В реферат рассмотрен вопрос инновационных технологий, а именно нанотехнологий. ОГЛАВЛЕНИЕ.

Введение……………………………………………>…………………

Аннотация…………………………………………>…………………

1. История возникновения нанотехнологии………………………..

2. Фундаментальные положения…………………………………..

2.1 Атомно-силовая микроскопия……………………………….

2.2 Наночастицы……………………………………>…………….

2.3 Самоорганизация наночастиц………………………………

3. Нанотехнологии и общество……………………………………..

3.1 Влияние нанотехнологий на основные социальные сферы…..

3.2 Нанотехнологии и этика………………………………………..

3.3 Нанотехнологии и образ жизни человека………………….

Заключение………………………………………>…………………..

Список литературы………………………………………>…………..

АННОТАЦИЯ

В реферат рассмотрен вопрос инновационных технологий, а именно нанотехнологий. Описана история развития нанотехнологии, фундаментальные положения нанотехнологии как науки, а также влияние их на жизнь общества, на различные социальные сферы. Указана взаимосвязь нанотехнологий с такими понятиями философии, как этика и мораль. Предложены перспективы развития нанотехнологий.

ВВЕДЕНИЕ

Наступил 21-й век и всех, естественно, волнуют вопросы о будущем, о развитии науки и техники в наступающем столетии. Удастся ли человечеству победить страшные болезни (рак, СПИД и некоторые другие), станут ли путешествия на Луну простыми туристическими поездками, как будут выглядеть космические станции? Станут ли реальностью фантастические проекты в информационных технологиях, т.е. войдут ли в нашу жизнь крошечные компьютеры с поразительным быстродействием и огромным объемом памяти, способные мгновенно записать, обработать и переслать в цифровой форме информацию любого вида? Будут ли созданы «личные» микрочипы, на которых будет записана не только все данные о владельце (полная идентификационная карта), но и даже весь его генетический код? Станут ли такие личные миниатюрные компьютеры настолько умными, что при необходимости (например, при несчастном случае) смогут связаться с ближайшей больницей и провести «консультацию» с врачом? Можно ли надеяться, что промышленность начнет выпускать экологически безопасные автомобили, в выхлопных газах которых не будут содержаться вредные вещества? Осуществится ли, наконец, мечта человечества о жизни «в гармонии» с природой? /10/.

Развитие нанонауки и нанотехнологии, возможно, сможет дать ответ на все эти вопросы и значительно изменить все условия человеческого существования.

1. ИСТОРИЯ ВОЗНИКНОВЕНИЯ

НАНОТЕХНОЛОГИИ

«…Мне хочется обсудить одну малоизученную область физики, которая представляется весьма важной и перспективной и может найти множество ценных технических применений. Речь идет о проблеме контроля и управления строением вещества в интервале очень малых размеров. Внизу (т. е. внизу или внутри пространства, если угодно) располагается поразительно сложный мир малых форм, и когда-нибудь (например, в 2000 г.) люди будут удивляться тому, что до 1960 г. никто не относился серьезно к исследованиям этого мира» /9/. Этими словами в канун 1960 г. на Рождественском обеде Американского физического общества начал свою лекцию знаменитый американский физик-теоретик, один из создателей квантовой электродинамики Ричард Филлипс Фейнман. Именно в его выступлении впервые упоминаются методы, которые впоследствии будут названы нанотехнологией.

Термин «нанотехнологии» в 1974 году предложил японец Норё Танигути для описания процесса построения новых объектов и материалов при помощи манипуляций с отдельными атомами. Нанометр — одна миллиардная часть метра. Размер атома — несколько десятых нанометра. Все предыдущие научно-технические революции сводились к тому, что человек все более умело, копировал механизмы и материалы, созданные Природой. Прорыв в область нано-технологий — совсем другое дело. Впервые человек будет создавать новую материю, которая Природе была неизвестна и недоступна. Фактически наука подошла к моделированию принципов построения живой материи, которая основана на самоорганизации и саморегуляции.

Нанотехнологию довольно трудно определить точно, поскольку она возникла постепенно, в течение десятков лет, в результате развития и слияния целого ряда научных направлений в физике и химии 20-го века. Несмотря на проблемы с определением, нанотехнология уже реально существует, и в этой области ученые многих стран сейчас упорно соревнуются друг с другом, постоянно получая новые важные и интересные результаты. Можно сказать, что нанотехнология возникла в результате «освоения» и практического применения многих фундаментальных достижений науки, полученных за долгое время и только сейчас ставших основой новых технологий /10/.

Примерно через сорок лет после знаменитой лекции Ричарда Ф. Фейнмана, Эрик К. Дрекслер в своей книге «Машины творения» (1986) предложил создавать устройства, названные им «молекулярными машинами», и раскрыл удивительные возможности, связанные с развитием нанотехнологии. Воображаемые устройства Дрекслера по своим размерам были значительно меньше, чем хорошо известные всем биологические клетки.

В 1981 году сотрудники фирмы IВМ Г. Бининг и Г. Рорер, создали сканирующий туннельный микроскоп (СТМ), позволяющий получать изображение с разрешением на уровне размеров отдельных атомов, что явилось исключительно важным научным достижением, поскольку исследователи впервые получили возможность непосредственно наблюдать и изучать мир в нанометровом, атомарном масштабе /8/.

Японские фирмы и научные организации, в свою очередь, начали энергично развивать методики в области микроскопии, в результате чего, за короткое время были созданы новые типы сканирующих туннельных микроскопов, а также электронных микроскопов с очень высоким разрешением (напомним, что разрешением оптического прибора физики называют размер наименьшей детали, которую можно выделить на получаемом изображении), позволяющих исследовать движение отдельных атомов и молекул. Это привело к энергичному развитию экспериментальной техники в нанометровом диапазоне и значительно расширило наши представления о микромире и нанообъектах. В 1991 году Япония начала осуществлять государственную программу по развитию техники манипулирования атомами и молекулами (проект «Атомная Технология»), которая привлекла внимание исследователей во многих странах.

В 1990 году началась реализация огромного международного проекта по определению последовательности укладки около 3 миллиардов нуклеотидных остатков в записи генетической информации (проект «Геном Человека»), ставшего ярким прорывом в биологии и медицине. Этот проект одновременно является исключительно важным для развития нанотехнологий, поскольку открывает новые огромные возможности в информационных технологиях, позволяя понять, а затем и использовать принципы обработки информации в живой природе (биоинформатика). Можно даже сказать, что до 1990 года информационная технология (ИТ) была всего лишь составной частью или «ветвью» электроники, а после 1990 года от нее отросла (как от ветви настоящего дерева) независимая отдельная веточка, которую можно назвать биоинформационной технологией. В связи с осуществлением проекта «Геном Человека» произошло также быстрое и энергичное развитие разнообразных исследовательских методик в области собственно биотехнологий.

Проект «Геном Человека» был завершен в 2000 году и позволил ученым прочитать генетическую информацию, связанную с человеческим организмом, что уже привело к созданию новых лекарств по новым принципам и на новой основе (геномика). Следующим естественным этапом стало развитие новых отраслей фармацевтической промышленности и создание новых производственных процессов и мощностей, а также расширение сферы всего бизнеса и деловой активности в этой обширной отрасли.

Можно ожидать, что лекарственные препараты в XXI веке будут выпускаться буквально в индивидуальном порядке (т. е. для каждого конкретного пациента на основе его генной информации будут разрабатываться препараты, обеспечивающие максимальный лечебный эффект при данном заболевании и т. п.). Такая ориентированная на заданного человека система лечения уже даже получила название «индивидуальной» терапии или «лечения по заказу» (tailor-made therapy) и она, безусловно, открывает перед практикующими врачами огромные перспективы. Дальнейшие исследования позволят перейти от генома человека к изучению молекулярной структуры белков, особенностей их функционирования в живых организмах, механизмов их взаимодействия и т. п., что вновь неожиданно приводит нас ко многим задачам и проблемам, связанным с информационной технологией. Понимание и использование механизмов взаимодействия на молекулярном уровне важны не только для биологии, но и составляют основу нанонауки в целом.

Поэтому фундаментальные исследования XXI века в области нанотехнологий должны обязательно нацеливаться именно на изучение механизмов процессов на молекулярном уровне. В прикладных задачах, по-видимому, основное внимание будет уделяться проблемам биотехнологии, а также дальнейшему развитию и прогрессу полупроводниковой техники и информационных приложений (созданию новых типов интегральных схем, запоминающих устройств и т. д.).

В области медицины мы уже можем всерьез задуматься о реализации самых немыслимых фантазий (борьба со старостью, лечение всех заболеваний, полная победа над раком). Возможно, в XXI веке мы будем заниматься даже проблемой бессмертия человека. Нанотехнология должна стать основой для практической реализации многих вечных стремлений человека. В 2000 году нанотехнология делает первые шаги и начинает бурно развиваться, но к середине столетия уже можно ожидать существенного прорыва во многих областях, включая информационные технологии, биологию, создание «информационного общества», медицину и т. п./11/

2. ФУНДАМЕНТАЛЬНЫЕ ПОЛОЖЕНИЯ

Для понятия нанотехнология, пожалуй, не существует исчерпывающего определения, но по аналогии с существующими ныне микротехнологиями следует, что нанотехнологии — это технологии, оперирующие величинами порядка нанометра. Поэтому переход от "микро" к "нано" — это качественный переход от манипуляции веществом к манипуляции отдельными атомами.

2.1 Атомно-силовая микроскопия

Одним из методов, используемых для изучения нанообъектов, является атомно-силовая микроскопия. С помощью атомно-силового микроскопа (АСМ) можно не только увидеть отдельные атомы, но также избирательно воздействовать на них, в частности, перемещать атомы по поверхности. Учёным уже удалось создать двумерные наноструктуры на поверхности, используя данный метод. Например, в исследовательском центре компании IBM, последовательно перемещая атомы ксенонa на поверхности монокристалла никеля, сотрудники смогли выложить три буквы логотипа компании, используя 35 атомов ксенонa /5/.

Еще в 1960 году Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы, при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, который смог бы создать свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире, будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма. Последний этап - полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать любое число таких машин. Эти машины смогут таким же способом, поатомной сборкой собирать макровещи. Это позволит сделать вещи на порядок дешевле - таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Принципиальный недостаток такого робота - принципиальная невозможность создания механизма из одного атома.

Природа химических связей налагает ряд ограничений на подвижность атомов в кристаллической структуре или молекуле, и зачастую необходимо знать, с какой силой нужно воздействовать на один атом, чтобы случайно не отделить остальные, связанные с ним. И позже, учеными IBM было получено значение минимальной энергии, необходимой для отделения атома от той или иной поверхности /1/.

2.2 Наночастицы

Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы, размерами от 1 до 1000(свыше 100 нанометров наночастицами можно назвать их условно) нанометров обычно называют «наночастицами». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дешевы и могут быть механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров - белками, нуклеиновыми кислотами. Тщательно очищенные наночастицы могут самовыстраиваться в определенные структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства.

Страницы: следующая →

12Смотреть все

  1. История развития нанотехнологий

    Реферат >> Физика

  2. Нанотехнологии для школьников

    Реферат >> Физика

    … с веществом к манипуляции отдельными атомами. История возникновения и развития нанотехнологий Ричард Фейнман – пророк нанотехнологической революции …

  3. Философские проблемы развития и применения нанотехнологий

    Научная работа >> Философия

    … . Редукционизм имеет богатейшую философскую историю , восходящую к досократикам, но … быть четкой границы. В истории европейской философии Нового времени такой … потребность явилась доминирующей для возникновения нанотехнологии . Одной из причин необходимости …

  4. Философия истории П.А. Сорокина

    Реферат >> Философия

    … была такая необходимость? Абдусалам Гусейнов: История возникновения института немного сложней. Сталин его … проблем. Новые проблемы возникают и с появлением нанотехнологий К примеру, стоит насыпать немного «нанопорошка» …

  5. История развития современных реставрационных материалов

    Реферат >> Медицина, здоровье

    … аппарата. Как выглядит история развития современных реставрационных … пломбировочные материалы на основе нанотехнологий . Полимерные пломбировочные материалы … полимеризационной усадки пломбировочного материала, возникновение полимери-зационного стресса — …

Хочу больше похожих работ…

Краткая история развития нанотехнологий.

Примерно в 400 г. до н.э. греческий философ Демокрит впервые использовал слово "атом", что в переводе с греческого означает "не раскалываемый", для описания самой малой частицы вещества, тем самым положив начало развитию нанотехнологий.

Примером первого использования нанотехнологии можно назвать ч изобретение в 1883 году фотопленки Джорджем Истмэном, который впоследствии основал известную компанию Kodak.

Днем рождения нанотехнологий считается 29 декабря 1959 г. Профессор Калифорнийского технологического института Ричард Фейман выступил с лекцией на ежегодной встрече Американского физического общества в Калифорнийском технологическом институте. В этом докладе, он подчеркнул, что речь идет не только о миниатюризации, но и о таких возможностях, как размещение всей Британской Энциклопедии на кончике булавки.

По мнению Ричарда, достигнуть этого можно уменьшая обычные размеры в 25000 раз без потери разрешения. Он предполагал, что используя подобные технологии, можно уместить все мировое собрание книг в одну брошюру. "Такое возможно, — сказал Фейман, — в силу сохранения объектами свойства размерности, несмотря на то, что речь идет об атомном уровне".

Он предложил награду в 1000$ тому, кто первым уменьшит страницу к 1/25000 ее первоначального размера так, чтобы ее можно было прочитать с помощью электронного микроскопа. В 1985 году выпускник Стэнфорда Том Ньюмэн, используя электронный луч, записал первую страницу "Истории двух городов" Чарльза Диккенса на кончике булавки. Отправив результаты своего труда Фейману, он в течение двух недель получил от него чек.

Многие ученые до сих пор удивляются, насколько точны были предположения Ричарда Феймана.

1966 г. Американский физик Рассел Янг, работавший в Национальном бюро стандартов, придумал пьезодвигатель, применяемый сегодня в сканирующих туннельных микроскопах и для позиционирования наноинструментов с точностью до 0,01 ангстрем (1 нм = 10 Ао).

1968 г. Исполнительный вице-президент компании Bell Альфред Чо и сотрудник ее отделения по исследованиям полупроводников Джон Артур обосновали теоретическую возможность использования нанотехнологии в решении задач обработки поверхностей и достижения атомной точности при создании электронных приборов.

1971 г. Рассел Янг выдвинул идею прибора Topografiner, послужившего прообразом зондового микроскопа.

1974 г. Японский физик Норио Танигучи, работавший в Токийском университете, предложил английский термин "nanotechnology"-"нанотехнологии" (процесс разделения, сборки и изменения материалов путем воздействия на них одним атомом или одной молекулой), быстро завоевавший популярность в научных кругах.

1982 г. В Цюрихском исследовательском центре IBM физики Герд Бинниг и Генрих Рорер (Нобелевские лауреаты 1986 г.) создали сканирующий туннельный микроскоп (СТМ), позволяющий строить трехмерную картину расположения атомов на поверхностях проводящих материалов.

1985 г. Три американских химика: профессор Райсского университета Ричард Смэлли, а также Роберт Карл и Хэрольд Крото (Нобелевские лауреаты 1996 г.) открыли фуллерены — молекулы, состоящие из 60 атомов углерода, расположенных в форме сферы. Эти ученые также впервые сумели измерить объект размером 1 нм.

1986 г. Герд Бинниг разработал сканирующий атомно-силовой зондовый микроскоп, позволивший, наконец, визуализировать атомы любых материалов (не только проводящих), а также манипулировать ими.

1986 г. Американский ученый Эрик Дрекслер, работавший в лаборатории искусственного интеллекта Массачусетского технологического института, написал книгу "Машины созидания" ("Engines of Creation"), в которой выдвинул концепцию универсальных молекулярных роботов, работающих по заданной программе и собирающих что угодно (в том числе и себе подобных) из подручных молекул.

Ученый довольно точно предсказал немало грядущих достижений нанотехнологии, и, начиная с 1989 г. его прогнозы сбываются, причем нередко со значительным опережением сроков.

1987-1988 гг. В НИИ "Дельта" под руководством П. Н. Лускиновича была заработана первая российская нанотехнологическая установка, осуществлявшая направленный уход частиц с острия зонда микроскопа под влиянием нагрева.

1989 г. Ученые Дональд Эйглер и Эрхард Швецер из Калифорнийского научного центра IBM сумели выложить 35 атомами ксенона на кристалле никеля название своей компании.

Для первого в мире целевого переноса отдельных атомов в новое место они использовали СТМ производства IBM. Правда, такая надпись просуществовала недолго — атомы быстро разбежались с поверхности.

1991 г. Японский профессор Сумио Лиджима, работавший в компании NEC, использовал фуллерены для создания углеродных трубок (или нанотрубок) диаметром 0,8 нм. На их основе в наше время выпускаются материалы в сто раз прочнее стали.

Оставалось научиться делать такие трубки как можно более длинными — их размеры оказались напрямую связаны с прочностью изготавливаемых веществ. Кроме того, открылась возможность собирать из нанотрубок различные наномеханизмы с зацепами и шестеренками.

1991 г. В США заработала первая нанотехнологическая программа Национального научного фонда. Аналогичной деятельностью озаботилось и правительство Японии. А вот в Европе серьезная поддержка таких исследований на государственном уровне началась только с 1997 г.

1997 г. Эрик Дрекслер объявил, что к 2020 г. станет возможной промышленная сборка наноустройств из отдельных атомов. До сего времени почти все его прогнозы сбывались с опережением.

1998 г. Сиз Деккер, голландский профессор технического университета создал транзистор на основе нанотрубок, используя их в качестве молекул. Для этого ему пришлось первым в мире измерить электрическую проводимость такой молекулы.

Появились технологии создания нанотрубок длиной 300 нм.

В Японии запущена программа "Astroboy" по развитию наноэлектроники, способной работать в условиях космического холода и при жаре в тысячи градусов.

1999 г. Американские ученые — профессор физики Марк Рид (Йельский университет) и профессор химии Джеймс Тур (Райсский университет) — разработали единые принципы манипуляции как одной молекулой, так и их цепочкой.

2000 г. Немецкий физик Франц Гиссибл разглядел в кремнии субатомные частицы.

Его коллега Роберт Магерле предложил технологию нанотомографии — создания трехмерной картины внутреннего строения вещества с разрешением 100 нм.

Правительство США открыло Национальную нанотехнологическую инициативу (NNI). В бюджете США на это направление выделено 270 млн. долл., коммерческие компании вложили в него в 10 раз больше.

2001 г. Реальное финансирование NNI превысило запланированное (422 млн. долл.) на 42 млн.

2002 г. Сиз Деккер соединил углеродную трубку с ДНК, получив единый наномеханизм. Финансирование NNI составило 697 млн. долл. (на 97 млн. больше плана).

2003 г. Профессор Фенг Лью из университета Юты, используя наработки Франца Гиссибла, с помощью атомного микроскопа построил образы орбит электронов путем анализа их возмущения при движении вокруг ядра.

История развития нанотехнологий

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Там внизу много места» (англ. «There’s Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы, при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма. Последний этап - полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать любое число таких машин. Эти машины смогут таким же способом, поатомной сборкой собирать макровещи. Это позволит сделать вещи на порядок дешевле - таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов.

История развития нанотехнологии

До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Принципиальный недостаток такого робота - принципиальная невозможность создания механизма из одного атома.

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: «Машины создания: грядёт эра нанотехнологии» («Engines of Creation: The Coming Era of Nanotechnology») и «Nanosystems: Molecular Machinery, Manufacturing, and Computation». Центральное место в его исследованиях играли математические расчёты, с помощью которых можно было проанализировать работу устройства размерами в несколько нанометров.

Во второй половине 20 столетия был дан старт реализации нескольких долговременных научных программ. Выполнение их продолжается в настоящее время, а завершение работ по ним планируется в середине 21 века. Одной их таких программ является космическая программа, которая подразумевает исследования, как ближайшего космоса, так и отдаленных уголков Вселенной. В результате реализации этой программы объединенным усилием научных коллективов разных стран мира были созданы международные космические станции, на которых используется новейшее оборудование, изготовленное в различных лабораториях. К таким программам относится также грандиозная по замыслу международная программа «Геном человека», целью которой является расшифровка генного кода человека. Параллельно развиваются программы «Геномы животных». Успешно реализуются международные экологические программы, международные программы мониторинга объектов окружающей среды. Примером сплава науки и техники является интереснейшая и перспективнейшая научная программа «Развитие нанотехнологий».

К нанотехнологиям принято относить процессы и объекты с длиной от 1 до 100 нм. 1 нм составляет одну миллионную долю миллиметра. Если сравнить 1 нм с толщиной волоса, то получится что 1 нм примерно в 100 раз меньше толщины волоса. Верхняя граница нанообласти соответствует минимальным элементам в больших интегральных схемах, которые широко применяются в полупроводниковой и компьютерной технике. Что касается нижней границы, то размером в 1 нм и около того обладают отдельно взятые молекулы; при этом интересно, что радиус двойной спирали молекулы ДНК равен 1 нм, а многие вирусы имеют размер приблизительно 10 нм. Нанотехнологии имеют дело с ничтожно малыми величинами, в сотни раз меньшими длины волны видимого света и сопоставимыми с размерами атомов. Поэтому переход от «микро» к «нано» — это уже не количественный, а качественный переход, скачок от манипуляции веществом к манипуляции отдельными атомами. Квантовая физика 20 века при изучении объектов микромира оперировала в основном их математическими моделями. Теперь ученые могут оперировать объектами микромира непосредственно: искусственно создавать микрообъекты, перемещать их в пространстве, закреплять их на поверхности, то есть действовать так, как будто мы имеем дело с привычными для нас микрообъектами.

В научных центрах мира развитие нанотехнологий как технологий изготовления сверхмикроскопических конструкций из мельчайших частиц материи идет в основном по трем направлениям:

1. изготовление электронных схем с активными элементами, величиной, примерно, со среднюю молекулу;

2. разработка и изготовление наномашин, то есть механизмов и роботов такого же размера;

3. непосредственная манипуляция атомами и молекулами и сборка из них всего сущего.

Именно поэтому они представляются весьма перспективными для получения новых конструкционных материалов, полупроводниковых приборов, устройств для записи информации, ценных фармацевтических препаратов. Нанотехнологии могут привести мир к новой технологической революции и изменить среду обитания человека.

Нанотехнологии имеют междисциплинарный характер – они объединяют все связанные непосредственно с атомами и молекулами технические процессы, осуществляемые и изучаемые в разных естественных науках.

Начало нанонауки положил в 1959 году Ричард Ф.Фейнман при прочтении лекции, в которой была рассмотрена возможность создания веществ совершенно новым способом, а именно «атомной укладкой», при которой человек манипулирует нужными атомами поштучно, располагая их в требуемом ему порядке.

В 1986 году Эрик К.Дрекслер предложил создавать устройства, названные им «молекулярными машинами», и раскрыл удивительные возможности, связанные с развитием нанотехнологий.

Начиная с 1980 года, в технологии производства транзисторов и лазеров все чаще стали использоваться искусственно создаваемые пленки толщиной около 10нм, что позволяло изготавливать устройства с новыми, повышенными техническими характеристиками. В 1980 году в Японии был изготовлен первый полевой транзистор с высокой подвижностью носителей. В 1981 году сотрудники фирмы IBM создали сканирующий туннельный микроскоп, позволяющий получать изображение с разрешением на уровне размеров отдельных атомов. Работая со сканирующим микроскопом, экспериментаторы вышли на следующий этап развития, а именно стали проводить прямые технологические операции на атомарном уровне.

В 1990 году началась реализация огромного международного проекта по определению последовательности укладки около 3 млрд нуклеотидных остатков в записи генетической информации – проекта «Геном человека», ставшим ярким прорывом в биологии и медицине. Этот проект одновременно является исключительно важным для развития нанотехнологий, поскольку открывает новые возможности в информационных технологиях, позволяя понять, а затем и использовать принципы обработки информации в живой природе. В 1991 году в Японии начала осуществляться первая государственная программа по развитию техники манипулирования атомами и молекулами (проект «Атомная технология»). Это ознаменовало новый этап в развитии нанонауки и нанотехнологий: государство стало поддерживать направление, признав его приоритетность не только для национальной науки, но и для государства в целом.

В настоящее время нанотехнологии все больше входят в нашу жизнь. Реальный пример – DVD-диски, производство которых было бы невозможно без нанотехнологического контроля матриц. Очень популярны в промышленных устройствах очистки питьевой воды и получении сверхчистой воды так называемые нанофильтрационные мембранные фильтры, позволяющие задерживать частицы молекулярного размера. Стали реальностью квантовые точки в технологии получения полупроводников, которые эффективнее известных в 1000 раз. Этот список можно продолжить:

· «нановолокна», состоящие из 60-70 молекул, как новое состояние поверхности вещества и создание сверхлегких материалов;

· Нанозеркало для лазеров со сверхвысокой отражающей способностью;

· Атомная игла – сверхтонкая игла, которая изучает рельеф поверхности на молекулярном уровне;

· Нанороботы-манипуляторы, создающие разные типы поверхностей путем переноса отдельных молекул;

· Наногенераторы электрического заряда внутри человеческого организма для электропитания имплантатов;

· Сверхскоростной нано-Интернет с потенциалом увеличения скорости в сотни раз;

· Диагностика качества пищевых продуктов с помощью наносенсоров (квантовых точек) для выявления опасных химических или биологических загрязнителей пищевых продуктов;

· Наногранулы, которые внутри человеческого тела доставляют молекулу лекарственного препарата не просто к органу-мишени, но прямо к рецептору, который, по сути, также является молекулой и отвечает за реализацию физиологического эффекта;

· Нанокод, то есть молекулы антител, иммобилизованные на поверхности нанонитей для идентификации антигенов по иммунной реакции;

· Наночастицы косметического крема, проходящие через мембраны клеток кожи, для настоящего клеточного питания дермы.

Что-то из выше перечисленного уже становится реальностью, что-то находится в стадии доработки. Важно, что уже сейчас все это работает и приносит огромную пользу. Потенциальные возможности нанотехнологий поистине не знают границ, поэтому необходимо государственное участие в проектах по нанотехнологиям. На сегодняшний день государственную поддержку имеют нанотехнологии в США, Японии, России. Существует Объединенный комитет Евросоюза по нанотехнологиям.

Основные даты в истории развития нанотехнологий

1905 год. Швейцарский физик Альберт Эйнштейн опубликовал работу, в которой доказывал, что размер молекулы сахара составляет примерно 1 нанометр.

1931 год. Немецкие физики Макс Кнолл и Эрнст Руска создали электронный микроскоп, который впервые позволил исследовать нанообъекты.

1959 год. Американский физик Ричард Фейнман впервые опубликовал работу, в которой оценивались перспективы миниатюризации.

1968 год. Альфред Чо и Джон Артур, сотрудники научного подразделения американской компании Bell, разработали теоретические основы нанотехнологии при обработке поверхностей.

1974 год. Японский физик Норио Танигучи ввел в научный оборот слово "нанотехнологии", которым предложил называть механизмы, размером менее одного микрона. Греческое слово "нанос" означает примерно "старичок".

1981 год. Германские физики Герд Бинниг и Генрих Рорер создали микроскоп, способный показывать отдельные атомы.

1985 год. Американский физики Роберт Керл, Хэрольд Крото и Ричард Смэйли создали технологию, позволяющую точно измерять предметы, диаметром в один нанометр.

1986 год. Нанотехнология стала известна широкой публике. Американский футуролог Эрк Дрекслер опубликовал книгу, в которой предсказывал, что нанотехнология в скором времени начнет активно развиваться.

1989 год. Дональд Эйглер, сотрудник компании IBM, выложил название своей фирмы атомами ксенона.

1998 год. Голландский физик Сеез Деккер создал транзистор на основе нанотехнологий.

1999 год. Американские физики Джеймс Тур и Марк Рид определили, что отдельная молекула способна вести себя также, как молекулярные цепочки.

2000 год. Администрация США поддержала создание Национальной Инициативы в Области Нанотехнологии\National Nanotechnology Initiative. Нанотехнологические исследования получили государственное финансирование. Тогда из федерального бюджета было выделено $500 млн. В 2002 сумма ассигнований была увеличена до $604 млн. На 2003 год "Инициатива" запрашивает $710 млн.

В Википедии есть статьи о других людях с фамилией Танигути.

Норио Танигути (яп.谷口 紀男 Танигути Норио ) - японский физик, впервые предложивший термин «нанотехнологии».

Биография

Норио Танигути родился в 1912 году. Свои исследования Танигути начинал в области высокоточной абразивной обработки твердых и хрупких материалов. Позднее, в Токийском университете (Tokyo Science University) занимался изучением ультрапрецизионной обработки материалов с помощью различных технологий - электрического разряда, микроволн, ионных и электронных пучков, а также лазеров.

В 1974 году в своей работе предложил термин «нанотехнология».

2. История возникновения и развития нанотехнологий

Нанотехнологиями («nano-technology») он называл процессы создания полупроводниковых структур с точностью порядка нанометра с помощью методов фокусированных ионных пучков, осаждения атомных слоев и др.

В 1986 году термин «нанотехнологии» независимо от Норио Танигути предложил американский инженер и популяризатор Эрик Дрекслер в своей книге «Машины создания: Грядущая эра нанотехнологии».

Танигути ушёл из жизни в 1999 году.

Источники

  • Taniguchi N. On the Basic Concept of «Nano-Technology» // Proc. Intl. Conf. Prod. Eng. Tokyo. Part II. - Japan Society of Precision Engineering, 1974.

В ходе конференции посвященной проблемам биобезопасности нанотехнологии ученые предложили правительству принять определенный регламент по контролю за продуктами наноиндустрии.

Правительства многих стран в наше время организуют специальные конференции и выделяют значительные суммы на изучение влияния нанотехнологии на окружающую среду.

Одним из вопросов, которым задаются как ученые, так и обыватели, в особенности жители мегаполисов, является воздух, который мы вдыхаем. Ни для кого не секрет, что наличие гигантского количества заболеваний хроническим бронхитом и астмой, включая врожденные случаи данной болезни, объясняются токсическими и загрязненными выбросами в атмосферу промышленных предприятий и бытовых устройств.

В данной связи ученые проводят исследование поведения наночастиц в атмосфере и последствия их вдыхания человеком. В результате опытов над лабораторными грызунами была выявлена высокая чувствительность клеток эпителия дыхательной системы к наночастицам, которые накапливались в носовых путях подопытных животных, вызывая риниты и другие, более тяжелые заболевания.

Не меньшее внимание привлекает проблема влияния наноматериалов на окружающую среду. Так было проведено исследование о риске для окружающей среды пяти основных типов наноматериалов, включая нанотрубки, квантовые точки и бакиболы. Исследователи определяли различные типы рисков загрязнения для разных технологических операций, включая производство лекарств, очистку нефти. На основании полученых данных профессор по охране окружающей среды делает в статье вывод, что создание наноматериалов представляет меньший риск, чем текущие индустриальные процессы.

Наночастицы, попадающие в почву не причинят экосистеме никакого заметного вреда. Был проведен ряд опытов, в которых фуллерены помещали в различные виду почв и затем исследовали их поведение и их влияние на микроорганизмы и минеральные вещества. Фуллерены представляют собой каркасные сферические многогранники, составленные из правильных пяти- и шестиугольников с атомами углерода в вершинах. Существенные изменения могли бы стать фатальными для элементов пищевых цепочек растений. Однако результаты наблюдений показали, что никакой негативной динамики не производит: микроорганизмы живут и здравствуют, баланс веществ не затронут.

Нанотехнологии, безусловно, способствуют техническому прогрессу человечества - ученые регулярно рапортуют о новых успехах, способных изменить жизнь и быт людей к лучшему. Разработанные с использованием нанотехнологий наночастицы могут помочь в лечении раковых заболеваний, Однако некоторые наночастицы, напротив, могут вызывать рак в организме человека. Наночастицы из диоксида титана (TiO2), которые сейчас встречаются во множестве продуктов, накапливаются в организме и приводят к системным генетическим повреждениям. Наночастицы из диоксида титана (TiO2) приводят к разрыву одно- и двухцепочечных ДНК, а также приводят к повреждению хромосом.

Попадая в организм титановые наночастицы накапливаются в различных органах, поскольку в организме нет механизмов их выведения. Вследствие своих малых размеров они легко проникают в клетки и начинают влиять на их элементы.

Масштабы использования наночастиц в производстве косметики растут с каждым годом, и, как считают производители, в этом нет ничего дурного. Иной позиции придерживаются некоторые экологи. Использование наночастиц в косметике не менее вредно, чем добавки мышьяка и свинца, полагают австралийские представители международной экологической организации «Друзья Земли». Во всех выбранных наугад тестовых группах продуктов, исследователи обнаружили наночастицы.

Нанотехнологии применяются в косметике куда шире, чем полагают потребители. Помимо наличия наночастиц, семьдесят процентов протестированных продуктов содержит химические усилители, которые облегчают проникновение наночастиц через кожу в кровь. Не избежали обвинений многие популярные производители и марки косметики. Наночастицы нашли в продуктах Клиник, Лаком, Л"Ореаль, Макс Фактор, Ревлон, Ив Сан Лоран, при том, что в составе они не были указаны. А вот производитель косметики Кристиан Диор не только включил наночастицы в состав продукции, но и указал их в списке ингредиентов.

Результаты исследования явно указывают на опастность новой косметики. В 2009 году в Евросоюзе был введен закон, согласно которому все кремы от загара, содержащие наноматериалы и наночастицы, должны пройти тестирование до 2012 года.

Этот случай - далеко не первый, когда экологи и ученые поднимают вопрос опасности, которую могут представлять современные нанотехнологии. В частности, некоторые ученые полагают, что появление наночастиц в атмосфере в промышленных масштабах может изменить климат Земли, а также предупреждают об опасности употребления пищи, созданной с использованием нанотехнологий

Американские ученые обнаружили в атмосфере Земли значительное количество наночастиц, которое продолжает увеличиваться. По их мнению, наночастицы, отражая солнечные лучи, могут серьезно изменить климат на планете, вызвав очередной Ледниковый период.

По последним наблюдениям американских ученых, в атмосфере нашей планеты уже находится значительное количество наночастиц, невидимых глазом, но могущих оказать влияние как на погодные процессы.

Количество наночастиц в разных частях света увеличивается, но почему это происходит остается загадкой. Ученые занимались вопросом того, как образуются наночастицы и каким образом происходит увеличение их количества, когда они вступают во взаимодействия с различными органическими испарениями.

Однако, им удалось выяснить, что некоторые виды органики быстро растут в атмосфере. Собираясь в больших количествах, они отражают солнечный свет назад в космос - своего рода обратный парниковый эффект. Кроме того, отмечают ученые, распространение наночастиц в воздухе может обострить такие заболевания, как астму, эмфизему и другие легочные заболевания.

В мире наблюдается бум вложений в наноотрасли. Большая часть инвестиций в наноразработки приходится на США, ЕС, Японию и Китай. Количество научных публикаций, патентов и журналов непрерывно растет. Существуют прогнозы создания уже к 2015 году товаров и услуг на $1трлн, включая и образование до 2 млн. рабочих мест.

В России Министерство образования и науки создало Межведомственный научно-технический совет по проблеме нанотехнологий и наноматериалов, деятельность которого направлена на сохранение технологического паритета в будущем мире. Для развития нанотехнологий в целом и наномедицины, в частности, готовится принятие Федеральной целевой программы по их развитию. Данная программа будет включать подготовку целого ряда специалистов в длительной перспективе.

Описанные во второй главе реферата успехи наномедицины станут доступны по разным оценкам только через 40-50 лет. Однако целый ряд последних открытий, разработок и инвестиций в наноотрасли привел к тому, что все больше аналитиков сдвигают эту дату на 10-15 лет в сторону уменьшения, и быть может это еще не предел.

С помощью достижений нанотехнологии в целом, и наномедицины в частности, станет возможной имплантация наноустройств в человеческий мозг, многократно увеличивая знания человека и скорость его мышления. Эти прогнозы, включая потенциал достижения личного бессмертия, и стали одним из главных факторов появления нового философского течения - трансгуманизма, согласно которому человеческий вид является не венцом эволюции, а промежуточным звеном. Этому виду еще только предстоит радикальное усиление своих интеллектуальных и физических возможностей.

Конечно же, «об руку» с достижениями идут и проблемы - например, биосовместимость наноматериалов и то, что мало изучаются, возможные вредные для здоровья человека последствия внедрения в организм наночастиц и микроустройств. Научных исследований, посвященных рискам нанотехнологий, публикуется несравненно меньше, чем работ, утверждающих их превосходство и необходимость.



Наномедицина и нанотехнология вообще являются новыми областями, и существует немного экспериментальных данных об их неблагоприятных эффектах. Нехватка знаний о том, как наночастицы будут встраиваться в биохимические процессы в человеческом теле, доставляет особое беспокойство. В недавней статье в Медицинском Журнале Австралии говорится, что правила безопасности для нанопрепаратов могут потребовать уникальных методов оценки риска, учитывая новизну и разнообразие продуктов, высокую подвижность и реакционную способность проектируемых наночастиц, и что их внедрение в практику вызовет размывание диагностических и терапевтических классификаций «лекарство» и «лечебное устройство». В настоящее время некоторые учёные говорят о ещё более глобальных проблемах наномедицины, ставя под вопрос её существование, как реальной науки, среди них - один из мировых ведущих экспертов в нанотоксикологии – Гюнтер Обердостер, профессор токсикологии в отделе экологической медицины в Университете Рочестера. «Во многом обещания наномедицины – это пускание пыли в глаза. Действительно, многие вещи выглядят очень многообещающими, но до сих пор проводились только исследования на животных, чтобы показать принцип работы»,-говорит Обердостер.

Кроме очевидных потенциальных рисков для пациентов, есть другие токсикологические риски, связанные с наномедициной. Существуют еще и проблемы по утилизации наноотходов и загрязнению окружающей среды в результате производства наномедицинских препаратов и материалов. «Эти потенциальные риски должны быть также тщательно оценены, – говорит Обердостер. – До сих пор этого не сделано».

Русские ученые обнаружили, что в среде обитания человека огромное множество биологически активных наночастиц, которые попадают в организм человека без врачебного контроля и влияют на организм человека далеко не самым лучшим образом. Например, вдыхание наночастиц полистирола не только вызывает воспаление легочной ткани, но также провоцирует тромбоз кровеносных сосудов. Есть сведения, что углеродные наночастицы могут вызывать расстройства сердечной деятельности и подавлять активность иммунной системы. Опыты на аквариумных рыбах и собаках показали, что фуллерены, многоатомные шаровидные молекулы углерода поперечником в несколько нанометров, могут разрушать ткани мозга. Проникновение наночастиц в биосферу чревато многими последствиями, прогнозировать которые пока не представляется возможным из-за недостатка информации.

Многе считают, что развитие наномедицины приведёт к ряду социальных проблем. Эрик Дрекслер - классик в области нанотехнологических разработок и предсказаний, отметил, что создание технологии производства репликаторов может, например, способствовать деспотическим формам правления (организация слежки за населением, контроль тела и сознания человека).

Может усилиться социальное неравенство, особенно на первых стадиях внедрения достижений нанотехнологии в медицину, когда стоимость новых лекарств и методов будет ещё достаточно высока. Вследствие этого усугубятся некоторые моральные проблемы, уже существующие в современной медицине.

Значительное увеличение продолжительности жизни вызовет необходимость пересмотра пенсионного законодательства и усугубит проблему перенаселения земли.

Основную проблему для нашей страны составляет переход от научных лабораторных исследований к экономически выгодному промышленному производству. В то время как в мировой практике вложение в нанотехнологию являются самыми доходными, в России пока мало частных компаний и лиц решаются инвестировать средства в нанотехнологию.

Широко обсуждается ещё одна проблема, которую Дрекслер назвал проблемой «серой слизи». Речь идёт о возможной потере контроля над наночастицами, которые начнут при этом безудержно размножаться. Однако учёные считают, что решение этой проблемы не является столь сложным, особенно по сравнению с основной проблемой создания этих частиц.

Нанотехнология принципиально изменит жизнь человечества, создаст для каждого человека новые перспективы не только в области бытовых удобств, но и в области здоровья. Положительное влияние нанотехнологий на все сферы человеческой жизнедеятельности, несомненно, перевешивает те опасности, которые сопутствуют её конкретным приложениям и которые требуют конкретных предосторожностей.

Нанотехнология – это не только научные и технические достижения. Появление этой науки знаменует собой принципиальные изменения в познании мира и во взаимодействии различных научных дисциплин и разных отраслей промышленности. Нанотехнология – междисциплинарное направление развития науки и техники. Она объединяет физику, химию, биологию, информатику, и, несомненно, в области нанотехнологии предстоит сделать ещё много великих открытий, способных изменить существующий мир.


Вывод

Можно сделать вывод о том, что нанотехнологии постепенно занимают все более важное место в нашей жизни. Внедрение нанотехнологий в нашу жизнь сможет значительно облегчить её, а развитие нанотехнологии в области медицины поможет бороться с самыми страшными болезнями человечества, например с онкологическими заболеваниями. В далёком будущем развитие наномедицины может привести даже к достижению бессмертия. Области применения нанотехнологий многочисленны. А диапазон применения этих технологий увеличивается день ото дня и сулит еще много интересного.

При этом, многие ждут от нанотехнологий очередного «промышленного переворота», какой в свое время произвели микро- или компьютерные технологии. Да, они способны решить некоторые наши остро наболевшие проблемы, но слишком много еще пока неясно в отношении нанотехнологий. Все еще не до конца ясно, насколько безвредны наноматериалы для человека и какие от них могут быть побочные эффекты – проще говоря, какие ограничения существуют для их применения. Требуется еще очень много времени для усовершенствования существующих технологий до того уровня, чтобы можно было говорить о технической революции.

Мы можем с уверенностью говорить что нанотехнология – наука будущего.


Список литературы.

1. Разумовская И.В. Нанотехнология: Учеб. Пособие. Элективный Курс М.: Дрофа, 2009.

2. Сайт о нанотехнологиях Nanotechnology News Network /// ссылка действительна на 18.04.2011

3. Интернет-журнал «Комерческая нанотехнология» /// ссылка действительна на 18.04.2011

4. Российский электронный наножурнал «Российские нанотехнологии» /// ссылка действительна на 18.04.2011

5. Научно-информационный портал по нанотехнологиям/nanotechnologies/ссылка действительна на 18.04.2011

6. Федеральный интернет-портал «Нанотехнологии и наноматериалы» /// ссылка действительна на 18.04.2011

7. Перспективы развития нанотехнологий в россии ///files/journalsf/item/20061107123532.pdf ссылка действительна на 18.04.2011

8. Энциклопедия культур Déjà vu ///main.htmlссылка действительна на 18.04.2011

9. Веб-журнал Futura /// home.php3 ссылка действительна на 18.04.2011

10. R. P. Feynman, "There"s Plenty of Room at the Bottom," Engineering and Science (California Institute of Tech-nology), February 1960, pp.22- 36. Текст лекции доступен в Интернет на странице http://nano.xerox.com/nanotech/feynman.html. Русский перевод опубликован в журнале "Химия и жизнь", № 12, 2002, стр. 21-26.

12. Ю. Д. Семчиков. "Дендримеры - новый класс полимеров". Соросовский Образовательный Журнал. 1998. № 12, стр. 45-51.

13. Robert A. Freitas Jr., "Exploratory Design in Medical Nanotechnology: A Mechanical Artificial Red Cell", Arti-ficial Cells, Blood Substitutes, and Immobil. Biotech. 26(1998):411-430.

14. "Магия микрочипов". "В мире науки", ноябрь, 2002, стр. 6-15.

15. Сканирующая зондовая микроскопия биополимеров. Под ред. И. В. Яминского. М., "Научный мир", 2007.

17. Isaac Asimov, "Is Anyone There?" Ace Books, New York, 1967.

18. Robert C.W. Ettinger, The Prospect of Immortality, Doubleday, NY, 1964. Русский перевод: Роберт Эттингер. Перспективы бессмертия. М., "Научный мир", 2003

19. Robert A. Freitas Jr., ""Nanomedicine. Vol. 1: Basic Capabilities". Landes Bioscience, Austin, Tx, 2009. Готовится к изданию русский перевод.

20. Р. Ф. Фейнман, "Вы, конечно, шутите, мистер Фейнман?", изд. "Регулярная и хаотическая динамика", 2001 г.

21. A. MacKinnon, "Quantum gears: a simple mechanical system in the quantum regime", Nanotechnology 13 (Oc-tober, 2002) 678-681. Текст доступен в Интернете на странице http://arxiv.org/abs/cond-mat/0205647.

22. "Квантовые вычисления: за и против" (сборник). Ижевск, 1999.

23. С.D Howe. Nanotechnology: Slow Revolution. Forrester Research Corporation, August 2002, Cambridge, Maryland, USA, 21 p.

24. C.Б. Нестеров. Нанотехнология. Современное состояние и перспективы. "Новые информационные техноло-гии". Тезисы докладов XII Международной студенческой школы-семинара-М.: МГИЭМ, 2004, 421 с., с.21-22.

25. И.В. Артюхов, В.Н. Кеменов, С.Б. Нестеров. Биомедицинские технологии. Обзор состояния и направления работы. Материалы 9-й научно-технической конференции "Вакуумная наука и техника"-М.: МИЭМ, 2002, с. 244-247

26. И.В. Артюхов, В.Н. Кеменов, С.Б. Нестеров. Нанотехнологии, биология и медицина. Материалы 9-й на-учно-технической конференции "Вакуумная наука и техника"-М.: МИЭМ, 2002, с. 248-253

27. http://refdb.ru/look/1075853.html

28. http://www.gradusnik.ru/rus/doctor/nano/w57k-nanomed1/

29. http://dok.opredelim.com/docs/index-13571.html

30. http://www.uran.donetsk.ua/~masters/2012/fknt/osipova/library/article5.htm

Созданные на их основе вещества называют наноматериалами, а способы их производства и применения - нанотехнологиями. Невооруженным глазом человек способен увидеть предмет, диаметром примерно 10 тыс. нанометров.

Альманах "Понимая Нанотехнологию"Understanding Nanotechnology отмечает, что несмотря на то, что термин "нанотехнология" стал весьма популярным в последние годы, даже люди, выступавшие в поддержку развития этой отрасли науки и техники, часто весьма приблизительно представляют о чем идет речь. Показательно, что в академическом словаре американского английского Webster Dictionary выпуска 1966 года слово "нанотехнология" не значится, несмотря на то, что исследования в наносфере к тому времени проводились достаточно давно.

США впервые выделили значительные бюджетные средства на развитие нанотехнологий при президенте Билле КлинтонеBill Clinton. В анонсирующей этот факт речи (была произнесена в 2000 году) Клинтон объяснил, что нанотехнологии позволяют создать из куска вещества, размером с кусочек сахара, материал, который в десять раз крепче стали. Это определение ныне воспринимается, как вульгарное и донельзя примитивное, однако нет гарантии, что и нынешние определения нанотехнологии в обозримом будущем не устареют и не будут выглядеть кошмарным анахронизмом. Вероятно наибольшие шансы на выживание имеет определение, данное Ритой КолвеллRita Colwell, директором Национального Фонда Науки СШАNational Science Foundation: "Нанотехнологии - это ворота, открывающиеся в иной мир".

Общемировые затраты на нанотехнологические проекты сейчас превышают $9 млрд. в год. На долю США ныне приходится примерно треть всех мировых инвестиций в нанотехнологии. Другие главные игроки на этом поле - Европейский Союз и Япония. Исследования в этой сфере активно ведутся также в странах бывшего СССР, Австралии, Канаде, Китае, Южной Корее, Израиле, Сингапуре, Бразилии и Тайване. Прогнозы показывают, что к 2015 году общая численность персонала различных отраслей нанотехнологической промышленности может дойти до 2 млн. человек, а суммарная стоимость товаров, производимых с использованием наноматериалов, составит, как минимум, несколько сотен миллиардов долларов и, возможно, приблизится к $1 трлн.

Нанотехнологии принято делить на три типа. Промышленное применение наночастиц в красках для автомобилей и автокосметике - пример "инкрементных" нанотехнологий. "Эволюционные" нанотехнологии представлены наномерными датчиками, использующими флуоресцентные свойства квантовых точек (диаметром от 2 до 10 нанометров) и электрические свойства углеродных нанотрубок (диаметром от 1 до 100 нанометров), хотя эти разработки пока находятся в зачаточном состоянии. "Радикальные" нанотехнологии пока что не встречаются, их можно увидеть только в фантастических триллерах. Стоит также ожидать сближения этих трех технологий.

Однако переход от производства в лаборатории к массовому производству чреват значительными проблемами, а надежную обработку материалов в наномасштабе требуемым образом все еще очень трудно реализовать с экономической точки зрения. В настоящее время, наноматериалы используют для изготовления защитных и светопоглощающих покрытий, спортивного оборудования, транзисторов, светоиспускающих диодов, топливных элементов, лекарств и медицинской аппаратуры, материалов для упаковки продуктов питания, косметики и одежды. Нанопримеси на основе оксида церия уже сейчас добавляют в дизельное топливо, что позволяет на 4-5% повысить КПД двигателя и снизить степень загрязнения выхлопных газов. В 2002 году на Кубке ДэвисаDavis Cup были впервые использованы теннисные мячи, созданные с использованием нанотехнологий.

В общей сложности американская промышленность и индустрия других развитых стран сейчас применяют нанотехнологии в процессе производства, как минимум, 80 групп потребительских товаров и свыше 600 видов сырьевых материалов, комплектующих изделий и промышленного оборудования. В США одни только федеральные ассигнования на нанотехнологические программы и проекты выросли с $464 млн. в 2001 году до $1 млрд. в 2005-м. По данным Исследовательской Службы Конгресса СШАCongressional Research Service, в 2006 году США планируют выделить на эти цели $1.1 млрд. Еще $2 млрд. в 2005 году потратили на те же цели американские корпорации (нанолаборатории создали такие гиганты бизнеса, как HP, NEC и IBM, университеты и власти отдельных штатов).

Безоблачное нанозавтра

В последние годы опубликовано множество оптимистических прогнозов о способах применения нанотехнологий. Свойства материалов в наномасштабе отличаются от крупных масштабов из-за того, что в наномасштабе площадь поверхности на единицу объема чрезвычайно велика. Нанотехнологии способны кардинально изменить методы, ныне применяемые в микроэлектронике, оптоэлектронике и медицине. Поэтому нанотехнологии обладают поистине гигантским потенциалом.

Известный ученый Джей Сторрс ХоллJ. Storrs Hall, автор научно-популярной книги "Нанобудущее"Nanofuture: What"s Next For Nanotechnology, утверждает, что нанотехнологии кардинальным образом изменят все сферы жизни человека. На их основе могут быть созданы товары и продукты, применение которых позволит революционизировать целые отрасли экономики. К их числу относятся наносенсоры для идентификации токсичных отходов химической и биотехнологической промышленности, наркотиков, боевых отравляющих веществ, взрывчатки и патогенных микроорганизмов, а также наночастичные фильтры и прочие очистные устройства, предназначенные для их удаления или нейтрализации. Другой пример перспективных наносистем близкого будущего - электрические магистральные кабели на углеродных нанотрубках, которые будут проводить ток высокого напряжения лучше медных проводов и при этом весить в пять-шесть раз меньше. Наноматериалы позволят многократно снизить стоимость автомобильных каталитических конверторов, очищающих выхлопы от вредных примесей, поскольку с их помощью можно в 15-20 раз снизить расход платины и других ценных металлов, которые применяются в этих приборах. Есть все основания считать, что наноматериалы найдут широкое применение в нефтеперерабатывающей промышленности и в таких новейших областях биоиндустрии, как геномика и протеомика.

Физик Тед СэрджентTed Sargent, автор книги "Танец Молекул"The Dance of Molecules: How Nanotechnology is Changing Our Lives, пишет, что существует проект создания наносистемы для введения медикаментов, изменяющих определенные биологические функции внутри живых организмов, к примеру, для развития или укрепления иммунитета против конкретных болезнетворных организмов. Рэй КурцвейлRay Kurzweil, автор книги "Фантастическое Путешествие"Fantatic Voyage: Live Long Enough to Live Ever, прогнозирует, что возможно создание нанороботов-врачей, которые способны "жить" внутри человеческого организма, устраняя все возникающие повреждения или предотвращая их возникновение.

Теоретически нанотехнологии способны обеспечить человеку физическое бессмертие за счет того, что наномедицина сможет бесконечно регенерировать отмирающие клетки. По прогнозам журнала Scientific American уже в ближайшем будущем появятся медицинские устройства, размером с почтовую марку. Их достаточно будет наложить на рану. Это устройство самостоятельно проведет анализ крови, определит, какие медикаменты необходимо использовать и впрыснет их в кровь.

Ожидается, что уже в 2025 году появятся первые роботы, созданные на основе нанотехнологий. Теоретически возможно, что они будут способны конструировать из готовых атомов любой предмет. Нанотехнологиии способны произвести революцию в сельском хозяйстве. Молекулярные роботы способны будут производить пищу, заменив сельскохозяйственные растения и животных. К примеру, теоретически возможно производить молоко прямо из травы, минуя промежуточное звено - корову. Нанотехнологии способны также стабилизировать экологическую обстановку. Новые виды промышленности не будут производить отходов, отравляющих планету. Невероятные перспективы открываются также в области информационных технологий. Нанороботы способны воплотить в жизнь мечту фантастов о колонизации иных планет - эти устройства смогут создать на них среду обитания, необходимую для жизни человека. Джош ВолфеJosh Wolfe, редактор аналитического отчета Forbes/Wolfe Nanotech Report, пишет: "Мир будет просто построен заново. Нанотехнология потрясет все на планете."

Краткая наноистория

Историк науки Ричард БукерRichard D. Booker отмечает, что историю нанотехнологий создать крайне сложно по двум причинам - во-первых, "размытости" самого этого понятия. Например, нанотехнологии часто не являются "технологиями" в привычном смысле этого слова. Во-вторых, человечество всегда пыталось экспериментировать с нанотехнологиями, даже и не подозревая об этом.

Чарльз ПулCharles P. Poole, автор книги "Введение в Нанотехнологию"Introduction to Nanotechnology, приводит показательный пример: в Британском Музее хранится, так называемый "Кубок Ликурга" (на стенах кубка изображены сцены из жизни этого великого спартанского законодателя), изготовленный древнеримскими мастерами - он содержит микроскопические частицы золота и серебра, добавленные в стекло. При различном освещении кубок меняет цвет - от темно-красного до светло-золотистого. Аналогичные технологии применялись и при создании витражей средневековых европейских соборов.

Отцом нанотехнологии можно считать греческого философа Демокрита. Примерно в 400 г. до н.э. он впервые использовал слово "атом", что в переводе с греческого означает "нераскалываемый", для описания самой малой частицы вещества. В 1661 году Ирландский химик Роберт БойлRobert Boуle опубликовал статью, в которой раскритиковал утверждение Аристотеля, согласно которому все на Земле состоит из четырех элементов - воды, земли, огня и воздуха (философская основа основ тогдашней алхимии, химии и физики). Бойл утверждал, что все состоит из "корпускулов" - сверхмалых деталей, которые в разных сочетаниях образуют различные вещества и предметы. Впоследствии идеи Демокрита и Бойла были приняты научным сообществом.

Вероятно впервые в современной истории нанотехнологический прорыв был достигнут американским изобретателем Джорджем ИстмэномGeorge Eastmen (впоследствии основал известную компанию Kodak), который изготовил фотопленку (это произошло в 1883 году).

1905 год. Швейцарский физик Альберт Эйнштейн опубликовал работу, в которой доказывал, что размер молекулы сахара составляет примерно 1 нанометр.

1931 год. Немецкие физики Макс Кнолл и Эрнст Руска создали электронный микроскоп, который впервые позволил исследовать нанообъекты.

1968 год. Альфред ЧоAlfred Cho и Джон АртурJohn Arthur, сотрудники научного подразделения американской компании Bell, разработали теоретические основы нанотехнологии при обработке поверхностей.

1974 год. Японский физик Норио Танигучи ввел в научный оборот слово "нанотехнологии", которым предложил называть механизмы, размером менее одного микрона. Греческое слово "нанос" означает "гном", им обозначают биллионные части целого.

1981 год. Германские физики Герд Бинниг и Генрих Рорер создали микроскоп, способный показывать отдельные атомы.

1985 год. Американские физики Роберт КерлRobert Curl, Хэрольд КротоHarold Kroto и Ричард СмэйлиRichard Smalley создали технологию, позволяющую точно измерять предметы, диаметром в один нанометр.

1986 год. Нанотехнология стала известна широкой публике. Американский футуролог Эрик ДрекслерEric Dreхsler опубликовал книгу, в которой предсказывал, что нанотехнология в скором времени начнет активно развиваться.

1989 год. Дональд ЭйглерDonald Eigler, сотрудник компании IBM, выложил название своей фирмы атомами ксенона.

1993 год. В США начали присуждать Фейнмановскую Премию, которая названа в честь физика Ричарда ФейнаманаRichard P. Feynman, который в 1959 году произнес пророческую речь, в которой заявил, что многие научные проблемы будут решены лишь тогда, когда ученые научатся работать на атомарном уровне. В 1965 году Фейнману была присуждена Нобелевская премия за исследования в сфере квантовой электродинамики - ныне это одна из областей нанонауки.

1998 год. Голландский физик Сеез Деккер создал транзистор на основе нанотехнологий.

1999 год. Американские физики Джеймс ТурJames Tour и Марк РидMark Reed определили, что отдельная молекула способна вести себя также, как молекулярные цепочки.

2000 год. Администрация США поддержала создание Национальной Инициативы в Области НанотехнологииNational Nanotechnology Initiative. Нанотехнологические исследования получили государственное финансирование. Тогда из федерального бюджета было выделено $500 млн.

2001 - Марк РатнерMark A. Ratner, автор книги "Нанотехнологии: Введение в Новую Большую Идею"Nanotechnology: A Gentle Introduction to the Next Big Idea, считает, что нанотехнологии стали частью жизни человечества именно в 2001 году. Тогда произошли два знаковых события: влиятельный научный журнал Science назвал нанотехнологии - "прорывом года", а влиятельный бизнес-журнал Forbes - "новой многообещающей идеей". Ныне по отношению к нанотехнологиям периодически употребляют выражение "новая промышленная революция".

Призрачная угроза

История неопровержимо свидетельствует о том, что едва ли все полезные изобретения и научно-технические разработки не только способствуют развитию экономики, но также ставят человечество перед новыми и подчас труднопредсказуемыми опасностями.

В 2004 году банк Credit Suisse First Boston опубликовал аналитический доклад о будущем нанотехнологий. В нем утверждается, что нанотехнология является классической "технологией общего назначения". Другие технологии общего назначения - паровые двигатели, электричество и железные дороги - становились основой для промышленных революций. Нововведения такого рода обычно начинают свое развитие, как очень грубые технологии с ограниченными вариантами использования, но затем быстро распространяется на другие сферы жизни. Это приводит к началу "процесса креативной деструкции" (процесс, в котором новая технология или продукт предоставляют новые возможности и лучшие решения, результатом чего является полная замена предшествующей технологии или продукта. Так электричество заменило пар, а электронная почта - телеграф). В ближайшем будущем креативная деструкция не только будет продолжаться, но и ускорится, и нанотехнология будет ее ядром. Вывод: "Большинство компаний, котирующихся в нынешнем индексе промышленных предприятий Dow Jones Industrial скорее всего через двадцать лет не будут там находиться".

Эрик ДрекслерEric Drexler, создатель и глава исследовательсеого Foresight Institute, автор книги "Механизмы Творения"Engines of Creation, подчеркивает, что сегодня покупатель промышленного продукта платит за его проектирование, материалы, труд рабочих, стоимость производства, транспортировку, хранение и организацию продаж. Если нанофабрики смогут производить большой диапазон продукции в любое время и в любом месте, большая часть этих операций сделается ненужными. Поэтому неизвестно, как нанопроизводство повлияет на цены и на уровень безработцы. Гибкость нанотехнологического производства и возможность выпуска радикально лучшей продукции предполагает, что обычные товары не смогут конкурировать с продукцией нанофабрик во многих областях. Если технология нанофабрик будет принадлежать или контролироваться какой-либо одной организацией, это может привести к "новой монополизации".

Исследовательский Центр За Ответственность в Сфере НанотехнологииCenter for Responsible Nanotechnology предсказывает, что по нынешним стандартам, продукты нанотехнологий будут исключительно ценными. Монополия позволит владельцам технологии установить высокие цены на всю продукцию для получения большой прибыли. Однако, это означает, что миллионы нуждающихся людей не получат доступ к жизненно необходимым дешевым технологиям. Со временем конкуренция снизит цены, но на раннем этапе появление монополии весьма вероятно. Тем более, что "бедные" страны мира не обладают возможностями для финансирований наноисследований. Также маловероятно, что нерегулируемому коммерческому рынку нанотехнологий будет позволено существовать.

Есть и иные аспекты проблемы. Террористы и криминалитет, получившие доступ к нанотехнологиям, могут нанести обществу существенный урон. Химическое и биологическое оружие будет более опасным, а скрыть его будет значительно проще. Станет возможным создание новых типов оружия для убийства на расстоянии, которые будет очень тяжело обнаружить или нейтрализовать. Поимка преступника после совершения им подобного преступления также усложнится. С другой стороны, новые возможности приобретет государство. Теоретически возможно создать очень маленькие недорогие суперкомпьютеры, на которых могут быть запущены незаметные программы постоянного наблюдения за населением. Огромное количество устройств наблюдения может быть изготовлено при достаточно скромных затратах. При возможности построить миллиарды сложных устройств по общей цене в несколько долларов, любая автоматизированная технология, которая может быть применена к одному человеку, может быть применена и ко всем. Любой сценарий физического или психологического контроля, использующий предельные возможности нанотехнологии будет выглядеть научно-фантастическим и неправдоподобным.

Новые вещи и изменения в привычном укладе жизни могут привести к расшатыванию основ общества. Например, медицинские устройства, которые позволят относительно легко модифицировать структуру мозга или осуществлять стимуляцию определенных его отделов для получения эффектов, имитирующих любые формы психической активности, могут стать основой "нанотехнологической наркомании".

Нанотехнологии имеют и блестящее военное будущее. Ныне военные исследования в мире ведутся в шести основных сферах: технологии создания и противодействия "невидимости", энергетические ресурсы, самовосстанавливающиеся системы (например, позволяющие автоматически чинить поврежденную поверхность танка или самолета или изменять ее цвет), связь, а также устройства обнаружения химических и биологических загрязнений. Еще в 1995 году Дэвид ДжеримайяDavid E. Jeremiah, бывший член Объединенного Комитета Начальников ШтабовJoint Chiefs if Staff заявил: "Нанотехнологии способны радикально изменить баланс сил, в большей степени, чем даже ядерное оружие".

Возможно представить устройство размером с мельчайшее насекомое (около 200 микрон), способное находить незащищенных людей и впрыскивать им яды. Летальная доза токсина ботулизма составляет 100 нанограмм или около 1/100 объема всего устройства. 50 миллиардов единиц подобного оружия - количество, достаточное чтобы убить каждого человека на Земле - может храниться в чемодане. Огнестрельное оружие станет намного более мощным - а пули самонаводящимися. Аэрокосмическая техника может быть намного легче и лучше, изготовляться с минимумом или вообще без металла, из-за чего обнаруживать ее с помощью радаров окажется намного сложнее. Встроенные компьютеры позволят активировать на расстоянии любой вид оружия, а более компактные источники энергии позволят сильно улучшить возможности боевых роботов.

Аналитик Том МаккартиTom McCarthy, автор статьи "Молекулярная Нанотехнология и Мировая Система"Molecular Nanotechnology and the World System, утверждает, что нанотехнологии будут способствовать снижению уровня экономического влияния отдельных государств. В ходе военных действий, армии будут предпочитать уничтожать людей, а не военную технику или промышленные предприятия. Нанотехнологии позволят организовать промышленное производство даже в регионах, где нет минеральных ресурсов. Они сделают небольшие группы вполне самодостаточными, что может способствовать распаду государств.

Оценка риска

США и другие страны пытаются оценить риск применения и совершенствования нанотехнологий. Однако в США ассигнования на анализ потенциальных угроз применения наноматериалов пока что очень невелики.

Согласно подсчетам экспертов организации Project on Emerging Nanotechnologies, их общий объем составляет всего лишь $39 млн. - то есть, лишь 4% всех ассигнований на нанотехнологии, идущих из федерального казначейства. Количество проектов, на которые отпускаются эти средства, также довольно скромно - примерно 160.

На слушаниях в Комитете по Науке Палаты Представителей Конгресса СШАHouse Science Committee представители экологических движений и промышленных корпораций в один голос заявили, что расходы на выяснение экологических и медицинских аспектов применения наноматериалов должны составлять от 10-ти до 20-ти процентов всех государственных затрат на нанотехнологии.

Подобное положение дел уже стало причиной множества тревожных предупреждений со стороны специалистов. Наночастицы легко проникают в организм человека и животных через кожу, респираторную систему и желудочно-кишечный тракт. Сейчас уже не подлежит сомнению, что некоторые нанообъекты могут оказывать токсичное действие на клетки различных тканей. В частности, такое воздействие оказывают углеродные нанотрубки, которые считают одним из самых перспективных наноматериалов близкого будущего.

Ситуация осложняется тем, что многие наноструктуры производятся не одним, а несколькими способами. Это обстоятельство увеличивает ассортимент рисков, с которыми могут сталкиваться или уже сталкиваются работники нанотехнологической индустрии. С другой стороны, оно дает основание предположить, что внешне одни и те же нанопродукты, изготовленные на основе различных технологий, будут оказывать неодинаковое воздействие на человека и его среду обитания.

В декабре 2004 года Совет по Научной ПолитикеScience Policy Council Агентства по Охране Окружающей Среды СШАEnvironment Protection Agency создал рабочую группу экспертов, вменив ей в обязанность подготовку Белой Книги, посвященной обсуждению опасностей применения нанотехнологий. Ровно через год черновой вариант этого документа был опубликован.

Авторы проекта Белой Книги начинают с дефиниции объекта своего анализа. Они определяют нанотехнологии как "исследования и разработки на атомном, молекулярном и макромолекулярном уровне в масштабе размеров от одного до ста нанометров; создание и использование искусственных структур, устройств и систем, которые в силу своих сверхмалых размеров обладают существенно новыми свойствами и функциями; манипулирование веществом на атомной шкале дистанций". Это определение достаточно широко, чтобы включить не только уже существующие материалы и изделия, но и те системы, которые появятся лишь через десять-двадцать лет.

Однако до настоящего времени сведения о последствиях неконтролируемых выбросов наночастиц в окружающую среду остаются довольно скудными. Авторы проекта Белой Книги подчеркивают необходимость как можно скорее заполнить эти информационные пробелы. Они подчеркивают, что серьезное изучение поведения наночастиц в окружающей среде началось лишь недавно. Известно, например, что наночастицы способны накапливаться в воздухе, почве и сточных водах, однако у науки пока что не хватает данных для точного моделирования таких процессов. Наночастицы могут разрушаться под действием света и химических веществ, а также при контактах с микроорганизмами, но и эти процессы пока что не слишком хорошо изучены. Наноматериалы, как правило, легче вступают в химические превращения, нежели более крупные объекты того же состава, и поэтому способны образовывать комплексные соединения с ранее неизвестными свойствами. Это обстоятельство увеличивает технологическую перспективность нанообъектов и в то же время заставляет с особым вниманием относиться к связанным с ними рискам.

Еще одна мало исследованная область - последствия контактов наночастиц с живыми клетками и тканями. Не подлежит сомнению, что многие наноматериалы обладают токсичным действием. Например, вдыхание наночастиц полистирола не только вызывает воспаление легочной ткани, но также провоцирует тромбоз кровеносных сосудов. Есть сведения, что углеродные наночастицы могут вызывать расстройства сердечной деятельности и подавлять активность иммунной системы. Опыты на аквариумных рыбах и собаках показали, что фуллерены, многоатомные шаровидные молекулы углерода поперечником в несколько нанометров, могут разрушать ткани мозга. Проникновение наночастиц в биосферу чревато многими последствиями, прогнозировать которые пока не представляется возможным из-за недостатка информации.

Составители Белой Книги настоятельно рекомендуют ускорить проведение широкомасштабных исследований, нацеленных на выяснение опасностей и рисков, связанных с наночастичным загрязнением среды обитания. В частности, необходимо выяснить, какими путями осуществляется биодеградация наночастиц и как она влияет на экологические цепи в живой природе.

К схожим выводам пришел и Клэренс ДэвисJ. Clarens Davies, научный сотрудник исследовательского Центра имени Вудро ВильсонаWoodrow Wilson Center, автор доклада "Управляя Эффектом Нанотехнологий"Managing the Effect of Nanotechnology. Он отмечает, что нанотехнологии являются "новой реальностью", которая пока не поддается государственному регулированию. Крайне сложно использовать для этой цели действующие законы. Поэтому необходимо срочно создавать принципиально новое законодательство, новые механизмы и институты регулирования (в том числе и международные) - иначе джинн может вырваться из бутылки и последствия этого могут быть самыми неприятными.

Нанотехнологии для меня -- это прежде всего а) самые разные датчики и б) компьютеры с малым энергопотреблением и большой вычислительной мощностью.

В течение буквально пяти лет произойдет огромный прогресс в датчиках всех органов чувств, причем в мобильном варианте. Военные технологии очень быстро окажутся у многих и многих людей -- в камерафонах, теленетбуках и прочих странных девайсах. Продвинутые оптические матрицы, продвинутая оптика, продвинутая механика для того, чтобы все это мгновенно фокусировалось и отслеживало объект съемки, огромная вычислительная мощность для обработки видео, бездонная память, которая проглотит любой видеопоток и бережно его сохранит, распределенные торрент-системы, которые передадут все это видео интересующимся. Ольфакторные чипы, которые унюхают все, что интересно их владельцу, и которыми будет оборудован каждый камерафон, букридер и т.д.. Вездесущая GPS и Galileo навигация. Повсеместный интернет, "постоянный коннект". Микрофоны, которые слышат с огромных расстояний. Четкие снимки через любое марево. Я постоянно пишу о подобных технологических новинках у себя в журнале (и сейчас даже ссылок не привожу, все это было). И все это -- нанотехнологии.

Далее empowering (превращение каждого отдельного ламера в крутого профи). Empowering -- это когда у меня сейчас на поясе болтается 200г. камера, готовая снимать HD. А через пять лет такое будет практически у каждого человека, а у особо заинтересованных будет третье поколение камер формата Micro Four Thirds. Почему важно, чтобы это было HD? Потому как это -- emotional broad band. C другой стороны, редко какие шпионы обладали такой аппаратурой, какой сегодня обладает любой подросток, вооруженный сотовым телефоном. Экстраполируйте это еще лет на пять. Все граждане будут экипированы, как журналисты, желающие провести крутое журналистское расследование. Анализ ДНК лет через пять-десять уже будет не проблема. Анализируй родословную своих собачек, птичек, а также родственников и проходящих мимо политиков. Все это нанотехнологии.

Ну и что? Сейчас в России в газетах свободно печатают информацию про политиков, из-за которой в приличных странах эти политики перестают быть таковыми. А в России не перестают. Да и не вся политика публична.

Мой первый пойнт: empowering приводит к тому, что вся политика будет публична, даже если государственное раскрытие информации стремится к нулю. Люди любопытны, и склонны информацией делиться. Нанотехнологии будут стремительно снижать стоимость действий по добыче интересной информации.

Как ни странно, я считаю, что empowering (когда один человек при помощи технологий начинает работать с такой же производительностью, как бригада) проходит сейчас со много большей скоростью, чем помощь со стороны технологий различным группам по интересам. В том числе группам по политическим интересам. Все эти "социальные сети" находятся в самом начале своего пути, ибо социальные сети должны опираться на технологии emotional broadband -- эмоциональной широкополосности. Видео, аудио, трехмерность. В социальных сетях виртуальные миры еще никак себя не показали. В виртуальные миры пока еще нельзя попасть в собственном образе, нужны аватары. Нельзя провести дистантный семейный совет по той же технологии Cisco Telepresence, по которой проходит совет директоров какой-нибудь крупной компании (напомню, что продает Cisco в этой технологии: натуральную величину людей, контакт глазами, голос без задержек и из правильного направления, возможность сохранить стандартное поведение в комнате во время встречи).

Технологии вебинаров угрюмы, лаги губительны для нормальных обсуждений. В асинхронных сервисах социальных сетей нет пока поддержки организации (хотя бы в объеме issue tracking базовой версии Trac) -- никто никому ничего не может поручить, а затем проверить исполнение (я имею ввиду теорию коммуникативного действия Хабермаса). Но это нормально. Софт, как всегда отстает. Ибо аппаратура уже почти готова: камерам не требуется специального освещения, экраны делаются карманным прожектором из любой стены, интернет-трафик после некоторых неизбежных ограничений опять рванет в облака. Аппаратура эта через пять-десять лет будет стоить копейки, а софт так и вовсе будет бесплатным, как и сегодня.

А дальше возможны интересные сценарии типа тех, которые мы наблюдали в Индии во время ликвидации колониального режима. Только сценарии эти будут не страновых масштабов, а весьма локальных. Но в эпицентре этих сценариев мало никому не покажется, ибо это будут такие своеобразные суды Линча. Именно суды Линча: я отнюдь не утверждаю, что технологии дадут ход лучшим свойствам человечьей натуры. Механизм тут ровно такой же, как в знаменитом Манеки-неко, http://zhurnal.lib.ru/4/40_s_z/maneki.shtml , но каждое общество получит от этих технологий то, что оно заслуживает в меру своего варварства.

Хотя у дикарского общества будет много больше возможностей стать менее дикарским: новые технологии прежде всего -- информационные, они продвигают прежде всего образовательные процессы, в какой бы извращенной форме (обсуждение очень неприглядных ситуаций) эти образовательные процессы не проходили. Политика -- это прежде всего образование масс, причем конкурентными образовательными программами. Вот эту-то конкуренцию с самых неожиданных сторон новые технологии и обеспечат. Конкуренцию дикости и цивилизации в том числе. Но в диспутах выиграть может и цивилизация, равно как в силовом физическом столкновении обычно побеждает варвар.

Новые технологии вывернут на свет божий столько грязи, сколько человечество еще не видело. Мир пока еще не большая дважды деревня -- дважды, ибо кроме традиционного смысла "все всех знают" есть еще и неожиданный смысл -- огромное большинство жителей планеты все еще деревенские жители, даже если они уже успели переехать в какие-нибудь пригороды мегаполисов. Мир в эту дважды деревню только-только начинает превращаться. И хорошо, что новые технологии прежде всего являются технологиями образовательными. Но сначала у деревенских дикарей будет empowering для их дикарских замыслов ("дикарского блага") и средства для их дикарской организации в орды, а только потом эти же технологии превратят дикарей в цивилизованных людей, использующих свои способности для благих ("благо цивилизации") целей. Эти же технологии позволят цивилизованным людям обсудить, что именно является этим "благом цивилизации" -- и не прийти ни к какому единому мнению.

Но все начнется с превращения разведтехнологий в массовые. Взять в интернете подробную справочку про текущего докладчика на совещании, где принимаются важные (в том числе и политические) решения, могут еще не все люди. Через пять лет это будет инстинктивным действием. И часто после этого будут приниматься другие решения, "на основании разведданных", а не на основании предоставленной тщательно отфильтрованной информации. Информация хочет быть свободной, а на базе освободившейся информации много-много людей начнет принимать самые неожиданные решения.

Мир изменится, и изменится очень круто. Я не говорю, что мир изменится в лучшую сторону.Просто всё (в том числе и политика) будет происходить много быстрее и разнообразнее, а не лучше или хуже. А в основе этих изменений лежат нанотехнологии -- именно они позволяют получить дешевые асферические линзы, именно они позволяют Intel в эти дни демонстрировать новое поколение процессоров для мобильных телефонов, которые потребляют вдесятеро меньше энергии, именно эти нанотехнологии позволяют создать карманные проекторы высокой четкости и яркости, именно нанотехнологии позволяют иметь много часов видеозаписи во флешке размером с ноготь, именно нанотехнологии переведут связную инфраструктуру на оптоэлектронику, которая сейчас отрабатывается на дорогущих GRID-сетях. А дальше -- emotional broadband, через который к нам ворвется новая политика. Вы только представьте себе какие-нибудь студенческие волнения лет через пять, в которых каждый студент имеет мобильные устройства, о которых военные сейчас только мечтают. И никакое отключение интернета им грозить не будет, ибо mesh-сети тоже на подходе. И никакие "закладки" в процессорах, ибо открытый код для процессоров тоже уже появляется.

Ох, нахлебаемся. Впрочем, это верно для любого уровня технологий: прошлого, нынешнего, будущего. Ох, нахлебались, нахлебываемся, нахлебаемся.