Линейным дифференциальным уравнением второго порядка называется уравнение вида

y "" + p (x )y " + q (x )y = f (x ) ,

где y - функция, которую требуется найти, а p (x ) , q (x ) и f (x ) - непрерывные функции на некотором интервале (a, b ) .

Если правая часть уравнения равна нулю (f (x ) = 0 ), то уравнение называется линейным однородным уравнением . Таким уравнениям и будет в основном посвящена практическая часть этого урока. Если же правая часть уравнения не равна нулю (f (x ) ≠ 0 ), то уравнение называется .

В задачах от нас требуется разрешить уравнение относительно y "" :

y "" = −p (x )y " − q (x )y + f (x ) .

Линейные дифференциальные уравнения второго порядка имеют единственное решение задачи Коши .

Линейное однородное дифференциальное уравнение второго порядка и его решение

Рассмотрим линейное однородное дифференциальное уравнение второго порядка:

y "" + p (x )y " + q (x )y = 0 .

Если y 1 (x ) и y 2 (x ) - частные решения этого уравнения, то верны следующие высказывания:

1) y 1 (x ) + y 2 (x ) - также является решением этого уравнения;

2) Cy 1 (x ) , где C - произвольная постоянная (константа), также является решением этого уравнения.

Из этих двух высказываний следует, что функция

C 1 y 1 (x ) + C 2 y 2 (x )

также является решением этого уравнения.

Возникает справедливый вопрос: не является ли это решение общим решением линейного однородного дифференциального уравнения второго порядка , то есть таким решением, в котором при различных значениях C 1 и C 2 можно получить все возможные решения уравнения?

Ответ на этот вопрос следуюший: может, но при некотором условии. Это условие о том, какими свойствами должны обладать частные решения y 1 (x ) и y 2 (x ) .

И это условие называется условием линейной независимости частных решений.

Теорема . Функция C 1 y 1 (x ) + C 2 y 2 (x ) является общим решением линейного однородного дифференциального уравнения второго порядка, если функции y 1 (x ) и y 2 (x ) линейно независимы.

Определение . Функции y 1 (x ) и y 2 (x ) называются линейно независимыми, если их отношение является константой, отличной от нуля:

y 1 (x )/y 2 (x ) = k ; k = const ; k ≠ 0 .

Однако установить по определению, являются ли эти функции линейно независимыми, часто очень трудоёмко. Существует способ установления линейной независимости с помощью определителя Вронского W (x ) :

Если определитель Вронского не равен нулю, то решения - линейно независимые . Если определитель Вронского равен нулю, то решения - линейно зависимымые.

Пример 1. Найти общее решение линейного однородного дифференциального уравнения .

Решение. Интегрируем дважды и, как легко заметить, чтобы разность второй производной функции и самой функции была равна нулю, решения должны быть связаны с экспонентой, производная которой равна ей самой. То есть частными решениями являются и .

Так как определитель Вронского

не равен нулю, то эти решения линейно независимы. Следовательно, общее решение данного уравнения можно записать в виде

.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами: теория и практика

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

y "" + py " + qy = 0 ,

где p и q - постоянные величины.

На то, что это уравнение второго порядка, указывает наличие второй производной от искомой функции, а на его однородность - нуль в правой части. Постоянными коэффициентами называются уже упомянутые выше величины.

Чтобы решить линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами , нужно сначала решить так называемое характеристическое уравнение вида

k ² + pq + q = 0 ,

которое, как видно, является обычным квадратным уравнением .

В зависимости от решения характеристического уравнения возможны три различных варианта решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами , которые сейчас разберём. Для полной определённости будем считать, что все частные решения прошли проверку определителем Вронского и он во всех случаях не равен нулю. Сомневающиеся, впрочем, могут проверить это самостоятельно.

Корни характеристического уравнения - действительные и различные

Иными словами, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 2. Решить линейное однородное дифференциальное уравнение

.

Пример 3. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет вид , его корни и - вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Корни характеристического уравения - вещественные и равные

То есть, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 4. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

Пример 5. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

Уравнение

где и – непрерывные функция в интервале называется неоднородным линейным дифференциальным уравнение второго порядка, функции и – его коэффицинентами. Если в этом интервале, то уравнение принимает вид:

и называется однородным линейным дифференциальным уравнением второго порядка. Если уравнение (**) имеет те же коэффициенты и , как уравнение (*), то оно называется однородным уравнением, соответствующим неоднородному уравнению (*).

Однородные дифференциальные линейные уравнения второго порядка

Пусть в линейном уравнении

И - постоянные действительные числа.

Частное решение уравнения будем искать в виде функции , где – действительное или комплексное число, подлежащее определению. Дифференцируя по , получаем:

Подставляя в исходное дифуравнение, получаем:

Отсюда, учитывая, что , имеем:

Это уравнение называется характеристическим уравнением однородного линейного дифуравнения. Характеристическое уравнение и дает возможность найти . Это уравнение второй степени, поэтому имеет два корня. Обозначим их через и . Возможны три случая:

1) Корни действительные и разные . В этом случае общее решение уравнения:

Пример 1

2) Корни действительные и равные . В этом случае общее решение уравнения:

Пример 2

Оказались на этой странице, пытаясь решить задачу на экзамене или зачете? Если так и не смогли сдать экзамен - в следующий раз договоритесь заранее на сайте об Онлайн помощи по высшей математике .

Характеристическое уравнение имеет вид:

Решение характеристического уравнения:

Общее решение исходного дифуравнения:

3) Корни комплексные . В этом случае общее решение уравнения:

Пример 3

Характеристическое уравнение имеет вид:

Решение характеристического уравнения:

Общее решение исходного дифуравнения:

Неоднородные дифференциальные линейные уравнения второго порядка

Рассмотрим теперь решение некоторых типов линейного неоднородного уравнения второго порядка с постоянными коэффициентами

где и – постоянные действительные числа, – известная непрерывная функция в интервале . Для нахождения общего решения такого дифференциального уравнения необходимо знать общее решение соответствующего однородного дифференциального уравнения и частное решение . Рассмотрим некоторые случаи:

Частное решение дифференциального уравнения ищем также в форме квадратного трехчлена:

Если 0 – однократный корень характеристического уравнения, то

Если 0 – двухкратный корень характеристического уравнения, то

Аналогично обстоит дело, если – многочлен произвольной степени

Пример 4

Решим соответствующее однородное уравнение.

Характеристическое уравнение:

Общее решение однородного уравнения:

Найдем частное решение неоднородного дифуравнения:

Подставляя найденные производные в исходное дифуравнение, получаем:

Искомое частное решение:

Общее решение исходного дифуравнения:

Частное решение ищем в виде , где – неопределенный коэффициент.

Подставляя и в исходное дифференциальное уравнение, получим тождество, откуда находим коэффициент.

Если – корень характеристического уравнения, то частное решение исходного дифференциального уравнения ищем в виде , когда – однократный корень, и , когда – двукратный корень.

Пример 5

Характеристическое уравнение:

Общее решение соответствующего однородного дифференциального уравнения:

Найдем частное решение соответствующего неоднородного дифференциального уравнения:

Общее решение дифуравнения:

В этом случае частное решение ищем в форме тригонометрического двучлена:

где и – неопределенные коэффициенты

Подставляя и в исходное дифференциальное уравнение, получим тождество, откуда находим коэффициенты.

Эти уравнения определяют коэффициенты и кроме случая, когда (или когда – корни характеристического уравнения). В последнем случае частное решение дифференциального уравнения ищем в виде:

Пример 6

Характеристическое уравнение:

Общее решение соответствующего однородного дифуравнения:

Найдем частное решение неоднородного дифуравнения

Подставляя в исходное дифуравнение, получаем:

Общее решение исходного дифуравнения:

Сходимость числового ряда
Дано определение сходимости ряда и подробно рассматриваются задачи на исследование сходимости числовых рядов - признаки сравнения, признак сходимости Даламбера, признак сходимости Коши и интегральный признак сходимости Коши⁡.

Абсолютная и условная сходимость ряда
На странице рассмотрены знакочередующиеся ряды, их условная и абсолютная сходимость, признак сходимости Лейбница для знакочередующихся рядов - содержится краткая теория по теме и пример решения задачи.

Линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами имеет общее решение
, гдеилинейно-независимые частные решения этого уравнения.

Общий вид решений однородного дифференциального уравнения второго порядка с постоянными коэффициентами
, зависит от корней характеристического уравнения
.

Корни характеристического

уравнения

Вид общего решения

Корни идействительные и различные

Корни ==

действительные и одинаковые

Корни комплексные
,

Пример

Найти общее решение линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами:

1)

Решение:
.

Решив его, найдем корни
,
действительные и различные. Следовательно, общее решение имеет вид:
.

2)

Решение: Составим характеристическое уравнение:
.

Решив его, найдем корни

действительные и одинаковые. Следовательно, общее решение имеет вид:
.

3)

Решение: Составим характеристическое уравнение:
.

Решив его, найдем корни
комплексные. Следовательно, общее решение имеет вид:.

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами имеет вид

Где
. (1)

Общее решение линейного неоднородного дифференциального уравнения второго порядка имеет вид
, где
– частное решение этого уравнения,– общее решение соответствующего однородного уравнения, т.е. уравнения.

Вид частного решения
неоднородного уравнения (1) в зависимости от правой части
:

Правая часть

Частное решение

–многочлен степени

, где – число корней характеристического уравнения, равных нулю.

, где =
является корнем характеристического уравнения.

Где – число, равное числу корней характеристического уравнения, совпадающих с
.

где – число корней характеристического уравнения, совпадающих с
.

Рассмотрим различные виды правых частей линейного неоднородного дифференциального уравнения :

1.
, где– многочлен степени. Тогда частное решение
можно искать в виде
, где

, а– число корней характеристического уравнения, равных нулю.

Пример

Найти общее решение
.

Решение:





.

Б) Так как правая часть уравнения является многочленом первой степени и ни один из корней характеристического уравнения
не равен нулю (
), то частное решение ищем в виде, гдеи– неизвестные коэффициенты. Дифференцируя дважды
и подставляя
,
и
в исходное уравнение, находим.

Приравнивая коэффициенты при одинаковых степенях в обеих частях равенства
,
, находим
,
. Итак, частное решение данного уравнения имеет вид
, а его общее решение.

2. Пусть правая часть имеет вид
, где– многочлен степени. Тогда частное решение
можно искать в виде
, где
– многочлен той же степени, что и
, а– число, показывающее, сколько разявляется корнем характеристического уравнения.

Пример

Найти общее решение
.

Решение:

А) Найдем общее решение соответствующего однородного уравнения
. Для этого запишем характеристическое уравнение
. Найдем корни последнего уравнения
. Следовательно, общее решение однородного уравнения имеет вид
.



характеристического уравнения

, где– неизвестный коэффициент. Дифференцируя дважды
и подставляя
,
и
в исходное уравнение, находим. Откуда
, то есть
или
.

Итак, частное решение данного уравнения имеет вид
, а его общее решение
.

3. Пусть правая часть имеет вид , где
и– данные числа. Тогда частное решение
можно искать в виде, гдеи– неизвестные коэффициенты, а– число, равное числу корней характеристического уравнения, совпадающих с
. Если в выражение функции
входит хотя бы одна из функций
или
, то в
надо всегда вводитьобе функции.

Пример

Найти общее решение .

Решение:

А) Найдем общее решение соответствующего однородного уравнения
. Для этого запишем характеристическое уравнение
. Найдем корни последнего уравнения
. Следовательно, общее решение однородного уравнения имеет вид
.

Б) Так как правая часть уравнения есть функция
, то контрольное число данного уравнения, оно не совпадает с корнями
характеристического уравнения
. Тогда частное решение ищем в виде

Где и– неизвестные коэффициенты. Дифференцируя дважды, получими. Подставляя
,
и
в исходное уравнение, находим

.

Приводя подобные слагаемые, получим

.

Приравниваем коэффициенты при
и
в правой и левой частях уравнения соответственно. Получаем систему
. Решая ее, находим
,
.

Итак, частное решение исходного дифференциального уравнения имеет вид .

Общее решение исходного дифференциального уравнения имеет вид .

Рассмотрим линейное однородное дифференциальное уравнение с постоянными коэффициентами:
(1) .
Его решение можно получить следуя общему методу понижения порядка .

Однако проще сразу получить фундаментальную систему n линейно независимых решений и на ее основе составить общее решение. При этом вся процедура решения сводится к следующим шагам.

Ищем решение уравнения (1) в виде . Получаем характеристическое уравнение :
(2) .
Оно имеет n корней. Решаем уравнение (2) и находим его корни . Тогда характеристическое уравнение (2) можно представить в следующем виде:
(3) .
Каждому корню соответствует одно из линейно независимых решений фундаментальной системы решений уравнения (1). Тогда общее решение исходного уравнения (1) имеет вид:
(4) .

Действительные корни

Рассмотрим действительные корни . Пусть корень однократный. То есть множитель входит в характеристическое уравнение (3) только один раз. Тогда этому корню соответствует решение
.

Пусть - кратный корень кратности p . То есть
. В этом случае множитель входит в p раз:
.
Этим кратным (равным) корням соответствуют p линейно независимых решений исходного уравнения (1):
; ; ; ...; .

Комплексные корни

Рассмотрим комплексные корни . Выразим комплексный корень через действительную и мнимую части:
.
Поскольку коэффициенты исходного действительные, то кроме корня имеется комплексно сопряженный корень
.

Пусть комплексный корень однократный. Тогда паре корней соответствуют два линейно-независимых решения :
; .

Пусть - кратный комплексный корень кратности p . Тогда комплексно сопряженное значение также является корнем характеристического уравнения кратности p и множитель входит в p раз:
.
Этим 2 p корням соответствуют 2 p линейно независимых решений:
; ; ; ... ;
; ; ; ... .

После того как фундаментальная система линейно независимых решений найдена, по получаем общее решение .

Примеры решений задач

Пример 1

Решить уравнение:
.

Решение


.
Преобразуем его:
;
;
.

Рассмотрим корни этого уравнения. Мы получили четыре комплексных корня кратности 2:
; .
Им соответствуют четыре линейно-независимых решения исходного уравнения:
; ; ; .

Также мы имеем три действительных корня кратности 3:
.
Им соответствуют три линейно-независимых решения:
; ; .

Общее решение исходного уравнения имеет вид:
.

Ответ

Пример 2

Решить уравнение

Решение

Ищем решение в виде . Составляем характеристическое уравнение:
.
Решаем квадратное уравнение .
.

Мы получили два комплексных корня:
.
Им соответствуют два линейно-независимых решения:
.
Общее решение уравнения:
.


В некоторых задачах физики непосредственную связь между величинами, описывающими процесс, установить не удается. Но существует возможность получить равенство, содержащее производные исследуемых функций. Так возникают дифференциальные уравнения и потребность их решения для нахождения неизвестной функции.

Эта статья предназначена тем, кто столкнулся с задачей решения дифференциального уравнения, в котором неизвестная функция является функцией одной переменной. Теория построена так, что с нулевым представлением о дифференциальных уравнениях, вы сможете справиться со своей задачей.

Каждому виду дифференциальных уравнений поставлен в соответствие метод решения с подробными пояснениями и решениями характерных примеров и задач. Вам остается лишь определить вид дифференциального уравнения Вашей задачи, найти подобный разобранный пример и провести аналогичные действия.

Для успешного решения дифференциальных уравнений с Вашей стороны также потребуется умение находить множества первообразных (неопределенные интегралы) различных функций. При необходимости рекомендуем обращаться к разделу .

Сначала рассмотрим виды обыкновенных дифференциальных уравнений первого порядка, которые могут быть разрешены относительно производной, далее перейдем к ОДУ второго порядка, следом остановимся на уравнениях высших порядков и закончим системами дифференциальных уравнений.

Напомним, что , если y является функцией аргумента x .

Дифференциальные уравнения первого порядка.

    Простейшие дифференциальные уравнения первого порядка вида .

    Запишем несколько примеров таких ДУ .

    Дифференциальные уравнения можно разрешить относительно производной, произведя деление обеих частей равенства на f(x) . В этом случае приходим к уравнению , которое будет эквивалентно исходному при f(x) ≠ 0 . Примерами таких ОДУ являются .

    Если существуют значения аргумента x , при которых функции f(x) и g(x) одновременно обращаются в ноль, то появляются дополнительные решения. Дополнительными решениями уравнения при данных x являются любые функции, определенные для этих значений аргумента. В качестве примеров таких дифференциальных уравнений можно привести .

Дифференциальные уравнения второго порядка.

    Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    ЛОДУ с постоянными коэффициентами является очень распространенным видом дифференциальных уравнений. Их решение не представляет особой сложности. Сначала отыскиваются корни характеристического уравнения . При различных p и q возможны три случая: корни характеристического уравнения могут быть действительными и различающимися , действительными и совпадающими или комплексно сопряженными . В зависимости от значений корней характеристического уравнения, записывается общее решение дифференциального уравнения как , или , или соответственно.

    Для примера рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами . Корнями его характеристического уравнения являются k 1 = -3 и k 2 = 0 . Корни действительные и различные, следовательно, общее решение ЛОДУ с постоянными коэффициентами имеет вид

    Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Общее решение ЛНДУ второго порядка с постоянными коэффициентами y ищется в виде суммы общего решения соответствующего ЛОДУ и частного решения исходного неоднородного уравнения, то есть, . Нахождению общего решения однородного дифференциального уравнения с постоянными коэффициентами , посвящен предыдущий пункт. А частное решение определяется либо методом неопределенных коэффициентов при определенном виде функции f(x) , стоящей в правой части исходного уравнения, либо методом вариации произвольных постоянных.

    В качестве примеров ЛНДУ второго порядка с постоянными коэффициентами приведем

    Разобраться в теории и ознакомиться с подробными решениями примеров мы Вам предлагаем на странице линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .

    Частным случаем дифференциальных уравнений этого вида являются ЛОДУ и ЛНДУ с постоянными коэффициентами.

    Общее решение ЛОДУ на некотором отрезке представляется линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, .

    Главная сложность заключается именно в нахождении линейно независимых частных решений дифференциального уравнения этого типа. Обычно, частные решения выбираются из следующих систем линейно независимых функций:

    Однако, далеко не всегда частные решения представляются в таком виде.

    Примером ЛОДУ является .

    Общее решение ЛНДУ ищется в виде , где - общее решение соответствующего ЛОДУ, а - частное решение исходного дифференциального уравнения. О нахождении мы только что говорили, а можно определить, пользуясь методом вариации произвольных постоянных.

    В качестве примера ЛНДУ можно привести .

Дифференциальные уравнения высших порядков.

    Дифференциальные уравнения, допускающие понижение порядка.

    Порядок дифференциального уравнения , которое не содержит искомой функции и ее производных до k-1 порядка, может быть понижен до n-k заменой .

    В этом случае , и исходное дифференциальное уравнение сведется к . После нахождения его решения p(x) останется вернуться к замене и определить неизвестную функцию y .

    Например, дифференциальное уравнение после замены станет уравнением с разделяющимися переменными , и его порядок с третьего понизится до первого.