> Первый закон Ньютона: инерция

Первый закон Ньютона и инерция . Изучите основы механики Ньютона, момент инерции движения в физике, формулировка и формула первого закона, инерциальная система.

Первый закон движения Ньютона концентрируется на инерции. Тело в состоянии покоя будет оставаться стабильным, а смещающийся объект продолжит движение.

Задача обучения

  • Разобраться в Первом законе движения.

Основные пункты

  • Три закона физики Ньютона составляют основу механики.
  • Первый закон гласит: тело в состоянии покоя останется стабильным, пока на него не повлияет внешняя сила, также и движущееся тело останется в движении, пока не почувствует внешнее воздействие.
  • Чистая внешняя сила – сумма всех факторов, влияющих на объект.
  • Наличие воздействующих сил не означает присутствие чистой внешней силы. Одинаковые по величине силы, но действующие в противоположных направлениях, могут отменить друг друга.
  • Трение – сила между перемещающимся телом и поверхностью. Это внешняя сила, влияющая на замедление.
  • Инерция – тенденция тела в движении продолжать двигаться. Зависит от массы, поэтому чем тяжелее тело, тем сложнее изменить направление движения.

Термины

  • Инертность – свойство объекта, которое вступает в сопротивление с любой трансформацией текущего положения (эквивалентно массе).
  • Равномерное движение – перемещение с неизменной скоростью.
  • Трение – сила, сопротивляющаяся относительному движению.

История

Исаак Ньютон интересовался перемещением объектов в различных условиях. В 1687 году он описал три знаменитых закона движения, применимых для характеристики физических объектов и систем. Они составляют основу механики и описывают связь сил, воздействующих на тело, и вызванные этим движения. Три закона гласят:

Если объект не испытывает никакого силового влияния, то скорость останется стабильной. Если объект пребывает в покое, то скорость равняется нулю.

Ускорение параллельно и прямо пропорционально чистой силе, влияющей на объект, и находится в направлении чистой силы и обратно пропорционально массе.

Если первый объект влияет силой на второй, то тот одновременно влияет на первый. То есть их силы одинаковы по величине и противоположны по направлению.

Первый закон движения

Итак, тело пребывает в движении или покое, пока на него не воздействует внешняя сила. То есть, движущееся тело сохранит свою скорость, если на него ничего не влияет. Это именуют равномерным движением.

Примеры

Давайте разберем Первый закон Ньютона в конкретной системе отсчета. Представьте, что вы едете на коньках в инерциальной системе. Если оттолкнетесь от одного борта, то по Первому закону Ньютона должны прибыть ко второму. Но этого не случится. Не забывайте, что движение продолжается, если на него не влияет внешняя сила. В нашем мире этой силой чаще всего выступает трение. В данном случае – трение между коньками и льдом.

А как насчет ремней безопасности? В случае автомобильной аварии, они должны защитить нас. Допустим, машина едет со скоростью 60 миль/ч. Если резко затормозить, то машина ощущает внешнюю силу и замедляется. Но на водителя это не действует, поэтому он продолжит перемещаться на прежней скорости. Ремень создает противовес и тормозит человека.

Инертность

Иногда этот закон именуют законом инерции или инерциальной системой отсчета. Она выступает свойством тела фиксироваться в состоянии покоя или смещения (с постоянной скоростью). У некоторых инерция больше, потому что эквивалентна массе. Поэтому сложнее изменить направление валуна, чем шарика для гольфа.

Явление, которому посвящена наша сегодняшняя беседа, встречается в разных жизненных ситуациях. Мы с удовольствием его используем, учитываем и частенько ругаем.

Речь пойдет об инерции. Постараемся разобраться, что скрывается за этим названием.

Что же такое инерция

Наблюдая полёт копья, брошенного рукой атлета, падение всадника через голову споткнувшейся лошади; созерцая камни, веками неподвижно лежащими на одних и тех же местах - греческие мыслители задумывались, что общего в этих явлениях?

Данная им формулировка явления инерции известна как I закон Ньютона.

«Инер­ция - это фи­зи­че­ское яв­ле­ние со­хра­не­ния ско­ро­сти тела по­сто­ян­ной, если на него не дей­ству­ют дру­гие тела или их дей­ствие ском­пен­си­ро­ва­но».

Это означает, что, благодаря инерции, тела, находящиеся в покое, продолжают покоиться, а движущиеся продолжают свое движение, пока на них не окажут воздействие внешние силы.

Например, автомобиль может находиться в покое в двух случаях, если на горизонтальном участке дороги его двигатель выключен, либо его двигатель включен, но силы сопротивления уравновесили силу тяги двигателя, т. е. скомпенсировали её.

Теперь вернемся к нашему всаднику, перелетающему через голову споткнувшейся лошади. Лошадь, споткнувшись, резко теряет скорость, а невезучий всадник… по инерции продолжает движение.

По этой же причине при ДТП водитель, пренебрегающий ремнями безопасности, получает удар о лобовое стекло.

Почему, поскользнувшись при ходьбе, мы падаем назад? Тело по инерции сохраняет прежнюю скорость, а ноги на скользком участке быстренько «убегают» вперед.

Формула силы инерции

Количественной характеристикой явления инерции является сила инерции.

Для расчета этой силы используют формулу:

  • F ин - сила инерции;
  • m - масса тела;
  • a - ускорение.

Знак минус указывает на то, что сила инерции противодействует силе, вызвавшей изменение скорости тела.

Понятие инертности в физике

Итак, инерция - это физическое явление. С ним тесно связано еще одно понятие - инертность. Под инертностью в физике понимают свойства тел противодействовать мгновенному изменению направления или скорости движения.

Любое тело не может мгновенно изменить свою скорость, однако, одни тела это делают быстрее, другие - медленнее. Для остановки гружёного и порожнего самосвалов, движущихся с одинаковой скоростью, требуется разное время.

Это происходит потому, что тело с большей массой более инертно, и ему на изменение скорости требуется больше времени. То есть мерой инертности в физике является масса тела.

Инертные люди, инертные газы

Термин «инертный» широко используется в химии. Он относится к химическим элементам, которые при обычных условиях не вступают в химические реакции. Например, благородные газы аргон, ксенон и др.

Этот термин может быть применен и к поведению человека. Инертные люди отличаются равнодушием к окружающему миру. Они противятся любым переменам, как в их собственной судьбе, так и в работе. Они ленивы и безынициативны.

Инертность вращающихся объектов

Все приведенные ранее примеры относились к поступательно движущимся телам. А как же быть с вращающимися объектами? Скажем, с вентилятором, с маховиком в двигателе внутреннего сгорания или детской игрушке. Ведь после выключения электрического вентилятора его лопасти ещё некоторое время по инерции продолжают крутиться.

Насколько тела инертны во время вращения определяет момент инерции. Он зависит от массы тела, его геометрических размеров и расстояния до оси вращения. Изменение этого расстояния влияет на скорость вращения тела. Это используют спортсмены - фигуристы, поражая зрителей продолжительным вращением с изменением скорости.

Специальные расчёты позволяют определить оптимальные размеры механизма и допустимую скорость вращения, чтобы не допустить разрыва вращающихся частей.

Т.е. момент инерции во вращательном движении играет ту же роль, что и масса при поступательном движении. Но в отличие от массы момент инерции можно изменять, как это делают фигуристы - то широко разводя руки, то прижимают их к груди.

Инерция вокруг нас

Именно это явление используют:

  • для сбрасывания ртутного столбика в медицинском термометре и выбивания пыли из ковров;
  • для продолжения движения после разбега на коньках, лыжах, велосипеде;
  • для экономии горючего при езде на автомобиле;
  • в принципе работы артиллерийских детонаторов и т. д.

Это лишь небольшая часть из всех применений инерции. Но не следует забывать о возможной опасности, которую таит это явление природы. Надпись на заднем борту грузовика «Водитель, сохраняй дистанцию», напоминает, что транспорт мгновенно остановить нельзя.

И при торможении впереди едущего автомобиля, следующая за ним машина, остановиться мгновенно не может. По этой же причине категорически запрещено перебегать дорогу перед движущимся транспортом.

Теперь вы легко ответите на вопрос, почему при торможении автомобилей обязательно включается задний красный свет, почему при повороте водитель обязательно сбрасывает скорость.

В спортзале и на катке, в цирке и в мастерской - инерция сопровождает нас всюду. Присмотритесь.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Наблюдения и опыт показывают, что тела получают ускорение относительно Земли, т. е. изменяют свою скорость относительно Земли, только при действии на них других тел. Каждый раз, когда какое-либо тело получает ускорение по отношению к Земле, можно указать другое тело, которое это ускорение вызвало. Например, бросаемый мяч приходит в движение, т. е. получает ускорение, под действием мышц руки. Ловя мяч, мы замедляем и останавливаем его, также действуя на него рукой. Пробка воздушного «пистолета» (рис. 53) приходит в движение под действием воздуха, сжимаемого вдвигаемым поршнем. Пуля, вылетающая с большой скоростью под действием пороховых газов, постепенно уменьшает свою скорость под действием воздуха. Скорость камня, брошенного вверх, уменьшается под действием силы притяжения Земли; затем камень останавливается и начинает двигаться вниз со все увеличивающейся скоростью (также вследствие притяжения Земли).

Рис. 53. Воздушный «пистолет»

Во всех этих и других подобных случаях изменение скорости, т. е. возникновение ускорения, есть результат действия на данное тело других тел, причем в одних случаях это действие проявляется при непосредственном соприкосновении (рука, сжатый воздух), а в других - на расстоянии (воздействие Земли на камень).

Что же будет происходить, если на данное тело никакие другие тела не действуют? В этом случае тело будет либо оставаться в покое относительно Земли, либо двигаться относительно нее равномерно и прямолинейно, т. е. без ускорения. Проверить простыми опытами, что в отсутствие действия других тел данное тело движется относительно Земли без ускорений, практически невозможно, потому что невозможно полностью устранить действия всех окружающих тел. Но чем тщательнее устранены эти действия, тем ближе движение данного тела к равномерному и прямолинейному.

Труднее всего устранить действие трения, возникающего между движущимся телом и подставкой, по которой оно катится или скользит, или средой (воздух, вода), в которой оно движется. Так, стальной шарик, катящийся по горизонтальной поверхности, посыпанной песком, останавливается очень быстро. Но если шарик хорошо отполирован, то, катясь по гладкой, например стеклянной, поверхности, он довольно долго сохранит свою скорость почти неизменной.

В некоторых физических приборах удается осуществить движение элементарных частиц, при котором каждая частица практически не испытывает действия никаких других частиц вещества (для этого из прибора необходимо тщательно удалить воздух). В этих условиях движение частиц очень близко к прямолинейному и равномерному (благодаря большой скорости и малой массе частиц притяжение Земли в таких опытах практически не сказывается).

Тщательные опыты по изучению движения тел были впервые произведены Галилеем в конце XVI и начале XVII веков. Они позволили установить следующий основной закон.

Если на тело не действуют никакие другие тела, то тело сохраняет состояние покоя или равномерного прямолинейного движения относительно Земли.

Как при покое, так и при равномерном прямолинейном движении ускорение отсутствует. Следовательно, закон, установленный Галилеем, означает: чтобы тело двигалось с ускорением относительно Земли, на него должны действовать другие тела. Причина ускорения - это действие других тел.

Свойство тел сохранять свою скорость при отсутствии действия на них других тел называют инерцией тел (от латинского слова inertia - бездеятельность, косность). Поэтому и указанный закон называют законом инерции, а движение при отсутствии действия на тело других тел называют движением по инерции.

Закон инерции явился первым шагом в установлении основных законов механики, в то время еще совершенно неясных. Впоследствии (в конце XVII века) великий английский математик и физик Исаак Ньютон (1643-1727), формулируя общие законы движения тел, включил в их число закон инерции в качестве первого закона движения. Закон инерции часто называют поэтому первым законом Ньютона.

Итак, тела получают ускорения под действием других тел. Если действия, оказываемые на разные части тела, различны, то эти части получат разные ускорения и через некоторое время приобретут различные скорости. В результате может измениться сам характер движения тела в целом. Например, при резком изменении скорости вагона трение о пол будет увлекать за собой ноги пассажира, но ни на туловище, ни на голову никакого действия со стороны пола оказано не будет, и эти части тела будут продолжать двигаться по инерции. Поэтому, например, при торможении вагона скорость ног уменьшится, а туловище и голова, скорость которых останется без изменений, опередят ноги; в результате тело пассажира наклонится вперед по движению. Наоборот, при резком увеличении скорости вагона туловище и голова, сохраняя по инерции прежнюю скорость, отстанут от ног, увлекаемых вагоном, и тело пассажира отклонится назад. Подобные проявления инерции тел широко используются в технике и в быту. Вытряхивание пыльной тряпки, стряхивание лишней капли чернил с пера, стряхивание столбика ртути в медицинском термометре - все эти действия используют инерцию тел (частиц пыли, капли чернил, ртути в капилляре термометра).

Инерция использована и при устройстве взрывателей артиллерийских снарядов. Когда снаряд, ударяясь о препятствие, внезапно останавливается, взрывной капсюль, помещающийся внутри снаряда, но не связанный жестко с его корпусом, продолжает двигаться и ударяется о жало взрывателя, связанного с корпусом.

Что такое теория относительности Ландау Лев Давидович

Закон инерции

Закон инерции

Из принципа относительности движения вытекает, что тело, на которое не действует никакая внешняя сила, может находиться не только в состоянии покоя, но и в состоянии прямолинейного равномерного движения. Это положение в физике называется законом инерции.

Однако в повседневной жизни он как бы завуалирован и непосредственно не проявляется. Ведь по закону инерции тело, находящееся в состоянии прямолинейного равномерного движения, должно - и без воздействия внешних сил - продолжать свое движение без конца. Однако из наблюдений нам известно, что тела, к которым мы силы не прилагаем, останавливаются.

Разгадка заключается в том, что на все тела, наблюдаемые нами, действуют некоторые внешние силы - силы трения. Поэтому условие, необходимое для наблюдения закона инерции - отсутствие внешних сил, действующих на тело, - не выполняется. Но, улучшая условия опыта, уменьшая силы трения, можно приблизиться к идеальным условиям, необходимым для наблюдения закона инерции, доказав, таким образом, правильность этого закона и для движений, наблюдаемых в повседневной жизни.

Открытие принципа относительности движения является одним из величайших открытий. Без него развитие физики было бы невозможно. Этим открытием мы обязаны гению Галилео Галилея, смело выступившего против господствовавшего в те времена и поддерживаемого авторитетом католической церкви учения Аристотеля, согласно которому движение возможно только при наличии силы и без нее должно неминуемо прекратиться. Рядом блестящих опытов Галилей показал, что причиной остановки движущихся тел, наоборот, является сила трения и в отсутствие этой силы приведенное раз в движение тело двигалось бы вечно.

Из книги Физики продолжают шутить автора Конобеев Юрий

Закон Мэрфи Дональд МИЧИ Я думаю, что самое глубокое и прочное впечатление в своей жизни каждый научный работник получает от того, как неожиданно, как несправедливо, как удручающе трудно хоть что-нибудь открыть или доказать. Многих осложнений и разочарований можно было

Из книги Физическая химия: конспект лекций автора Березовчук А В

7. Закон Генри Фугитивность растворителя в разбавленном растворе не зависит от природы растворенного вещества и вычисляется по закону Рауля, то есть: Так как фугитивность жидкости или твердого раствора равна фугитивности насыщенного пара, когда растворитель в

Из книги Тайны пространства и времени автора Комаров Виктор

2. Закон Гесса При изобарных и изохорных условиях теплота является функцией состояния.В 1840 г. Г. Н. Гесс формулирует закон: «Тепловой эффект химической реакции не зависит от промежуточных стадий, а зависит только от начального и конечного состояния системы».?QP = dH,?QV = dUвн,QP =

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Из книги История лазера автора Бертолотти Марио

Закон сохранения массы Если растворить сахар в воде, то масса раствора будет строго равна сумме масс сахара и воды.Этот и бесчисленное количество подобных опытов показывают, что масса тела есть неизменное свойство. При любом дроблении и при растворении масса остается

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

Закон инерции Не приходится спорить – инерциальная система отсчета удобна и обладает неоценимыми преимуществами.Но единственная ли это система или, может быть, существует много инерциальных систем? Древние греки, например, стояли на первой точке зрения. В их сочинениях

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Закон сохранения импульса Произведение массы тела на его скорость называется импульсом тела (другое название – количество движения). Так как скорость – вектор, то и импульс является векторной величиной. Разумеется, направление импульса совпадает с направлением

Из книги автора

Центр инерции Вполне законно задать вопрос: где находится центр тяжести группы тел? Если на плоту много людей, то от места нахождения их общего центра тяжести (вместе с плотом) будет зависеть устойчивость плота.Смысл понятия остается тем же. Центр тяжести есть точка

Из книги автора

Закон Архимеда Подвесим гири к безмену. Пружина растянется и покажет вес гири. Не снимая гири с безмена, опустим ее в воду. Изменится ли показание безмена? Да, вес тела как бы уменьшится. Если опыт проделать с килограммовой железной гирей, то «уменьшение» веса составит

Из книги автора

Закон Авогадро Пусть вещество представляет собой смесь различных молекул. Нет ли такой физической величины, характеризующей движение, которая была бы одинакова для всех этих молекул, например для водорода и кислорода, находящихся при одинаковой температуре?Механика

Из книги автора

Закон преломления В работе Dioptrique Декарт излагает свою теорию света, основанную на вихрях, и обсуждает законы отражения и преломления, впервые выразив принцип, что отношение углов падения и преломления зависит от среды, через которую проходит свет.Уже греки знали, что

Из книги автора

Закон Рэлея К концу 1899 г. были проведены более точные измерения в области более длинных волн, которые показали, что в этой области закон Вина уже несправедлив. В июне того же года лорд Рэлей (который был при рождении Джоном Вильямом Стрэтгом (1842-1919)) опубликовал вывод закона

Из книги автора

Закон Планка Теоретическая ситуация, как описывают, была следующей. Когда в воскресенье 7 октября 1900 г. X. Рубенс со своей женой посетил Планков, он рассказал Планку об измерениях на длинах волн до 50 мкм, которые он произвел вместе с Ф. Курлбаумом в Берлинском институте. Эти

Из книги автора

Из книги автора

Закон красного смещения Эта история началась с замечательного открытия, сделанного в 1908 году Генриеттой Ливитт, которая тогда не была еще астрономом. Она смотрела не вверх, в звездное небо, а вниз - на фотопластинки, сделанные в Гарвардской обсерватории за много лет. В те

Из книги автора

Закон Ньютона Закон всемирного тяготения после обсуждения в третьем чтении был отправлен на доработку… Фольклор Проверка закона Ньютона. Осмысление закона Ньютона до сих пор играет очень важную роль для осмысления представлений о гравитации вообще. Как можно

2014-05-26

Результаты экспериментов Галилея свидетельствовали о том, что чем меньше сопротивление движению, тем меньше изменение скорости и тем дольше движется шарик. Размышляя над такими результатами, Галилей пришел гениальному выводу: при полном отсутствии силы трения или сопротивления скорость тела постоянна, и для поддержания движения не нужно прилагать никакой силы. Математически это можно записать так: = const, если = const. Явление сохранения телом скорости при отсутствии внешних воздействий на него со стороны других тел называют инерцией, а это свойство тела — инертностью. А закон, открытый Галилеем, называют законом инерции и формулируют так: если на тело не действуют другие тела, оно движется прямолинейно и равномерно или находится в состоянии покоя.

Отметим, что физический смысл закона инерции заключается в том, что свободные друг относительно друга материальные точки (материальные точки, на которые не действуют другие тела) движутся прямолинейно и равномерно.

О том, что телу свойственно хранить любое движение, а именно прямолинейный, свидетельствует такой опыт (рис. 2). Шарик движется прямолинейно по плоской горизонтальной поверхности, сталкиваясь с препятствием, которое имеет криволинейную форму, под действием этого препятствия вынуждена двигаться по дуге. Однако когда шарик доходит до конца препятствия, она перестает двигаться криволинейно и снова начинает двигаться по прямой.

Рассматривая механические движения в доме на берегу моря и в каюте корабля, Г. Галилей обнаружил, что они осуществляются одинаково, когда корабль плывет по гладкой поверхности без ускорения. Очень важным для всего последующего развития физики оказалось утверждение Галилея о том, что никакими механическими опытами, которые проводятся внутри инерционной системы отсчета (для пассажира ней есть каюта корабля), невозможно установить, находится эта система в покое, или движется равномерно и прямолинейно. Это утверждение называют принципом относительности Галилея. Человек в каюте корабля может установить факт движения только тогда, когда она будет наблюдать внешние тела: остров, берег моря и т.д..

Инерционными Ньютон назвал такие системы, для которых единственным источником ускорения есть сила, то есть взаимодействие с другими телами. Системы отсчета, которые движутся относительно инерциальных систем с ускорением (поступательно или вращательно), он назвал неинерциальных. Ньютон, рассматривая инерциальную систему отсчета (ИСО), так и не смог указать тело, которое было бы для нее телом отсчета. Окружающие тела движутся ускоренно: дом вращается вокруг оси Земли, а вместе с ее поверхностью — вокруг Солнца. Системы отсчета, связанные с окружающими телами, неинерциальные, но их ускорения в основном очень малы. Ускорение автобуса составляет около 1 м/с2, большого корабля — несколько cм/с2, Земли — 6 мм/с2, Солнца — около 10-4 см/с2. Соответственно, чем больше масса тела отсчета, тем меньше его ускорение. Поэтому ИСО — это абстрактное понятие, если бы она существовала, то имела бы бесконечно большую массу. Очевидно, что наибольшую массу из тел, окружающих нас, имеет Солнце, поэтому связанная с ним система отсчета почти инерционной. В этой ИСО начало отсчета координат совмещают с центром Солнца, а координаты осей проводят в направлении реальных звезд, которые можно считать неподвижными.

Однако для описания многих механических явлений с земных условий ИСО связывают с Землей, пренебрегая при этом вращательными движениями Земли вокруг своей оси и вокруг Солнца. Например, изучая свободное падение, нужно было бы учитывать ускорение лаборатории (2-3 см/с2), поскольку Земля вращается вокруг своей оси. Но ускорение лаборатории в несколько сотен раз меньше ускорения свободного падения, поэтому им обычно пренебрегают. В большинстве задач Землю считают идеальным телом отсчета, а связанные с ней системы — инерционными.

Сейчас понятно, что абсолютно неподвижных тел или тел, которые движутся строго равномерно и прямолинейно, в природе не существует, поэтому инерционная система отсчета — такая же абстракция, как и материальная точка или абсолютно твердое тело. Инерционными системами отсчета называют системы, относительно которых тело движется равномерно прямолинейно или находится в покое. Время во всех ИСО измеряют одинаково. Масса тела m = const, его ускорения и силы взаимодействия не зависят от скорости ИСО. В любых ИСО все механические явления происходят одинаково при одних и тех же начальных условиях (другая формулировка принципа относительности Галилея).