Существует несколько формулировок второго закона термодинамики, авторами которых являются немецкий физик, механик и математик Рудольф Клаузиус и британский физик и механик Уильям Томсон, лорд Кельвин. Внешне они различаются, но суть их одинакова.

Постулат Клаузиуса

Рудольф Юлиус Эммануэль Клаузиус

Второй закон термодинамики, как и первый, также выведен опытным путём. Автором первой формулировки второго закона термодинамики считается немецкий физик, механик и математик Рудольф Клаузиус.

«Теплота сама собой не может переходить от тела холодного к телу горячему ». Это утверждение, которое Клазиус назвал «тепловой аксиомой », было сформулировано в 1850 г. в работе «О движущей силе теплоты и о законах, которые можно отсюда получить для теории теплоты». «Само собой теплота передаётся лишь от тела с более высокой температурой к телу с меньшей температурой. В обратном направлении самопроизвольная передача теплоты невозможна». Таков смысл постулата Клаузиуса , определяющего суть второго закона термодинамики.

Обратимые и необратимые процессы

Первый закон термодинамики показывает количественную связь между теплотой, полученной системой, изменением её внутренней энергии и работой, произведённой системой над внешними телами. Но он не рассматривает направление передачи теплоты. И можно предположить, что теплота может передаваться как от горячего тела к холодному, так и наоборот. Между тем, в действительности это не так. Если два тела находятся в контакте, то теплота всегда передаётся от более нагретого тела к менее нагретому. Причём этот процесс происходит сам по себе. При этом во внешних телах, окружающих контактирующие тела, никаких изменений не возникает. Такой процесс, который происходит без совершения работы извне (без вмешательства внешних сил), называется самопроизвольным . Он может быть обратимым и необратимым .

Самопроизвольно остывая, горячее тело передаёт свою теплоту окружающим его более холодным телам. И никогда само собой холодное тело не станет горячим. Термодинамическая система в этом случае не может возвратиться в первоначальное состояние. Такой процесс называется необратимым . Необратимые процессы протекают только в одном направлении. Практически все самопроизвольные процессы в природе необратимы, как необратимо время.

Обратимым называется термодинамический процесс, при котором система переходит из одного состояния в другое, но может вернуться в исходное состояние, пройдя в обратной последовательности через промежуточные равновесные состояния. При этом все параметры системы восстанавливаются до первоначального состояния. Обратимые процессы дают наибольшую работу. Однако в реальности их нельзя осуществить, к ним можно только приблизиться, так как протекают они бесконечно медленно. На практике такой процесс состоит из непрерывных последовательных состояний равновесия и называется квазистатическим . Все квазистатические процессы являются обратимыми.

Постулат Томсона (Кельвина)

Уильм Томсон, лорд Кельвин

Важнейшая задача термодинамики - получение с помощью тепла наибольшего количества работы. Работа легко превращается в теплоту полностью безо всякой компенсации, например, с помощью трения. Но обратный процесс превращения теплоты в работу происходит не полностью и невозможен без получения дополнительной энергии извне.

Нужно сказать, что передача теплоты от более холодного тела к более тёплому возможна. Такой процесс происходит, например, в нашем домашнем холодильнике. Но он не может быть самопроизвольным. Для того чтобы он протекал, необходимо наличие компрессора, который будет такой воздух перегонять. То есть, для обратного процесса (охлаждения) требуется подвод энергии извне. «Невозможен переход теплоты от тела с более низкой температурой без компенсации ».

В 1851 г. другую формулировку второго закона дал британский физик и механик Уильям Томсон, лорд Кельвин. Постулат Томсона (Кельвина) гласит: «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара » . То есть, нельзя создать циклически работающий двигатель, в результате действия которого производилась бы положительная работа за счет его взаимодействия лишь с одним источником теплоты. Ведь если бы это было возможно, тепловой двигатель мог бы работать, используя, например, энергию Мирового океана и полностью превращая её в механическую работу. В результате этого происходило бы охлаждение океана за счёт уменьшения энергии. Но как только его температура оказалась бы ниже температуры окружающей среды, должен был бы происходить процесс самопроизвольной передачи тепла от более холодного тела к более горячему. А такой процесс невозможен. Следовательно, для работы теплового двигателя необходимо хотя бы два источника теплоты, имеющих разную температуру.

Вечный двигатель второго рода

В тепловых двигателях теплота превращается в полезную работу только при переходе от нагретого тела к холодному. Чтобы такой двигатель функционировал, в нём создаётся разность температур между теплоотдатчиком (нагревателем) и теплоприёмником (холодильником). Нагреватель передаёт теплоту рабочему телу (например, газу). Рабочее тело расширяется и совершает работу. При этом не вся теплота превращается в работу. Часть её передаётся холодильнику, а часть, например, просто уходит в атмосферу. Затем, чтобы вернуть параметры рабочего тела к первоначальным значениям и начать цикл сначала, рабочее тело требуется нагреть, то есть от холодильника необходимо отнять теплоту и передать её нагревателю. Это означает, что нужно передать теплоту от холодного тела к более тёплому. И если бы этот процесс можно было осуществить без подвода энергии извне, мы получили бы вечный двигатель второго рода. Но так как, согласно второму закону термодинамики, сделать это невозможно, то невозможно и создать вечный двигатель второго рода, который полностью превращал бы теплоту в работу.

Эквивалентные формулировки второго закона термодинамики:

  1. Невозможен процесс, единственным результатом которого является превращение в работу всего количества теплоты, полученного системой.
  2. Невозможно создать вечный двигатель второго рода .

Принцип Карно

Николя Леонар Сади Карно

Но если невозможно создать вечный двигатель, то можно организовать цикл работы теплового двигателя таким образом, чтобы КПД (коэффициент полезного действия) был максимальным.

В 1824 г., задолго до того как Клаузиус и Томсон сформулировали свои постулаты, давшие определения второго закона термодинамики, французский физик и математик Николя Леонар Сади Карно опубликовал свою работу «Размышления о движущей силе огня и о машинах, способных развивать эту силу». В термодинамике её считают основополагающей. Учёный сделал анализ существовавших в то время паровых машин, КПД которых был всего лишь 2%, и описáл работу идеальной тепловой машины.

В водяном двигателе вода совершает работу, падая с высоту вниз. По аналогии Карно предположил, что и теплота может совершать работу, переходя от горячего тела к более холодному. Это означает, что для того чтобы тепловая машина работала, в ней должно быть 2 источника тепла, имеющих разную температуру. Это утверждение называют принципом Карно . А цикл работы тепловой машины, созданной учёным, получил название цикла Карно .

Карно придумал идеальную тепловую машину, которая могла совершать максимально возможную работу за счёт подводимой к ней теплоты.

Тепловая машина, описанная Карно, состоит из нагревателя, имеющего температуру Т Н , рабочего тела и холодильника с температурой Т Х .

Цикл Карно является круговым обратимым процессом и включает в себя 4 стадии - 2 изотермические и 2 адиабатические.

Первая стадия А→Б изотермическая. Она проходит при одинаковой температуре нагревателя и рабочего тела Т Н . Во время контакта количество теплоты Q H передаётся от нагревателя рабочему телу (газу в цилиндре). Газ изотермически расширяется и совершает механическую работу.

Для того, чтобы процесс был циклическим (непрерывным), газ нужно вернуть к исходным параметрам.

На второй стадии цикла Б→В рабочее тело и нагреватель разъединяются. Газ продолжается расширяться адиабатически, не обмениваясь теплом с окружающей средой. При этом его температура снижается до температуры холодильника Т Х , и он продолжает совершать работу.

На третьей стадии В→Г рабочее тело, имея температуру Т Х , находится в контакте с холодильником. Под действием внешней силы оно изотермически сжимается и отдаёт теплоту величиной Q Х холодильнику. Над ним совершается работа.

На четвёртой стадии Г→А рабочее тело разъединятся с холодильником. Под действием внешней силы оно адиабатически сжимается. Над ним совершается работа. Его температура становится равной температуре нагревателя Т Н .

Рабочее тело возвращается в первоначальное состояние. Круговой процесс заканчивается. Начинается новый цикл.

Коэффициент полезного действия теловой машины, работающей по циклу Карно, равен:

КПД такой машины не зависит от её устройства. Он зависит только от разности температур нагревателя и холодильника. И если температура холодильника равна абсолютному нулю, то КПД будет равен 100%. До сих пор никто не смог придумать ничего лучшего.

К сожалению, на практике такую машину построить невозможно. Реальные обратимые термодинамические процессы могут лишь приближаться к идеальным с той или иной степенью точности. Кроме того, в реальной тепловой машине всегда будут тепловые потери. Поэтому её КПД будет ниже КПД идеального теплового двигателя, работающего по циклу Карно.

На основе цикла Карно построены различные технические устройства.

Если цикл Карно провести наоборот, то получится холодильная машина. Ведь рабочее тело сначала заберёт тепло от холодильника, затем превратит в тепло работу, затраченную на создание цикла, а потом отдаст это тепло нагревателю. По такому принципу работают холодильники.

Обратный цикл Карно лежит также в основе тепловых насосов. Такие насосы переносят энергию от источников с низкой температурой к потребителю с более высокой температурой. Но, в отличие от холодильника, в котором отбираемая теплота выбрасывается в окружающую среду, в тепловом насосе она передаётся потребителю.

Термодинамика как самостоятельный раздел физической науки возникла в первой половине XIX века. Грянул век машин. Промышленная революция требовала изучить и осмыслить процессы, связанные с функционированием тепловых двигателей. На заре машинной эры изобретатели-одиночки могли себе позволить использовать лишь интуицию и «метод тыка». Не было общественного заказа на открытия и изобретения, никому даже в голову не могло прийти, что они могут быть полезны. Но когда тепловые (а немного позже и электрические) машины стали основой производства, ситуация изменилась. Ученые наконец постепенно разобрались с терминологической путаницей, царившей до середины XIX века, определившись, что называть энергией, что силой, что - импульсом.

Что постулирует термодинамика

Начнем с общеизвестных сведений. Классическая термодинамика основана на нескольких постулатах (началах), последовательно вводившихся на протяжении XIX века. То есть эти положения не являются доказуемыми в ее рамках. Они были сформулированы в результате обобщения эмпирических данных.

Первое начало - это приложение закона сохранения энергии к описанию поведения макроскопических систем (состоящих из большого числа частиц). Коротко его можно сформулировать так: запас внутренней энергии изолированной термодинамической системы всегда остается постоянным.

Смысл второго начала термодинамики состоит в определении направления, в котором протекают процессы в таких системах.

Третье начало позволяет точно определить такую величину, как энтропия. Рассмотрим ее подробнее.

Понятие энтропии

Формулировка второго начала термодинамики была предложена в 1850 году Рудольфом Клаузиусом: «Невозможен самопроизвольный переход теплоты от менее нагретого тела к более нагретому». При этом Клаузиус подчеркивал заслугу Сади Карно, еще в 1824 году установившего, что доля энергии, которая может быть превращена в работу тепловой машины, зависит только от разности температур нагревателя и холодильника.

При дальнейшей разработке второго начала термодинамики Клаузиус вводит понятие энтропии - меры количества энергии, которая необратимо переходит в форму, непригодную для обращения в работу. Клаузиус выразил эту величину формулой dS = dQ/T, где dS, определяющей изменение энтропии. Здесь:

dQ - изменение теплоты;

T - абсолютная температура (та самая, которая измеряется в кельвинах).

Простой пример: потрогайте капот вашего автомобиля при включенном двигателе. Он явно теплее окружающей среды. Но ведь двигатель автомобиля предназначен не для того, чтобы нагревать капот или воду в радиаторе. Преобразуя химическую энергию бензина в тепловую, а затем в механическую, он совершает полезную работу - вращает вал. Но большая часть вырабатываемого тепла теряется, так как никакой полезной работы из него извлечь нельзя, а то, что вылетает из выхлопной трубы, уже никоим образом бензином не является. При этом тепловая энергия теряется, но не исчезает, а рассеивается (диссипирует). Горячий капот, конечно, остывает, а каждый цикл цилиндров в двигателе снова добавляет ему теплоту. Таким образом система стремится достичь термодинамического равновесия.

Особенности энтропии

Клаузиус вывел общий принцип для второго начала термодинамики в формуле dS ≥ 0. Физический смысл ее можно определить, как "неубывание" энтропии: в обратимых процессах она не меняется, в необратимых - возрастает.

Следует заметить, что все реальные Термин «неубывание» отражает лишь тот факт, что в рассмотрение явления включен также теоретически возможный идеализированный вариант. То есть количество недоступной энергии в любом самопроизвольном процессе увеличивается.

Возможность достижения абсолютного нуля

Макс Планк внес серьезный вклад в разработку термодинамики. Помимо работы над статистической интерпретацией второго начала, он принял деятельное участие в постулировании третьего начала термодинамики. Первая формулировка принадлежит Вальтеру Нернсту и относится к 1906 году. Теорема Нернста рассматривает поведение равновесной системы при температуре, стремящейся к абсолютному нулю. Первое и второе начала термодинамики не дают возможности выяснить, какова будет энтропия в данных условиях.

При T = 0 K энергия равна нулю, частицы системы прекращают хаотические тепловые движения и образуют упорядоченную структуру, кристалл с термодинамической вероятностью, равной единице. Значит, энтропия тоже обращается в ноль (ниже мы узнаем, почему так происходит). В реальности она даже делает это несколько раньше, из чего следует, что охлаждение любой термодинамической системы, любого тела до абсолютного нуля невозможно. Температура будет сколь угодно приближаться к этой точке, но не достигнет ее.

Перпетуум-мобиле: нельзя, даже если очень хочется

Клаузиус обобщил и сформулировал первое и второе начала термодинамики таким образом: полная энергия любой замкнутой системы всегда остается постоянной, а полная энтропия возрастает с течением времени.

Первая часть этого утверждения налагает запрет на вечный двигатель первого рода - устройство, совершающее работу без притока энергии из внешнего источника. Вторая часть запрещает и вечный двигатель второго рода. Такая машина переводила бы энергию системы в работу без энтропийной компенсации, не нарушая закона сохранения. Можно было бы откачивать тепло из равновесной системы, например, жарить яичницу или лить сталь за счет энергии теплового движения молекул воды, охлаждая ее при этом.

Второе и третье начала термодинамики запрещают вечный двигатель второго рода.

Увы, у природы ничего нельзя получить не только даром, приходится еще и комиссию выплачивать.

«Тепловая смерть»

Мало найдется в науке понятий, которые вызывали столько неоднозначных эмоций не только у широкой публики, но и в среде самих ученых, сколько пришлось на долю энтропии. Физики, и в первую очередь сам Клаузиус, практически сразу экстраполировали закон неубывания сначала на Землю, а затем и на всю Вселенную (почему бы и нет, ведь ее тоже можно считать термодинамической системой). В итоге физическая величина, важный элемент расчетов во многих технических приложениях, стала восприниматься как воплощение некоего вселенского Зла, уничтожающего светлый и добрый мир.

В среде ученых есть и такие мнения: поскольку, согласно второму началу термодинамики, энтропия необратимо растет, рано или поздно вся энергия Вселенной деградирует в рассеянную форму, и наступит «тепловая смерть». Чему тут радоваться? Клаузиус, например, несколько лет не решался на публикацию своих выводов. Разумеется, гипотеза «тепловой смерти» немедленно вызвала множество возражений. Серьезные сомнения в ее правильности есть и сейчас.

Демон-сортировщик

В 1867 году Джеймс Максвелл, один из авторов молекулярно-кинетической теории газов, в очень наглядном (хоть и вымышленном) эксперименте продемонстрировал кажущуюся парадоксальность второго начала термодинамики. Кратко опыт можно изложить следующим образом.

Пусть имеется сосуд с газом. Молекулы в нем движутся хаотически, скорости их несколько различаются, но средняя кинетическая энергия одинакова по всему сосуду. Теперь разделим сосуд перегородкой на две изолированные части. Средняя скорость молекул в обеих половинках сосуда останется одинаковой. Перегородку сторожит крохотный демон, который позволяет более быстрым, «горячим» молекулам проникать в одну часть, а более медленным «холодным» - в другую. В результате в первой половинке газ нагреется, во второй - охладится, то есть из состояния термодинамического равновесия система перейдет к разности температурных потенциалов, что означает уменьшение энтропии.

Вся проблема в том, что в эксперименте система совершает этот переход не самопроизвольно. Она получает извне энергию, за счет которой открывается и закрывается перегородка, либо система с необходимостью включает в себя демона, затрачивающего свою энергию на исполнение обязанностей привратника. Увеличение энтропии демона с избытком покроет уменьшение ее в газе.

Недисциплинированные молекулы

Возьмем стакан с водой и оставим его на столе. Наблюдать за стаканом не обязательно, достаточно через некоторое время вернуться и проверить состояние воды в нем. Мы увидим, что ее количество уменьшилось. Если же оставить стакан надолго, в нем вообще не обнаружится воды, так как вся она испарится. В самом начале процесса все молекулы воды находились в некой ограниченной стенками стакана области пространства. В конце эксперимента они разлетелись по всей комнате. В объеме комнаты у молекул гораздо больше возможностей менять свое местоположение без всяких последствий для состояния системы. Мы никак не сможем собрать их в спаянный "коллектив" и загнать обратно в стакан, чтобы с пользой для здоровья выпить воду.

Это значит, что система эволюционировала к состоянию с более высокой энтропией. Исходя из второго начала термодинамики, энтропия, или процесс рассеивания частиц системы (в данном случае молекул воды) необратим. Почему это так?

Клаузиус не ответил на этот вопрос, да и никто другой не смог этого сделать до Людвига Больцмана.

Макро и микросостояния

В 1872 году этот ученый ввел в науку статистическое толкование второго начала термодинамики. Ведь макроскопические системы, с которыми имеет дело термодинамика, образованы большим количеством элементов, поведение которых подчиняется статистическим законам.

Вернемся к молекулам воды. Хаотически летая по комнате, они могут занимать разные положения, иметь некоторые различия в скоростях (молекулы постоянно сталкиваются друг с другом и с другими частицами в воздухе). Каждый вариант состояния системы молекул называется микросостоянием, и таких вариантов огромное количество. При реализации подавляющего большинства вариантов макросостояние системы не изменится никак.

Ничто не запрещено, но кое-что крайне маловероятно

Знаменитое соотношение S = k lnW связывает число возможных способов, которым можно выразить определенное макросостояние термодинамической системы (W), с ее энтропией S. Величину W называют термодинамической вероятностью. Окончательный вид этой формуле придал Макс Планк. Коэффициент k - чрезвычайно малую величину (1,38×10 −23 Дж/К), характеризующую связь между энергией и температурой, Планк назвал постоянной Больцмана в честь ученого, который первым предложил статистическое толкование второго начала термодинамики.

Ясно, что W - всегда натуральное число 1, 2, 3,…N (не бывает дробного количества способов). Тогда логарифм W, а следовательно, и энтропия, не могут быть отрицательными. При единственно возможном для системы микросостоянии энтропия становится равной нулю. Если вернуться к нашему стакану, этот постулат можно представить так: молекулы воды, беспорядочно снующие по комнате, вернулись обратно в стакан. При этом каждая в точности повторила свой путь и заняла в стакане то же место, в каком пребывала перед вылетом. Ничто не запрещает реализацию этого варианта, при котором энтропия равна нулю. Только ждать осуществления такой исчезающе малой вероятности не стоит. Это один из примеров того, что можно осуществить лишь теоретически.

Все смешалось в доме…

Итак, молекулы хаотически летают по комнате разными способами. Нет никакой закономерности в их расположении, нет порядка в системе, как ни меняй варианты микросостояний, не прослеживается никакой внятной структуры. В стакане было то же самое, но из-за ограниченности пространства молекулы меняли свое положение не так активно.

Хаотическое, неупорядоченное состояние системы как наиболее вероятное соответствует ее максимальной энтропии. Вода в стакане являет пример более низкоэнтропийного состояния. Переход к нему из равномерно распределенного по комнате хаоса практически неосуществим.

Приведем более понятный для всех нас пример - уборка беспорядка в доме. Чтобы все расставить по местам, нам тоже приходится затрачивать энергию. В процессе этой работы нам становится жарко (то есть мы не мерзнем). Оказывается, энтропия может принести пользу. Это так и есть. Можно сказать даже больше: энтропия, а через нее второе начало термодинамики (наряду с энергией) управляют Вселенной. Взглянем еще раз на обратимые процессы. Так выглядел бы мир, не будь энтропии: никакого развития, никаких галактик, звезд, планет. Никакой жизни...

Еще немного информации о «тепловой смерти». Есть хорошие новости. Поскольку, согласно статистической теории, «запрещенные» процессы на самом деле являются маловероятными, в термодинамически равновесной системе возникают флуктуации - спонтанные нарушения второго начала термодинамики. Они могут быть сколь угодно большими. При включении гравитации в термодинамическую систему распределение частиц уже не будет хаотически-равномерным, а состояние максимальной энтропии не будет достигнуто. Кроме того, Вселенная не является неизменной, постоянной, стационарной. Следовательно, сама постановка вопроса о «тепловой смерти» лишена смысла.

Природным процессам свойственна направленность и необратимость, однако в большинстве законов, описанных в этой книге, это не находит отражения — по крайней мере, явного. Разбить яйца и сделать яичницу не сложно, воссоздать же сырые яйца из готовой яичницы — невозможно. Запах из открытого флакона духов наполняет комнату — однако обратно во флакон его не соберешь. И причина такой необратимости процессов, происходящих во Вселенной, кроется во втором начале термодинамики, который, при всей его кажущейся простоте, является одним из самых трудных и часто неверно понимаемых законов классической физики.

Прежде всего, у этого закона имеется как минимум три равноправные формулировки, предложенные в разные годы физиками разных поколений. Может показаться, что между ними нет ничего общего, однако все они логически эквивалентны между собой. Из любой формулировки второго начала математически выводятся две другие.

Начнем с первой формулировки, принадлежащей немецкому физику Рудольфу Клаузиусу (см. Уравнение Клапейрона—Клаузиуса). Вот простая и наглядная иллюстрация этой формулировки: берем из холодильника кубик льда и кладем его в раковину. По прошествии некоторого времени кубик льда растает, потому что теплота от более теплого тела (воздуха) передастся более холодному (кубику льда). С точки зрения закона сохранения энергии, нет причин для того, чтобы тепловая энергия передавалась именно в таком направлении: даже если бы лед становился всё холоднее, а воздух всё теплее, закон сохранения энергии всё равно бы выполнялся. Тот факт, что этого не происходит, как раз и свидетельствует об уже упоминавшейся направленности физических процессов.

Почему именно так взаимодействуют лед и воздух, мы можем легко объяснить, рассматривая это взаимодействие на молекулярном уровне. Из молекулярно-кинетической теории мы знаем, что температура отражает скорость движения молекул тела — чем быстрее они движутся,тем выше температура тела. Значит, молекулы воздуха движутся быстрее молекул воды в кубике льда. При соударении молекулы воздуха с молекулой воды на поверхности льда, как подсказывает нам опыт, быстрые молекулы, в среднем, замедляются, а медленные ускоряются. Таким образом, молекулы воды начинают двигаться всё быстрее, или, что то же самое, температура льда повышается. Именно это мы имеем в виду, когда говорим, что тепло передается от воздуха ко льду. И в рамках этой модели первая формулировка второго начала термодинамики логически вытекает из поведения молекул.

При перемещении какого-либо тела на какое-либо расстояние под действием определенной силы совершается работа, и различные формы энергии как раз и выражают способность системы произвести определенную работу. Поскольку теплота, отражающая кинетическую энергию молекул, представляет собой одну из форм энергии, она тоже может быть преобразована в работу. Но опять мы имеем дело с направленным процессом. Перевести работу в теплоту можно со стопроцентной эффективностью — вы делаете это каждый раз, когда нажимаете на педаль тормоза в своем автомобиле: вся кинетическая энергия движения вашего автомобиля плюс затраченная вами энергия силы нажатия на педаль через работу вашей ноги и гидравлической системы тормозов полностью превращается в теплоту, выделяющуюся в процессе трения колодок о тормозные диски. Вторая формулировка второго начала термодинамики утверждает, что обратный процесс невозможен. Сколько ни пытайтесь всю тепловую энергию превратить в работу — тепловые потери в окружающую среду неизбежны.

Проиллюстрировать вторую формулировку в действии несложно. Представьте себе цилиндр двигателя внутреннего сгорания вашего автомобиля. В него впрыскивается высокооктановая топливная смесь, которая сжимается поршнем до высокого давления, после чего она воспламеняется в малом зазоре между головкой блока цилиндров и плотно пригнанным к стенкам цилиндра свободно ходящим поршнем. При взрывном сгорании смеси выделяется значительное количество теплоты в виде раскаленных и расширяющихся продуктов сгорания, давление которых толкает поршень вниз. В идеальном мире мы могли бы достичь КПД использования выделившейся тепловой энергии на уровне 100%, полностью переведя ее в механическую работу поршня.

В реальном мире никто и никогда не соберет такого идеального двигателя по двум причинам. Во-первых, стенки цилиндра неизбежно нагреваются в результате горения рабочей смеси, часть теплоты теряется вхолостую и отводится через систему охлаждения в окружающую среду. Во-вторых, часть работы неизбежно уходит на преодоление силы трения, в результате чего, опять же, нагреваются стенки цилиндров — еще одна тепловая потеря (даже при самом хорошем моторном масле). В-третьих, цилиндру нужно вернуться к исходной точке сжатия, а это также работа по преодолению трения с выделением теплоты, затраченная вхолостую. В итоге мы имеем то, что имеем, а именно: самые совершенные тепловые двигатели работают с КПД не более 50%.

Такая трактовка второго начала термодинамики заложена в принципе Карно , который назван так в честь французского военного инженера Сади Карно. Она сформулирована раньше других и оказала огромное влияние на развитие инженерной техники на многие поколения вперед, хотя и носит прикладной характер. Огромное значение она приобретает с точки зрения современной энергетики — важнейшей отрасли любой национальной экономики. Сегодня, сталкиваясь с дефицитом топливных ресурсов, человечество, тем не менее, вынуждено мириться с тем, что КПД, например, ТЭЦ, работающих на угле или мазуте, не превышает 30-35% — то есть, две трети топлива сжигается впустую, точнее расходуется на подогрев атмосферы — и это перед лицом угрозы глобального потепления. Вот почему современные ТЭЦ легко узнать по колоссальным башням-градирням — именно в них остужается вода, охлаждающая турбины электрогенераторов, и избытки тепловой энергии выбрасываются в окружающую среду. И столь низкая эффективность использования ресурсов — не вина, а беда современных инженеров-конструкторов: они и без того выжимают близко к максимуму того, что позволяет цикл Карно. Те же, кто заявляет, что нашел решение, позволяющее резко сократить тепловые потери энергии (например, сконструировал вечный двигатель), утверждают тем самым, что они перехитрили второе начало термодинамики. С тем же успехом они могли бы утверждать, что знают, как сделать так, чтобы кубик льда в раковине не таял при комнатной температуре, а, наоборот, еще больше охлаждался, нагревая при этом воздух.

Третья формулировка второго начала термодинамики, приписываемая обычно австрийскому физику Людвигу Больцману (см. Постоянная Больцмана), пожалуй, наиболее известна. Энтропия — это показатель неупорядоченности системы. Чем выше энтропия — тем хаотичнее движение материальных частиц, составляющих систему. Больцману удалось разработать формулу для прямого математического описания степени упорядоченности системы. Давайте посмотрим, как она работает, на примере воды. В жидком состоянии вода представляет собой довольно неупорядоченную структуру, поскольку молекулы свободно перемещаются друг относительно друга, и пространственная ориентация у них может быть произвольной. Другое дело лед — в нем молекулы воды упорядочены, будучи включенными в кристаллическую решетку. Формулировка второго начала термодинамики Больцмана, условно говоря, гласит, что лед, растаяв и превратившись в воду (процесс, сопровождающийся снижением степени упорядоченности и повышением энтропии) сам по себе никогда из воды не возродится. И снова мы видим пример необратимого природного физического явления.

Тут важно понимать, что речь не идет о том, что в этой формулировке второе начало термодинамики провозглашает, что энтропия не может снижаться нигде и никогда. В конце концов, растопленный лед можно поместить обратно в морозильную камеру и снова заморозить. Смысл в том, что энтропия не может уменьшаться в замкнутых системах — то есть, в системах, не получающих внешней энергетической подпитки. Работающий холодильник не является изолированной замкнутой системой, поскольку он подключен к сети электропитания и получает энергию извне — в конечном счете, от электростанций, ее производящих. В данном случае замкнутой системой будет холодильник, плюс проводка, плюс местная трансформаторная подстанция, плюс единая сеть энергоснабжения, плюс электростанции. И поскольку рост энтропии в результате беспорядочного испарения из градирен электростанции многократно превышает снижение энтропии за счет кристаллизации льда в вашем холодильнике, второе начало термодинамики ни в коей мере не нарушается.

А это, я полагаю, приводит еще к одной формулировке второго начала: Холодильник не работает, если он не включен в розетку.

Самопроизвольные и несамопроизвольные процессы. Термодинамически обратимые и необратимые процессы. Работа и теплота обратимого процесса. Формулировка второго начала термодинамики. Энтропия и ее свойства. Зависимость энтропии от температуры, давления, объема. Изменение энтропии при фазовых переходах. Статистическая трактовка второго начала термодинамики. Понятие о термодинамической вероятности состояния системы. Уравнение Больцмана - Планка. Вычисление абсолютной энтропии вещества. Расчет изменения энтропии в ходе химической реакции при различных температурах.

Первый закон термодинамики позволяет за счет неизменности полной энергии системы делать расчеты о превращении одной формы энергии в другую, но нельзя сделать выводы относительно возможности этого процесса, его глубине и направлении.

Для ответа на этим вопросы на основании практических данных было сформулировано второе начало термодинамики. На основании него можно рассчитать и сделать выводы о возможности самопроизвольного протекания процесса, о том, в каких пределах и условиях он протекает и сколько при этом выделится энергии в виде работы или теплоты.

Второй закон применим лишь к макроскопическим системам. Формулировки второго начала термодинамики:

Формулировка Р.Клаузиуса:

Теплота не может самопроизвольно переходить от менее нагретого тела к более нагретому.

Невозможен процесс, единственным результатом которого является превращение теплоты в работу.

Формулировка, предложенная М.Планком и В.Томсоном:

Невозможно построить машину, все действия которой сводились бы к производству работы за счет охлаждения теплового источника (вечный двигатель второго рода).

Рассмотрим работу тепловой машины, т.е. машины, производящей работу за счет теплоты, поглощаемой от какого-либо тела, называемого нагревателем. Нагреватель с температурой Т 1 передает теплоту Q 1 рабочему телу, например, идеальному газу, совершающему работу расширения А; чтобы вернуться в исходное состояние, рабочее тело должно передать телу, имеющему более низкую температуру Т 2 (холодильнику), некоторое количество теплоты Q 2 , причем

Отношение работы А, совершенной тепловой машиной, к количеству теплоты Q 1 , полученному от нагревателя, называется термодинамическим коэффициентом полезного действия (КПД) машины з:

Схема тепловой машины

Для получения математического выражения второго начала термодинамики рассмотрим работу идеальной тепловой машины (машины, обратимо работающей без трения и потерь тепла; рабочее тело - идеальный газ). Работа машины основана на принципе обратимого циклического процесса - термодинамического цикла Карно (рис. 1.2).

Запишем выражения для работы на всех участках цикла:

Цикл Карно.

1 - 2 Изотермическое расширение.

Газ расширяется строго обратимо, поглощая Q теплоты и производя эквивалентную этой теплоте работу.

2 - 3 Адиабатическое расширение.

Температура падает до T 2:

4 - 1 Адиабатическое сжатие.

Система возвращается в первоначальное состояние.

Общая работа в цикле:

3 - 4 Изотермическое сжатие.

Газ отдает холодильнику Q теплоты, эквивалетной работе (см. формулу)

КПД идеальной тепловой машины, работающей по циклу Карно:

Отсюда следует, что КПД макс тепловой машины определяется только разностью температур нагревателя и холодильника. Поскольку любой цикл можно разбить на множество бесконечно малых циклов Карно, то полученное выражение справедливо для тепловой машины, обратимо работающей по любому циклу.

Для необратимо работающей тепловой машины:

Для общего случая можем записать:

Отсюда видно, что КПД может быть равно единице, только при условии если Т 2 будет равно 0 0 К, что практически недостижимо.

На данном этапе целесообразно ввести понятие энтропии. Внутренняя энергия системы условно состоит "свободной" и "связанной" энергий, причем "свободная" энергия может быть переведена в работу, а "связанная" энергия может перейти только в теплоту. Величина связанной энергии тем больше, чем меньше разность температур, и при T = const тепловая машина не может производить работу. Мерой связанной энергии является новая термодинамическая функция состояния, называемая энтропией.

Введем определение энтропии, основываясь на цикле Карно. Преобразуем выражение (I.41) к следующему виду:

Отсюда получаем, что для обратимого цикла Карно отношение количества теплоты к температуре, при которой теплота передана системе (т.н. приведенная теплота) есть величина постоянная.

Это верно для любого обратимого циклического процесса, т.к. его можно представить в виде суммы элементарных циклов Карно, для каждого из которых

Алгебраическая сумма приведённых теплот для произвольного обратимого цикла равна нулю:

Для любого цикла можно записать интеграл по замкнутому контуру:

Если интеграл по замкнутому контуру равен нулю, то выражение под знаком интеграла есть полный дифференциал некоторой функции состояния; эта функция состояния есть энтропия S:

Если система обратимо переходит из состояния 1 в состояние 2, изменение энтропии будет равно:

Подставляя значение изменения энтропии в выражения для первого начала термодинамики получим совместное аналитическое выражение двух начал термодинамики для обратимых процессов:

Для необратимых процессов можно записать неравенства:

Работа обратимого процесса всегда больше, чем того же процесса, проводимого необратимо. Если рассматривать изолированную систему (дQ = 0), то легко показать, что для обратимого процесса dS = 0, а для самопроизвольного необратимого процесса dS > 0.

В изолированных системах самопроизвольно могут протекать только процессы, сопровождающиеся увеличением энтропии.

Энтропия изолированной системы не может самопроизвольно убывать.

Oба этих вывода также являются формулировками второго начала термодинамики.

Статистическая интерпретация энтропии

Применяя представления классической механики к молекулярным системам, атом уподобляют материальной точке и приписывают ему три степени свободы (т.е. число степеней свободы в данном рассмотрении - число независимых переменных, определяющих положение механической системы в пространстве). Предполагается, что этим атомы различимы и как бы могут быть пронумерованы.

Классическая термодинамика рассматривает происходящие процессы безотносительно к внутреннему строению системы; поэтому в рамках классической термодинамики показать физический смысл энтропии невозможно. Для решения этой проблемы Л.Больцманом в теорию теплоты были введены статистические представления. Каждому состоянию системы приписывается термодинамическая вероятность (определяемая как число микросостояний, составляющих данное макросостояние системы), тем большая, чем более неупорядоченным или неопределенным является это состояние. Т.о., энтропия есть функция состояния, описывающая степень неупорядоченности системы. Количественная связь между энтропией S и термодинамической вероятностью W выражается формулой Больцмана:

С точки зрения статистической термодинамики второе начало термодинамики можно сформулировать следующим образом:

Система стремится самопроизвольно перейти в состояние с максимальной термодинамической вероятностью.

Статистическое толкование второго начала термодинамики придает энтропии конкретный физический смысл меры термодинамической вероятности состояния системы.

Понятие статистического веса. Обобщая результаты, полученные в предыдущем примере, можно доказать, что число способов реализации данного макросостояния равно числу сочетаний С из N элементов по n

C = N!/(n!·(N - n)!), где n! = n·(n - 1)·(n - 2)···3·2·1.

Статистический вес или термодинамическая вероятность W - есть число способов, которыми может быть реализовано данное макросостояние.

W(n, N - n) = N!/(n!·(N - n)!)

Легко доказать, что термодинамическая вероятность пропорциональна обычной вероятности. Из формулы следует, что наибольшей вероятностью обладает состояние с равномерным распределением молекул по объему. Однако важно, что в любой момент времени возможны отклонения от этого равновесного состояния, называемые флуктуациями.

Cтраница 1


Сущность второго начала термодинамики до известной степени содержится в фактах, описанных в двух предыдущих параграфах. Очевидно, что они основаны не на отвлеченных представлениях или теоретических выводах, а на результатах непосредственного опыта. Задача заключается в том, чтобы их обобщить и сделать из такого обобщения возможно далеко идущие выводы.  

Сущность второго начала термодинамики и заключается в том, что оно формулирует те условия, в которых происходят превращения энергии в механическую. Второе начало термодинамики имеет смысл только в ограниченной области. Все выводы термодинамики, так же как и все ее основные понятия (теплообмен, температура), имеют смысл только при рассмотрении определенной области явлений.  

Кратко резюмируя сущность второго начала термодинамики, можно сказать, что некомпенсированный переход тепла в работу невозможен. Из невозможности одного процесса - процесса некомпенсированного перехода тепла в работу - вытекает невозможность бесчисленного множества процессов; невозможны все те процессы, составной частью которых должен был бы явиться некомпенсированный переход тепла в работу.  

Как было выяснено выше, сущность второго начала термодинамики заключается в том, что количество равновесных состояний подавляюще велико по сравнению с числом неравновесных распределений. Однако для вселенной, состоящей из бесконечно большого числа частиц, это утверждение теряет свой смысл. Действительно, как число равновесных состояний, так и число неравновесных состояний становятся бесконечно большими.  

Как было выяснено выше, сущность второго начала термодинамики заключается в том, что количество равновесных состояний подавляюще делико по сравнению с числом неравновесных распределений. Однако для вселенной, состоящей из бесконечно большого числа частиц, это утверждение теряет свой смысл. Действительно, как число равновесных состояний, так и число неравновесных состояний становятся бесконечно большими.  

Известно, что в педагогическом отношении строгое изложение сущности второго начала термодинамики и ближайших следствий его - дело, далеко не легкое. Этих трудностей в изложении второго начала не существовало бы, если бы второе начало определяло, как это иногда думают, превращаемость одного вида энергии в другой. В действительности второе начало определенным образом ограничивает превращение одной формы передачи энергии - тепла - в другую форму передачи энергии - в работу.  

Несколько позже мы покажем, что в представлении об энтропии отражена сущность второго начала термодинамики, подобно тому как в представлении о внутренней энергии отражена сущность первого начала.  

Рассмотренными здесь представлениями о двух видах закономерности мы будем руководствоваться далее при изучении всей статистической физики, а также, в частности, при выяснении сущности второго начала термодинамики, которое, как будет показано, является статистическим законом. Соотношение между статистической физикой и обычной термодинамикой основано на принятии статистической закономерности.  

Работы Карно способствовали установлению принципа, позволившего определить наибольший возможный КПД тепловой машины. Сущность второго начала термодинамики, по Клаузиусу, заключается в том, что теплота не может сама по себе перейти от более холодного тела к более теплому.  

Процессы обратимые и необратимые. Кратко резюмируя сущность второго начала термодинамики, можно сказать, что некомпенсированный переход тепла в работу невозможен. Под компенсацией здесь надлежит разуметь изменение термодинамического состояния какого-либо тела или нескольких тел; при этом неизбежное изменение состояния (охлаждение) теплоотдающего тела не принимается в расчет.  

Полное понимание сущности второго начала термодинамики и вместе с этим решение проблемы тепловой смерти пришло на пути глубокого проникновения в сущность понятия теплоты, на пути уточнения основ и развития молекуля-рно-кинетической теории.  

Итак, если бы мы захотели отнять теплоту у более холодного тела и передать ее более нагре тому, то должны были бы затратить на это некоторую дополнительную энергию. Это положение составляет сущность второго начала термодинамики, которое формулируется так: невозможен самопроизвольный переход теплоты от более холодного тела к телу более теплому.  

Особо важную роль играет в термодинамике понятие о так называемой абсолютной температуре. Это понятие-тесно связано с сущностью второго начала термодинамики.  

Следовательно, всегда (при каком угодно числе аргументов) уравнение для элемента тепла голономно. При желании можно считать, что сущность второго начала термодинамики как раз и заключается в том, что между коэффициентами уравнения для элемента теплоты всегда имеется соотношение, обеспечивающее голономность этого уравнения.  

Лишь вслед за исследованиями и размышлениями Майера, Джоуля и Гельмгольца, установивших закон эквивалентности тепла и работы, немецкий физик Рудольф Клаузиус (1822 - 1888 гг.) пришел ко второму началу термодинамики и математически сформулировал его. Клаузиус ввел в рассмотрение энтропию и показал, что сущность второго начала термодинамики сводится к неизбежному росту энтропии во всех реальных процессах.