качественного изменения состояния воздуха и его параметров.

Полные расходы тепла Q (кВт) и влаги G (кг/с) на изменение параметров состояния воздуха определяются по формулам

Q = L ∙ Δi ,

G w = L Δd ,

где L - расход обрабатываемого сухого воздуха, кг/с.

Параметры состояния воздуха, определяемые по диаграмме i - d , относятся к 1 кг сухого воздуха, поэтому расход сухого воздуха L при известном объемном его расходе V , м 3 /с определяется по формуле:

L =

где ρ - плотность воздуха при данном его состоянии, кг/м 3 .

Величины Q к G w , используются при расчете подогревающих (охлаждающих) и увлажняющих (осушающих) устройств.

3 . При известных параметрах состояния двух объемов воздуха, входящих в смесь, найти параметры состояния смеси. Исходные данные задаются преподавателем: t 1 , φ 1 , V 1 и t 2 , φ 2 и V 2 , где V 1 и V 2 - объемы (м 3 /ч) воздуха, входящего в смесь.

Таблица 2. Отчетная таблица

Исходные

Параметры,

определяемые по диаграмме

t 1

i 1

φ 1

d 1

Р п

t р1

t м1

v 1

ρ 1

Р н

V 1

Таблица 3. Отчетная таблица

Исходные

Параметры

определяемые по диаграмме и расчетам

Процессы изменения состояния от т.1 до т.2

t 2

φ 2

i 2

d 2

ρ 2

Р п2

V 2

Параметры состоянии смеси t см могут определяться аналитическим или графическим (по диаграмме i – d влажного воздуха) методами.

При аналитическом методе составляются уравнения теплового и влажностного балансов процесса смешения

L 1 ∙ i 1 + L 2 ∙ i 2 = (L 1 + L 2 ) i см ;

L 1 d 1 + L 2 d 2 = (L 1 + L 2 ) d см ,

где L 1 =
- масса сухого воздуха, соответствующая объемному количеству V 1 , кг;

L 2 =
- масса сухого воздуха, соответствующая

объемному количеству V 2 , кг.

Величины d см и i см будут определять параметры состояния воздуха после смешения объемов V 1 и V 2 . Из формул можно сделать вывод, что на параметры состояния смеси оказывают влияние массы воздуха, входящие в смесь. Чем больше масса воздуха (одной части), входящего в смесь, тем ближе к параметрам состояния этой части воздуха будут приближаться параметры состояния смеси. Аналогично могут быть определены параметры смеси, в которую входят три или более объемов с различными параметрами состояния.

При графическом методе в диаграмме i - d , (рис.4), отмечаются точки, соответствующие параметрам состояния частей воздуха, входящие в смесь, точки 1 и 2.

Рисунок 4. Процесс смешения воздуха

Для нахождения параметров смеси, точка 3, расстояние 1-2 должно быть разделено на части, соответствующие

и
.

Исходные данные и результаты расчетов представляется в виде табл.4.

4. При известных теплопоступлениях (теплопотерях) ΣQ , кВт и влагопоступлениях (влагопотерях) Σ g w от всех источников,кг/с определить направление изменения параметров состояния воздуха в помещении, а также параметры состояния воздуха, устанавливающиеся в помещении под воздействием ΣQ и Σ g w .

Направление изменения параметров состояния воздуха в помещении под воздействием тепло- и влагопоступлений (тепло- и влагопотерь) определяется тепловлажностным коэффициентом (угловым коэффициентом) ε , кДж/кг:

ε =

где Δ i = - удельные теплопоступления на 1 кг сухого

воздуха помещения, кДх/кг;

Δd = - удельные влагопоступления на 1 кг сухого

воздуха помещения, кг/кг;

L = L сух n – масса сухого воздуха, циркулирующего в

помещении, кг/с;

L сух - масса сухого воздуха в объеме помещения, кг;

n - кратность циркуляции воздуха в помещении, 1/с.

Рисунок 5. Пример использования коэффициента 

Изолинии тепловлажностного коэффициента занесены на диаграмме d - i в виде веера прямых, расходящихся из точки на оси ординат, соответствующей температуре О°С (рис. 5). Пример использования тепловлажностного (углового) коэффициента для нахождения конечных параметров состояния воздуха приведен на рис.5. В примере значения ε = = 3500 - начальное состояние воздуха (точка 1). Линия изменения параметров состояния воздуха наносится параллельно изолинии ε = 3500. Конечное состояние воздуха (точка 2) определяется отложением от точки 1 Δi или Δd и проведении изолиний i 2 = со nst или d 2 = со nst .

Для решения задачи студенту задаются величины: ΣQ , Σ g w ; V - объем помещения, м 3 ; n - кратность циркуляции; t 1 и i 1 -начальные параметры состояния воздуха помещения.

Определяются:

L сух - масса сухого воздуха помещения, кг;

Δi и Δd – изменения тепло- и влагосодержания воздуха

помещения;

t 2 и i 2 – конечные параметры состояния воздуха помещения.

Заданные и определяемые величины представляются студентами в виде табл.5.

Таблица 4. Отчетная

Исходные

Определяемые величины

t 1

V 1

t 2

V 2

d 1

d 2

L 1

L 2

ρ 3

t 3

i 3

d 3

φ 3

Таблица 5. Отчетная

Исходные

Определяемые величины

d 1

d 2

t 1

t 2

L 1

L 2

Некоторые задачи удобно и наглядно решать с помощью диаграмм Эйлера-Венна. Например, задачи на множества. Если Вы не знаете, что такое диаграммы Эйлера-Венна и как их строить, то сначала прочтите .

Теперь разберем типовые задачи о множествах.

Задача 1.

В школе с углубленным изучением иностранных языков провели опрос среди 100 учащихся. Ученикам задали вопрос: "Какие иностранные языки вы изучаете?". Выяснилось, что 48 учеников изучают английский, 26 - французский, 28 - немецкий. 8 школьников изучают английский и немецкий, 8 - английский и французский, 13 - французский и немецкий. 24 школьника не изучают ни английский, ни французский, ни немецкий. Сколько школьников, прошедших опрос, изучают одновременно три языка: английский, французский и немецкий?

Ответ: 3.

Решение:

  • множество школьников, изучающих английский ("А");
  • множество школьников изучающих французский ("Ф");
  • множество школьников изучающих немецкий ("Н").

Изобразим с помощью диаграммы Эйлера-Венна то, что нам дано по условию.


Обозначим искомую область А=1, Ф=1, Н=1 как "х" (в таблице ниже область №7). Выразим остальные области через х.

0) Область А=0, Ф=0, Н=0 : 24 школьника - дано по условию задачи.

1) Область А=0, Ф=0, Н=1 : 28-(8-х+х+13-х)=7+х школьников.

2) Область А=0, Ф=1, Н=0 : 26-(8-х+х+13-х)=5+х школьников.

3) Область А=0, Ф=1, Н=1 : 13-х школьников.

4) Область А=1, Ф=0, Н=0 : 48-(8-х+х+8-х)=32+х школьников.

5) Область А=1, Ф=0, Н=1 : 8-х школьников.

6) Область А=1, Ф=1, Н=0 : 8-х школьников.


области
А
Ф
Н
Количество
школьников
0
0
0
0
24
1
0
0
1
7+х
2
0
1
0
5+х
3
0
1
1
13-х
4
1
0
0
32+х
5
1
0
1
8-х
6
1
1
0
8-х
7
1
1
1
х

Определим х:

24+7+(х+5)+х+(13-х)+(32+х)+(8-х)+(8-х)+х=100.

х=100-(24+7+5+13+32+8+8)=100-97=3.

Получили, что 3 школьника изучают одновременно три языка: английский, французский и немецкий.

Так будет выглядеть диаграмма Эйлера-Венна при известном х:


Задача 2.

На олимпиаде по математике школьникам предложили решить три задачи: одну по алгебре, одну по геометрии, одну по тригонометрии. В олимпиаде участвовало 1000 школьников. Результаты олимпиады были следующие: задачу по алгебре решили 800 участников, по геометрии - 700, по тригонометрии - 600. 600 школьников решили задачи по алгебре и геометрии, 500 - по алгебре и тригонометрии, 400 - по геометрии и тригонометрии. 300 человек решили задачи по алгебре, геометрии и тригонометрии. Сколько школьников не решило ни одной задачи?

Ответ: 100.

Решение:

Сначала определим множества и введем обозначения. Их три:

  • множество задач по алгебре ("А");
  • множество задач по геометрии ("Г");
  • множество задач по тригонометрии ("Т").

Изобразим то, что нам надо найти:

Определим количество школьников для всех возможных областей.

Обозначим искомую область А=0, Г=0, Т=0 как "х" (в таблице ниже область №0).

Найдем остальные области:

1) Область А=0, Г=0, Т=1 : школьников нет.

2) Область А=0, Г=1, Т=0 : школьников нет.

3) Область А=0, Г=1, Т=1 : 100 школьников.

4) Область А=1, Г=0, Т=0 : школьников нет.

5) Область А=1, Г=0, Т=1 : 200 школьников.

6) Область А=1, Г=1, Т=0 : 300 школьников.

7) Область А=1, Г=1, Т=1 : 300 школьников.

Запишем значения областей в таблицу:


области
А
Г
Т
Количество
школьников
0
0
0
0
х
1
0
0
1
0
2
0
1
0
0
3
0
1
1
100
4
1
0
0
0
5
1
0
1
200
6
1
1
0
300
7
1
1
1
300

Изобразим значения для всех областей с помощью диаграммы:


Определим х:

х=U-(A V Г V Т), где U-универсум.

A V Г V Т=0+0+0+300+300+200+100=900.

Получили, что 100 школьников не решило ни одной задачи.

Задача 3.

На олимпиаде по физике школьникам предложили решить три задачи: одну по кинематике, одну по термодинамике, одну по оптике. Результаты олимпиады были следующие: задачу по кинематике решили 400 участников, по термодинамике - 350, по оптике - 300. 300 школьников решили задачи по кинематике и термодинамике, 200 - по кинематике и оптике, 150 - по термодинамике и оптике. 100 человек решили задачи по кинематике, термодинамике и оптике. Сколько школьников решило две задачи?

Ответ: 350.

Решение:

Сначала определим множества и введем обозначения. Их три:

  • множество задач по кинематике ("К");
  • множество задач по термодинамике ("Т");
  • множество задач по оптике ("О").

Изобразим с помощью диаграммы Эйлера-Венна то, что нам дано по условию:

Изобразим то, что нам надо найти:

Определим количество школьников для всех возможных областей:

0) Область К=0, Т=0, О=0 : не определено.

1) Область К=0,Т=0, О=1 : 50 школьников.

2) Область К=0, Т=1, О=0 : школьников нет.

3) Область К=0, Т=1, О=1 : 50 школьников.

4) Область К=1, Т=0, О=0 : школьников нет.

5) Область К=1, Т=0, О=1 : 100 школьников.

6) Область К=1, Т=1, О=0 : 200 школьников.

7) Область К=1, Т=1, О=1 : 100 школьников.

Запишем значения областей в таблицу:


области
К
Т
О
Количество
школьников
0
0
0
0
-
1
0
0
1
50
2
0
1
0
0
3
0
1
1
50
4
1
0
0
0
5
1
0
1
100
6
1
1
0
200
7
1
1
1
100

Изобразим значения для всех областей с помощью диаграммы:


Определим х.

х=200+100+50=350.

Получили, 350 школьников решило две задачи.

Задача 4.

Среди прохожих провели опрос. Был задан вопрос: "Какое домашнее животное у Вас есть?". По результатам опроса выяснилось, что у 150 человек есть кошка, у 130 - собака, у 50 - птичка. У 60 человек есть кошка и собака, у 20 - кошка и птичка, у 30 - собака и птичка. У 70 человек вообще нет домашнего животного. У 10 человек есть и кошка, и собака, и птичка. Сколько прохожих приняли участие в опросе?

Ответ: 300.

Решение:

Сначала определим множества и введем обозначения. Их три:

  • множество людей, у которых есть кошка ("К");
  • множество людей, у которых есть собака ("С");
  • множество людей, у которых есть птичка ("П").

Изобразим с помощью диаграммы Эйлера-Венна то, что нам дано по условию:

Изобразим то, что нам надо найти:


Определим количество человек для всех возможных областей:

0) Область К=0, С=0, П=0 : 70 человек.

1) Область К=0, С=0, П=1 : 10 человек.

2) Область К=0, С=1, П=0 : 50 человек.

3) Область К=0, С=1, П=1 : 20 человек.

4) Область К=1, С=0, П=0 : 80 человек.

5) Область К=1, Т=0, О=1 : 10 человек.

6) Область К=1, Т=1, О=0 : 50 человек.

7) Область К=1, Т=1, О=1 : 10 человек.

Запишем значения областей в таблицу:


области
К
C
П
Количество
человек
0
0
0
0
70
1
0
0
1
10
2
0
1
0
50
3
0
1
1
20
4
1
0
0
80
5
1
0
1
10
6
1
1
0
50
7
1
1
1
10

Изобразим значения для всех областей с помощью диаграммы:


Определим х:

х=U (универсум)

U=70+10+50+20+80+10+50+10=300.

Получили, что 300 человек приняли участие в опросе.

Задача 5.

На одну специальность в одном из ВУЗов поступало 120 человек. Абитуриенты сдавали три экзамена: по математике, по информатике и русскому языку. Математику сдали 60 человек, информатику - 40. 30 абитуриентов сдали математику и информатику, 30 - математику и русский язык, 25 - информатику и русский язык. 20 человек сдали все три экзамена, а 50 человек - провалили. Сколько абитуриентов сдали русский язык?

Директор по визуальным концепциям компании McKinsey Джин Желязны знает о своей работе все. Это неудивительно: за 55 лет жизни, которые он посвятил изучению диаграмм и других способов визуализации, он накопил достаточный опыт, которым поделился в книге «Говори на языке диаграмм».

Нашим читателям - месяц на Bookmate бесплатно: введите промокод RUSBASE по ссылке http://bookmate.com/code .


Шаг 3. От сравнения к диаграмме – выберете тип диаграммы

Каждому типу сравнения соответствует определенный вид диаграмм. Подбирайте тип визуализации, исходя из типа сравнения.

Формулируем идею

Построение диаграмм начинается с формулирования основной мысли, которую вы хотите донести до аудитории с ее помощью. Основная идея - ответ на вопрос, что именно показывают нам данные и как они связаны между собой.

Самый простой способ сформулировать главную мысль - вынести ее в заголовок диаграммы.

Заголовок должен быть конкретным и нести в себе ответ на вопрос, который вы ставите перед аудиторией. При подборе слов используйте количественные и качественные характеристики и старайтесь избегать общих фраз и выражений.

Примеры конкретных и общих заголовков

Не забывайте главное правило: одна диаграмма - одна идея. Не старайтесь на одном графике показать все найденные вами связи и мысли. Такие диаграммы будут перегруженными и сложными для восприятия.

Определяем тип сравнения

Любую мысль и идею можно выразить при помощи одного из пяти типов сравнения. Ваша задача - правильно выбрать тип сравнения и подобрать к нему соответствующую диаграмму.

Небольшая подсказка:

    Покомпонентное сравнение – ваши данные показывают определенную долю по отношению к целому.

    Позиционное сравнение – вы хотите показать, как данные соотносятся друг с другом.

    Временное сравнение – вы показываете, как данные изменяются во времени.

    Частотное сравнение – вы хотите показать, какое количество объектов попадает в определенные диапазон.

    Корреляционное сравнение – вы показываете, как данные зависят друг от друга.

Выбираем идеальную диаграмму

Каждому из типов сравнения соответствует свой вид диаграмм. Именно от его правильного выбора зависит понятность восприятия визуализированных данных.

Всего существует пять типов диаграмм и некоторые их вариации и комбинации:

1. Круговая диаграмма

Знакомый всем «пирог» – самый используемый тип диаграмм. По мнению Джина, это неоправданно, поскольку этот тип наименее практичен и должен составлять немногим более 5% всех диаграмм в презентациях.

2. Линейчатая диаграмма

Отдельные значения в этой диаграмме представлены полосами различной длины, расположенными горизонтально вдоль оси Х. По мнению автора, это самая недооцененная диаграмма, наиболее гибкий и универсальный тип, который должен был бы составлять 25% всех используемых диаграмм.

3. Гистограмма

Количественные соотношения некоторого показателя представлены в виде прямоугольников, площади которых пропорциональны. Чаще всего для удобства восприятия ширину прямоугольников берут одинаковую, при этом их высота определяет соотношения отображаемого параметра.

4. График

Знакомые всем со школы линейные графики состоят из точек на координатной сетке, соединенных линиями. Используются для характеристики вариации, динамики и взаимосвязи. Вместе с гистограммой должны составлять половину используемых диаграмм.

5. Точечная диаграмма

Она же диаграмма рассеивания, служит для размещения точек данных на горизонтальной и вертикальной оси с целью показать степень влияния одной переменной на другую. По мнению Желязны, ее должны использоваться в 10% случаев.

Не забывайте! Главная цель любой диаграммы - четко показать связи или зависимости между данными. Если иллюстрация не способна отразить взаимосвязи, лучше использовать таблицы.

Двойное сравнение

В некоторых случаях возникает необходимость показать на одном графике несколько типов сравниваемых данных и зависимость между ними.

В таких случаях необходимо определить основной тип сравнения и подбирать диаграмму на основании него. Например, если вы хотите показать вклад отдельных подразделений в общий доход компании в зависимости от месяцев, лучше использовать типы диаграмм для временного сравнения: график или гистограмму. А если вас больше интересует не изменение во времени, а конкретные достижения, используйте линейчатые диаграммы.

Помните: если на одной диаграмме не получается просто и понятно донести основную мысль, комбинируя данные, лучше использовать два отдельных виджета.

Шкалы, легенды и другие надписи

Идеальная диаграмма понятна для восприятия без дополнительной информации на ней. Однако это не означает, что вы не можете использовать шкалу или легенду, чтобы лучше донести основную мысль.

Главные правила при добавлении дополнительной информации:

    Они не перегружают диаграмму.

    Они не отвлекают от основной картинки.

    Они дополняют диаграмму.

Конкретные примеры для каждого из типов сравнения и диаграмм вы можете найти в книге или использовать их электронную версию на сайте издательства.

На рисунке жирными точками показано суточное количество осадков, выпадавших в городе N с 4 по 17 февраля 1908 года. По горизонтали указываются числа месяца, по вертикали — количество осадков, выпавших в соответствующий день, в миллиметрах. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, какого числа впервые выпало ровно 2 миллиметра осадков.

Показать решение

Решение

Выбираем точку с ординатой 2 и наименьшей абсциссой. Видим, что её абсцисса равна 8 . Значит, 8 февраля впервые выпало 2 мм осадков.

Ответ

Условие

На графике показан процесс разогрева двигателя легкового автомобиля. На оси абсцисс откладывается время в минутах, прошедшее с момента запуска двигателя, на оси ординат — температура двигателя в градусах Цельсия. Определите по графику, сколько минут двигатель нагревался от температуры 30 ^{\circ}C до температуры 70 ^{\circ}C.

Показать решение

Решение

На оси ординат находим промежуток от 30 до 70^{\circ}C. Ему соответствует на оси абсцисс промежуток от 1 до 7 минут. То есть двигатель нагревается шесть минут.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

На графике изображена зависимость крутящего момента автомобильного двигателя от числа его оборотов в минуту. На оси абсцисс откладывается число оборотов в минуту. На оси ординат — крутящий момент в Н·м. Чтобы автомобиль начал движение, крутящий момент должен быть не менее 50 Н·м. Какое наименьшее число оборотов двигателя в минуту достаточно, чтобы автомобиль начал движение?

Показать решение

Решение

Выбираем точку с ординатой 50 , ближайшую к началу координат. С помощью рисунка находим соответствующую ординате точку на графике, из неё опускаем перпендикуляр на ось абсцисс и получаем точку, абсцисса которой равна 2000 это и есть наименьшее число оборотов.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Мощность отопителя в автомобиле регулируется дополнительным сопротивлением, которое можно менять, поворачивая рукоятку в салоне машины. При уменьшении сопротивления, увеличивается сила тока в электрической цепи электродвигателя, что приводит к ускорению вращения мотора отопителя. На графике показана зависимость силы тока от сопротивления в цепи. На оси абсцисс отложено сопротивление (в омах), а на оси ординат — сила тока в амперах. Рукоятку отопителя повернули таким образом, что ток в цепи снизился с 8 до 4 ампер. По графику определите, на сколько омов при этом увеличилось сопротивление?

Показать решение

Решение

Используя рисунок, определим на оси ординат промежуток от 8 до 4 ампер (ток в цепи электродвигателя уменьшается), ему соответствует промежуток на оси абсцисс от 1 до 2,5 Ом, то есть сопротивление в цепи увеличилось на 1,5 Ома.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

В аэропорту чемоданы пассажиров поднимают в зал выдачи багажа по транспортёрной ленте. От угла наклона транспортера к горизонту при расчётной нагрузке напрямую зависит допустимая сила натяжения ленты. Эта зависимость изображена на графике. На оси абсцисс отложен угол подъёма транспортера в градусах, а на оси ординат — сила натяжения ленты при допустимой нагрузке (в килограмм-силах). По графику определите, при каком угле наклона транспортера сила натяжения ленты составит 200 кгс? Ответ дайте в градусах.

Показать решение

Решение

На оси ординат находим отметку 200 кгс. Проводим прямую, перпендикулярную оси ординат до пересечения с графиком; из этой точки (на графике) опускаем перпендикуляр на ось абсцисс, соответствующее значение равно 75 . Угол наклона транспортёра к горизонту равен 75^{\circ} .

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

В ходе химической реакции количество исходного вещества (реагента), которое еще не вступило в реакцию, со временем постепенно уменьшается. Данная зависимость представлена графиком. На оси абсцисс отложено время в минутах, прошедшее с момента начала реакции, на оси ординат — масса оставшегося вещества в граммах, не вступившего в реакцию. Используя график, определите сколько граммов реагента вступило в реакцию за первую минуту.