Второе начало термодинамики

Появление второго начала термодинамики связано с необходимостью дать ответ на вопрос, какие процессы в природе возможны, а какие нет. Второе начало термодинамики определяет направление протекания термодинамических процессов.

Используя понятие энтропии и неравенство Клаузиуса второе начало термодинамики можно сформулировать какзакон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает.

Можно дать более краткую формулировку второго начала термодинамики: в про­цессах, происходящих в замкнутой системе, энтропия не убывает. Здесь существенно, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя любым образом (убывать, возрастать, оставаться постоянной). Кроме того, отметим еще раз, что энтропия остается постоянной в замкнутой системе только при обратимых процессах. При необратимых процессах в замкнутой системе энтропия всегда возрастает.

Формула Больцмана (57.8) позволяет объяснить постулируемое вторым началом термодинамики возрастание энтропии в замкнутой системе при необратимых процес­сах: возрастание энтропии означает переход системы из менее вероятных в более вероятные состояния. Таким образом, формула Больцмана позволяет дать статисти­ческое толкование второго начала термодинамики. Оно, являясь статистическим зако­ном, описывает закономерности хаотического движения большого числа частиц, со­ставляющих замкнутую систему.

Укажем еще две формулировки второго начала термодинамики:

1)по Кельвину: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;

2)по Клаузиусу: невозможен круговой процесс, единственным результатом которо­го является передача теплоты от менее нагретого тела к более нагретому.

В середине XIX в. возникла проблема так называемой тепловой смерти Вселенной . Рассматривая Вселенную как замкнутую систему и применяя к ней второе качало термодинамики, Клаузиус свел его содержание к утверждению, что энтропия Вселенной должна достигнуть своего максимума. Это означает, что со временем все формы движения должны перейти в тепловую. Переход же теплоты от горячих тел к холодным приведет к тому, что температура всех тел во Вселенной сравняется, т. е. наступит полное тепловое равновесие и все процессы во Вселенной прекратятся - наступит тепловая смерть Вселенной. Ошибочность вывода о тепловой смерти заключается в том, что бессмысленно применять второе начало термодинамики к незамкнутым системам, например к такой безграничной и бесконечно развивающейся системе, как Вселенная.

Энтропия, ее статистическое толкование и связь с термодинамической вероятностью

Понятие энтропии введено в 1865 г. Р. Клаузиусом. Для выяснения физического содержания этого понятия рассматривают отношение теплоты Q , полученной телом в изотермическом процессе, к температуре Т теплоотдающего тела, называемое приведенным количеством теплоты .

Приведенное количество теплоты, сообщаемое телу на бесконечно малом участке процесса, равно dQ/T. Строгий теоретический анализ показывает, что приведенное количество теплоты, сообщаемое телу в любом обратимом круговом процессе, равно нулю:

Функция состояния, дифференциалом которой является dQ/T, называется энтропией и обозначается S.

Из формулы (57.1) следует, что для обратимых процессов изменение энтропии

(57.3)

В термодинамике доказывается, что энтропия системы, совершающей необратимый цикл, возрастает:

Выражения (57.3) и (57.4) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то ее энтропия может вести себя любым образом. Соотношения (57.3) и (57.4) можно представить в виде неравенства Клаузиуса

(57.5)

т. е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояние 2 , то, согласно (57.2), изменение энтропии

(57.6)

где подынтегральное выражение и пределы интегрирования определяются через вели­чины, характеризующие исследуемый процесс. Формула (57.6) определяет энтропию лишь с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий.

Исходя из выражения (57.6), найдем изменение энтропии в процессах идеального газа. Taк как то

(57.7)

т. е. изменение энтропии DS 1 ® 2 идеального газа при переходе его из состояния 1 в со­стояние 2 не зависит от вида процесса перехода 1 ®2.

Таккак для адиабатического процесса dQ = 0, то DS = 0 и, следовательно, S= const,т. е. адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его часто называютизоэнтропийным процессом. Из формулы (57.7) следует, что при изотермическом процессе (T 1 = T 2)

при изохорном процессе (V 1 = V 2)

Энтропия обладает свойством аддитивности : энтропия системы равна сумме энт­ропий тел, входящих в систему. Свойством аддитивности обладают также внутренняя энергия, масса, объем (температура и давление таким свойством не обладают).

Более глубокий смысл энтропии вскрывается в статистической физике: энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность W состояния системы - это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние (по определению, 1, т. е. термодинамическая вероятность не есть вероятность в математическом смысле (последняя £ 1!)).

Согласно Больцману (1872), энтропия системы и термодинамическая вероятность связаны между собой следующим образом:

(57.8)

где k - постоянная Больцмана. Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы. Формула Больцмана (57.8) позволяет дать энтропии следующее статистическое толкование: энтропия является мерой неупорядо­ченности системы. В самом деле, чем больше число микросостояний, реализующих данное макросостояние, тем больше энтропия. В состоянии равновесия - наиболее вероятного состояния системы - число микросостояний максимально, при этом мак­симальна и энтропия.

Таккак реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой системе ведут к увеличению ее энтропии -принцип возрастания энтропии. При статистическом толковании энтропии это означает, что процессы в замкнутой системе идут в направлении увеличения числа микросостояний, иными словами, от менее вероятных состояний к более вероятным, до тех пор пока вероятность состояния не станет максимальной.

Выражая закон сохранения и превращения энергии, не позволяет установить направление протекания термодинамических процессов. Кроме того, можно представить множество процессов, не противоречащих первому началу, в которых энергия сохраняется, а в природе они не осуществляются. Появление второго начала термодинамики— необходимость дать ответ на вопрос, какие процессы в природе возможны, а какие нет—определяет направление развития процессов.

Используя понятие энтропии и неравенство Клаузиуса , второе начало термодинамики можно сформулировать как закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает.

Можно дать более краткую формулировку второго начала термодинамики:

В процессах, происходящих в замкнутой системе, энтропия не убывает. Здесь существенно, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя любым образом (убывать, возрастать, оставаться постоянной). Кроме того, отметим еще раз, что энтропия остается постоянной в замкнутой системе только при обратимых процессах. При необратимых процессах в замкнутой системе энтропия всегда возрастает.

Формула Больцмана позволяет объяснить постулируемое вторым началом термодинамики возрастание энтропии в замкнутой системе при необратимых процессах: возрастание энтропии означает переход системы из менее вероятных в более вероятные состояния. Таким образом, формула Больцмана позволяет дать статистическое толкование второго начала термодинамики. Оно, являясь статистическим законом, описывает закономерности хаотического движения большого числа частиц, составляющих замкнутую систему.

Укажем еще две формулировки второго начала термодинамики:

1) по Кельвину: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;

2) по Клаузиусу: невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Можно довольно просто доказать (предоставим это читателю) эквивалентность формулировок Кельвина и Клаузиуса. Кроме того, показано, что если в замкнутой системе провести воображаемый процесс, противоречащий второму началу термодинамики в формулировке Клаузиуса, то он сопровождается уменьшением энтропии. Это же доказывает эквивалентность формулировки Клаузиуса (а следовательно, и Кельвина) и статистической формулировки, согласно которой энтропия замкнутой системы не может убывать.


В середине XIX в. возникла проблема так называемой тепловой смерти Вселенной . Рассматривая Вселенную как замкнутую систему и применяя к ней второе начало термодинамики, Клаузиус свел его содержание к утверждению, что энтропия Вселенной должна достигнуть своего максимума. Это означает, что со временем все формы движения должны перейти в тепловую.

Переход же теплоты от горячих тел к холодным приведет к тому, что температура всех тел во Вселенной сравняется, т.е. наступит полное тепловое равновесие и все процессы во Вселенной прекратятся — наступит тепловая смерть Вселенной. Ошибочность вывода о тепловой смерти заключается в том, что бессмысленно применять второе начало термодинамики к незамкнутым системам, например к такой безграничной и бесконечно развивающейся системе, как Вселенная. На несостоятельность вывода о тепловой смерти указывал также Ф. Энгельс в работе «Диалектика природы».

Первые два начала термодинамики дают недостаточно сведений о поведении термодинамических систем при нуле Кельвина. Они дополняются третьим началом термодинамики, или теоремой Нернста (В. Ф. Г. Нернст (1864-1941) — немецкий физик и физикохимик) — Планка : энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к нулю Кельвина:

Так как энтропия определяется с точностью до аддитивной постоянной, то эту постоянную удобно взять равной нулю (отметим, однако, что это произвольное допущение, поскольку энтропия по своей сущности всегда определяется с точностью до аддитивной постоянной). Из теоремы Нернста-Планка следует, что теплоемкости С р и С V при 0К равны нулю.

Второе начало термодинамики

Исторически второе начало термодинамики возникло из анализа работы тепловых машин (С. Карно, 1824). Существует несколько его эквивалентных формулировок. Само название «второе начало термодинамики» и исторически первая его формулировка (1850) принадлежат Р. Клаузиусу.

Первое начало термодинамики, выражая закон сохранения и превращения энергии, не позволяет установить направление протекания термодинамических процессов. Кроме того, можно представить множество процессов, не противоречащих первому началу, в которых энергия сохраняется, а в природе они не осуществляются.

Опыт показывает, что разные виды энергии неравноценны в отношении способности превращаться в другие виды энергии. Механическую энергию можно целиком превратить во внутреннюю энергию любого тела. Для обратных превращений внутренней энергии в другие виды существуют определённые ограничения: запас внутренней энергии, ни при каких условиях, не может превратиться целиком в другие виды энергии. С отмеченными особенностями энергетических превращений связано направление протекания процессов в природе.

Второе начало термодинамики – принцип, устанавливающий необратимость макроскопических процессов, протекающих с конечной скоростью.

В отличие от чисто механических (без трения) или электродинамических (без выделения джоулевой теплоты) обратимых процессов, процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), с трением, диффузией газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д., необратимы, т. е. могут самопроизвольно протекать только в одном направлении.

Второе начало термодинамики отражает направленность естественных процессов и налагает ограничения на возможные направления энергетических превращений в макроскопических системах, указывая, какие процессы в природе возможны, а какие – нет.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Формулировки второго закона термодинамики

1). Формулировка Карно : наибольший КПД тепловой машины не зависит от рода рабочего тела и вполне определяется предельными температурами , между которыми машина работает.

2). Формулировка Клаузиуса : невозможен процесс единственным результатом которого является передача энергии в форме теплоты от тела менее нагретого , к телу более нагретому.

Второе начало термодинамики не запрещает переход теплоты от менее нагретого тела к более нагретому. Такой переход осуществляется в холодильной машине, но при этом внешние силы осуществляют работу над системой, т.е. этот переход не является единственным результатом процесса.

3). Формулировка Кельвина : невозможен круговой процесс , единственным результатом которого является превращение теплоты , полученной от нагревателя , в эквивалентную ей работу.

На первый взгляд может показаться, что такой формулировке противоречит изотермического расширения идеального газа. Действительно, всё полученное идеальным газом от какого-то тела тепло превращается полностью в работу. Однако получение тепла и превращение его в работу не единственный конечный результат процесса; кроме того, в результате процесса происходит изменение объёма газа.

P.S. : необходимо обратить внимание на слова «единственным результатом»; запреты второго начала снимаются, если процессы, о которых идёт речь, не являются единственными.

4). Формулировка Оствальда : осуществление вечного двигателя второго рода невозможно.

Вечным двигателем второго рода называется периодически действующее устройство , которое совершает работу за счёт охлаждения одного источника теплоты.

Примером такого двигателя мог бы служить судовой двигатель, получающий тепло из моря и использующий его для движения судна. Такой двигатель был бы практически вечным, т.к. запас энергии в окружающей среде практически безграничен.

С точки зрения статистической физики второе начало термодинамики имеет статистический характер: оно справедливо для наиболее вероятного поведения системы. Существование флуктуаций препятствует точному его выполнению, однако вероятность сколь-нибудь значительного нарушения крайне мала.

Энтропия

Понятие «энтропия» введено в науку Р.Клаузиусом в 1862 г. и образовано из двух слов: «эн » - энергия, «тропэ » - превращаю.

Согласно нулевому началу термодинамики изолированная термодинамическая система с течением времени самопроизвольно переходит в состояние термодинамического равновесия и остаётся в нём сколь угодно долго, если внешние условия сохраняются неизменными.

В равновесном состоянии все виды энергии системы переходят в тепловую энергию хаотического движения атомов и молекул, составляющих систему. Никакие макроскопические процессы в такой системе невозможны.

Количественной мерой перехода изолированной системы в равновесное состояние служит энтропия. По мере перехода системы в равновесное состояние её энтропия возрастает и достигает максимума при достижении равновесного состояния.

Энтропия является функцией состояния термодинамической системы, обозначается: .

Теоретическое обоснование : приведённая теплота , энтропия

Из выражения для КПД цикла Карно: следует, что или , где – количество теплоты, отдаваемое рабочим телом холодильнику, принимаем: .

Тогда последнее соотношение можно записать в виде:

Отношение теплоты, полученной телом в изотермическом процессе, к температуре теплоотдающего тела называется приведённым количеством теплоты :

С учётом формулы (2) формулу (1) представим в виде:

т.е. для цикла Карно алгебраическая сумма приведённых количеств теплоты равна нулю.

Приведённое количество теплоты, сообщаемое телу на бесконечно малом участке процесса: .

Приведённое количество теплоты для произвольного участка:

Строгий теоретический анализ показывает, что для любого обратимого кругового процесса сумма приведённых количеств теплоты равна нулю:

Из равенства нулю интеграла (4) следует, что подынтегральная функция есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от пути, каким система пришла в это состояние:

Однозначная функция состояния , полным дифференциалом которой является ,называется энтропией .

Формула (5) справедлива лишь для обратимых процессов, в случае неравновесных необратимых процессов такое представление несправедливо.

Свойства энтропии

1). Энтропия определяется с точностью до произвольной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий двух состояний:

. (6)

Пример : если система (идеальный газ) совершает равновесный переход из состояния 1 в состояние 2, то изменение энтропии равно:

,

где ; .

т.е. изменение энтропии идеального газа при переходе его из состояния 1 в состояние 2 не зависит от вида процесса перехода.

В общем случае в формуле (6) приращение энтропии не зависит от пути интегрирования.

2).Абсолютное значение энтропии можно установить с помощью третьего начала термодинамики (теоремы Нернста):

Энтропия любого тела стремиться к нулю при стремлении к абсолютному нулю его температуры : .

Таким образом, за начальную точку отсчёта энтропии принимают при .

3). Энтропия величина аддитивная, т.е. энтропия системы из нескольких тел является суммой энтропий каждого тела: .

4). Как и внутренняя энергия, энтропия есть функция параметров термодинамической системы .

5), Процесс, протекающий при постоянной энтропии называетсяизоэнтропийным.

В равновесных процессах без передачи тепла энтропия не меняется.

В частности, изоэнтропийным является обратимый адиабатный процесс: для него ; , т.е. .

6). При постоянном объёме энтропия является монотонно возрастающей функцией внутренней энергии тела.

Действительно, из первого закона термодинамики следует, что при имеем: , тогда . Но температура всегда. Поэтому приращения и имеют один и тот же знак, что и требовалось доказать.

Примеры изменения энтропии в различных процессах

1). При изобарном расширении идеального газа

2). При изохорном расширении идеального газа

3). При изотермическом расширении идеального газа

.

4). При фазовых переходах

Пример : найти изменение энтропии при превращении массы льда при температуре в пар .

Решение

Первый закон термодинамики: .

Из уравнения Менделеева – Клапейрона следует: .

Тогда выражения для первого закона термодинамики примет вид:

.

При переходе из одного агрегатного состояния в другое, общее изменение энтропии складывается из изменений в отдельных процессах:

A). Нагревание льда от температуры до температуры плавления :

,где –удельная теплоёмкость льда.

Б). Плавление льда: ,где – удельная теплота плавления льда.

В). Нагревание воды от температуры до температуры кипения :

, где –удельная теплоёмкость воды.

Г). Испарение воды: ,где –удельная теплота парообразования воды.

Тогда общее изменение энтропии:

Принцип возрастания энтропии

Энтропия замкнутой системы при любых, происходящих в ней процессах не убывает:

или для конечного процесса: , следовательно: .

Знак равенства относится к обратимому процессу, знак неравенства – к необратимому. Последние две формулы – математическое выражение второго закона термодинамики. Таким образом, введение понятия «энтропия» позволило строго математически сформулировать второе начало термодинамики.

Необратимые процессы приводят к установлению равновесного состояния. В этом состоянии энтропия изолированной системы достигает максимума. Никакие макроскопические процессы в такой системе невозможны.

Величина изменения энтропии является качественной характеристикой степени необратимости процесса.

Принцип возрастания энтропии относится к изолированным системам. Если система неизолированная, то её энтропия может и убывать.

Вывод : т.к. все реальные процессы необратимые, то все процессы в замкнутой системе ведут к увеличению её энтропии.

Теоретическое обоснование принципа

Рассмотрим замкнутую систему, состоящую из нагревателя, холодильника, рабочего тела и «потребителя» совершаемой работы (тело, обменивающееся с рабочим телом энергией только в форме работы), совершающую цикл Карно. Это обратимый процесс, изменение энтропии которого равно:

,

где – изменение энтропии рабочего тела; – изменение энтропии нагревателя; – изменение энтропии холодильника; – изменение энтропии «потребителя» работы.

Термодинамика как самостоятельный раздел физической науки возникла в первой половине XIX века. Грянул век машин. Промышленная революция требовала изучить и осмыслить процессы, связанные с функционированием тепловых двигателей. На заре машинной эры изобретатели-одиночки могли себе позволить использовать лишь интуицию и «метод тыка». Не было общественного заказа на открытия и изобретения, никому даже в голову не могло прийти, что они могут быть полезны. Но когда тепловые (а немного позже и электрические) машины стали основой производства, ситуация изменилась. Ученые наконец постепенно разобрались с терминологической путаницей, царившей до середины XIX века, определившись, что называть энергией, что силой, что - импульсом.

Что постулирует термодинамика

Начнем с общеизвестных сведений. Классическая термодинамика основана на нескольких постулатах (началах), последовательно вводившихся на протяжении XIX века. То есть эти положения не являются доказуемыми в ее рамках. Они были сформулированы в результате обобщения эмпирических данных.

Первое начало - это приложение закона сохранения энергии к описанию поведения макроскопических систем (состоящих из большого числа частиц). Коротко его можно сформулировать так: запас внутренней энергии изолированной термодинамической системы всегда остается постоянным.

Смысл второго начала термодинамики состоит в определении направления, в котором протекают процессы в таких системах.

Третье начало позволяет точно определить такую величину, как энтропия. Рассмотрим ее подробнее.

Понятие энтропии

Формулировка второго начала термодинамики была предложена в 1850 году Рудольфом Клаузиусом: «Невозможен самопроизвольный переход теплоты от менее нагретого тела к более нагретому». При этом Клаузиус подчеркивал заслугу Сади Карно, еще в 1824 году установившего, что доля энергии, которая может быть превращена в работу тепловой машины, зависит только от разности температур нагревателя и холодильника.

При дальнейшей разработке второго начала термодинамики Клаузиус вводит понятие энтропии - меры количества энергии, которая необратимо переходит в форму, непригодную для обращения в работу. Клаузиус выразил эту величину формулой dS = dQ/T, где dS, определяющей изменение энтропии. Здесь:

dQ - изменение теплоты;

T - абсолютная температура (та самая, которая измеряется в кельвинах).

Простой пример: потрогайте капот вашего автомобиля при включенном двигателе. Он явно теплее окружающей среды. Но ведь двигатель автомобиля предназначен не для того, чтобы нагревать капот или воду в радиаторе. Преобразуя химическую энергию бензина в тепловую, а затем в механическую, он совершает полезную работу - вращает вал. Но большая часть вырабатываемого тепла теряется, так как никакой полезной работы из него извлечь нельзя, а то, что вылетает из выхлопной трубы, уже никоим образом бензином не является. При этом тепловая энергия теряется, но не исчезает, а рассеивается (диссипирует). Горячий капот, конечно, остывает, а каждый цикл цилиндров в двигателе снова добавляет ему теплоту. Таким образом система стремится достичь термодинамического равновесия.

Особенности энтропии

Клаузиус вывел общий принцип для второго начала термодинамики в формуле dS ≥ 0. Физический смысл ее можно определить, как "неубывание" энтропии: в обратимых процессах она не меняется, в необратимых - возрастает.

Следует заметить, что все реальные Термин «неубывание» отражает лишь тот факт, что в рассмотрение явления включен также теоретически возможный идеализированный вариант. То есть количество недоступной энергии в любом самопроизвольном процессе увеличивается.

Возможность достижения абсолютного нуля

Макс Планк внес серьезный вклад в разработку термодинамики. Помимо работы над статистической интерпретацией второго начала, он принял деятельное участие в постулировании третьего начала термодинамики. Первая формулировка принадлежит Вальтеру Нернсту и относится к 1906 году. Теорема Нернста рассматривает поведение равновесной системы при температуре, стремящейся к абсолютному нулю. Первое и второе начала термодинамики не дают возможности выяснить, какова будет энтропия в данных условиях.

При T = 0 K энергия равна нулю, частицы системы прекращают хаотические тепловые движения и образуют упорядоченную структуру, кристалл с термодинамической вероятностью, равной единице. Значит, энтропия тоже обращается в ноль (ниже мы узнаем, почему так происходит). В реальности она даже делает это несколько раньше, из чего следует, что охлаждение любой термодинамической системы, любого тела до абсолютного нуля невозможно. Температура будет сколь угодно приближаться к этой точке, но не достигнет ее.

Перпетуум-мобиле: нельзя, даже если очень хочется

Клаузиус обобщил и сформулировал первое и второе начала термодинамики таким образом: полная энергия любой замкнутой системы всегда остается постоянной, а полная энтропия возрастает с течением времени.

Первая часть этого утверждения налагает запрет на вечный двигатель первого рода - устройство, совершающее работу без притока энергии из внешнего источника. Вторая часть запрещает и вечный двигатель второго рода. Такая машина переводила бы энергию системы в работу без энтропийной компенсации, не нарушая закона сохранения. Можно было бы откачивать тепло из равновесной системы, например, жарить яичницу или лить сталь за счет энергии теплового движения молекул воды, охлаждая ее при этом.

Второе и третье начала термодинамики запрещают вечный двигатель второго рода.

Увы, у природы ничего нельзя получить не только даром, приходится еще и комиссию выплачивать.

«Тепловая смерть»

Мало найдется в науке понятий, которые вызывали столько неоднозначных эмоций не только у широкой публики, но и в среде самих ученых, сколько пришлось на долю энтропии. Физики, и в первую очередь сам Клаузиус, практически сразу экстраполировали закон неубывания сначала на Землю, а затем и на всю Вселенную (почему бы и нет, ведь ее тоже можно считать термодинамической системой). В итоге физическая величина, важный элемент расчетов во многих технических приложениях, стала восприниматься как воплощение некоего вселенского Зла, уничтожающего светлый и добрый мир.

В среде ученых есть и такие мнения: поскольку, согласно второму началу термодинамики, энтропия необратимо растет, рано или поздно вся энергия Вселенной деградирует в рассеянную форму, и наступит «тепловая смерть». Чему тут радоваться? Клаузиус, например, несколько лет не решался на публикацию своих выводов. Разумеется, гипотеза «тепловой смерти» немедленно вызвала множество возражений. Серьезные сомнения в ее правильности есть и сейчас.

Демон-сортировщик

В 1867 году Джеймс Максвелл, один из авторов молекулярно-кинетической теории газов, в очень наглядном (хоть и вымышленном) эксперименте продемонстрировал кажущуюся парадоксальность второго начала термодинамики. Кратко опыт можно изложить следующим образом.

Пусть имеется сосуд с газом. Молекулы в нем движутся хаотически, скорости их несколько различаются, но средняя кинетическая энергия одинакова по всему сосуду. Теперь разделим сосуд перегородкой на две изолированные части. Средняя скорость молекул в обеих половинках сосуда останется одинаковой. Перегородку сторожит крохотный демон, который позволяет более быстрым, «горячим» молекулам проникать в одну часть, а более медленным «холодным» - в другую. В результате в первой половинке газ нагреется, во второй - охладится, то есть из состояния термодинамического равновесия система перейдет к разности температурных потенциалов, что означает уменьшение энтропии.

Вся проблема в том, что в эксперименте система совершает этот переход не самопроизвольно. Она получает извне энергию, за счет которой открывается и закрывается перегородка, либо система с необходимостью включает в себя демона, затрачивающего свою энергию на исполнение обязанностей привратника. Увеличение энтропии демона с избытком покроет уменьшение ее в газе.

Недисциплинированные молекулы

Возьмем стакан с водой и оставим его на столе. Наблюдать за стаканом не обязательно, достаточно через некоторое время вернуться и проверить состояние воды в нем. Мы увидим, что ее количество уменьшилось. Если же оставить стакан надолго, в нем вообще не обнаружится воды, так как вся она испарится. В самом начале процесса все молекулы воды находились в некой ограниченной стенками стакана области пространства. В конце эксперимента они разлетелись по всей комнате. В объеме комнаты у молекул гораздо больше возможностей менять свое местоположение без всяких последствий для состояния системы. Мы никак не сможем собрать их в спаянный "коллектив" и загнать обратно в стакан, чтобы с пользой для здоровья выпить воду.

Это значит, что система эволюционировала к состоянию с более высокой энтропией. Исходя из второго начала термодинамики, энтропия, или процесс рассеивания частиц системы (в данном случае молекул воды) необратим. Почему это так?

Клаузиус не ответил на этот вопрос, да и никто другой не смог этого сделать до Людвига Больцмана.

Макро и микросостояния

В 1872 году этот ученый ввел в науку статистическое толкование второго начала термодинамики. Ведь макроскопические системы, с которыми имеет дело термодинамика, образованы большим количеством элементов, поведение которых подчиняется статистическим законам.

Вернемся к молекулам воды. Хаотически летая по комнате, они могут занимать разные положения, иметь некоторые различия в скоростях (молекулы постоянно сталкиваются друг с другом и с другими частицами в воздухе). Каждый вариант состояния системы молекул называется микросостоянием, и таких вариантов огромное количество. При реализации подавляющего большинства вариантов макросостояние системы не изменится никак.

Ничто не запрещено, но кое-что крайне маловероятно

Знаменитое соотношение S = k lnW связывает число возможных способов, которым можно выразить определенное макросостояние термодинамической системы (W), с ее энтропией S. Величину W называют термодинамической вероятностью. Окончательный вид этой формуле придал Макс Планк. Коэффициент k - чрезвычайно малую величину (1,38×10 −23 Дж/К), характеризующую связь между энергией и температурой, Планк назвал постоянной Больцмана в честь ученого, который первым предложил статистическое толкование второго начала термодинамики.

Ясно, что W - всегда натуральное число 1, 2, 3,…N (не бывает дробного количества способов). Тогда логарифм W, а следовательно, и энтропия, не могут быть отрицательными. При единственно возможном для системы микросостоянии энтропия становится равной нулю. Если вернуться к нашему стакану, этот постулат можно представить так: молекулы воды, беспорядочно снующие по комнате, вернулись обратно в стакан. При этом каждая в точности повторила свой путь и заняла в стакане то же место, в каком пребывала перед вылетом. Ничто не запрещает реализацию этого варианта, при котором энтропия равна нулю. Только ждать осуществления такой исчезающе малой вероятности не стоит. Это один из примеров того, что можно осуществить лишь теоретически.

Все смешалось в доме…

Итак, молекулы хаотически летают по комнате разными способами. Нет никакой закономерности в их расположении, нет порядка в системе, как ни меняй варианты микросостояний, не прослеживается никакой внятной структуры. В стакане было то же самое, но из-за ограниченности пространства молекулы меняли свое положение не так активно.

Хаотическое, неупорядоченное состояние системы как наиболее вероятное соответствует ее максимальной энтропии. Вода в стакане являет пример более низкоэнтропийного состояния. Переход к нему из равномерно распределенного по комнате хаоса практически неосуществим.

Приведем более понятный для всех нас пример - уборка беспорядка в доме. Чтобы все расставить по местам, нам тоже приходится затрачивать энергию. В процессе этой работы нам становится жарко (то есть мы не мерзнем). Оказывается, энтропия может принести пользу. Это так и есть. Можно сказать даже больше: энтропия, а через нее второе начало термодинамики (наряду с энергией) управляют Вселенной. Взглянем еще раз на обратимые процессы. Так выглядел бы мир, не будь энтропии: никакого развития, никаких галактик, звезд, планет. Никакой жизни...

Еще немного информации о «тепловой смерти». Есть хорошие новости. Поскольку, согласно статистической теории, «запрещенные» процессы на самом деле являются маловероятными, в термодинамически равновесной системе возникают флуктуации - спонтанные нарушения второго начала термодинамики. Они могут быть сколь угодно большими. При включении гравитации в термодинамическую систему распределение частиц уже не будет хаотически-равномерным, а состояние максимальной энтропии не будет достигнуто. Кроме того, Вселенная не является неизменной, постоянной, стационарной. Следовательно, сама постановка вопроса о «тепловой смерти» лишена смысла.

Второе начало термодинамики – теплота не может самопроизвольно переходить от тела менее нагретого к телу более нагретому. Под теплотой понимается внутренняя энергия тела.

Рассмотрим систему, способную контактировать с двумя тепловыми резервуарами. Температуры резервуаров (нагреватель) и (холодильник) .. В первоначальном состоянии (поз. 1) температура системы . Приведем ее в тепловой контакт с нагревателем и, квазистатически уменьшив давление, увеличим объем.

Система перешла в состояние с той же температурой , но с большим объемом и меньшим давлением (поз. 2). При этом системой была выполнена работа , а нагреватель передал ей количество теплоты . Далее уберем нагреватель и квазистатически по адиабате переведем систему в состояние с температурой (поз. 3). При этом система выполнит работу . Затем приведем систему в контакт с холодильником и вказистатически уменьшим объем системы. Количество тепла , которое при этом выделит система, поглотится холодильником – ее температура останется прежней.Над системой была выполнена работа (или система выполнила отрицательную работу– ). Состояние системы (поз. 4) выбирается таким, чтобы можно было по адиабате вернуть систему в исходное состояние (поз 1). При этом система выполнит отрицательную работу Т.к. система вернулась в исходное состояние, то внутренняя энергия после цикла осталась прежней, но при этом системой была выполнена работа . Из этого следует, что изменения энергии при выполнении работы компенсировались нагревателем и холодильником. Значит , – количество теплоты, которая пошла на выполнение работы .Коэффициент полезного действия (КПД) определяется по формуле:

.


Отсюда следует, что .


Теорема Карно
гласит, что коэффициент полезного действия тепловой машины, работающей по циклу Карно, зависит только от температур и нагревателя и холодильника, но не зависит от устройства машины, а также от вида рабочего вещества.

Вторая теорема Карно гласит – коэффициент полезного действия всякой тепловой машины не может превосходить коэффициент полезного действия идеальной машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника.

Неравенство Клаузиуса:



Из него видно, что количество теплоты, которое получила система при круговом процессе, отнесенное к абсолютной температуре, при которой происходил процесс, есть величина неположительная. Если процесс квазистатический, то неравенство переходит в равенство:

Это значит, что приведенное количество теплоты, получаемое системой при любом квазистатическом круговом процессе, равно нулю .

– элементарное приведенное количество теплоты, получаемое в бесконечно

малом процессе.

– элементарное приведенное количество теплоты, получаемое в конечном


процессе.

Энтропия системы есть функция ее состояния, определенная с точностью до произвольной постоянной.

Разность энтропий в двух равновесных состояниях и , по определению, равна приведенному количеству теплоты, которое надо сообщить системе, чтобы перевести ее из состояния в состояние по любому квазистатическому пути.

Энтропия выражается функцией:

.


Предположим, что система переходит из равновесного состояния в равновесное состояние по пути , и переход – необратимый (штрихованная). Систему в квазистатически можно вернуть в исходное состояние по другому пути . Опираясь на неравенство Клаузиуса можно написать: