ТЕМА : «Кобальт – химический элемент»

Выполнила:

Студентка биолого-химического

факультета Савенко О.В.

Проверила:

Профессор Максина Н.В.

Уссурийск, 2001г.

ПЛАН :

Элемент периодической системы…………………………….……3

История открытия…………………………………………………...3

Нахождение в природе……………………………………………...3

Получение……………………………………………………………4

Физические и химические свойства………………………………..4

Применение…………………………………………………………..7

Биологическая роль………………………………………………….7

Радионуклеид Кобальт-60…………………………………………..8

Список используемой литературы…………………………………9

Элемент периодической системы

Название элемента «кобальт» происходит от латинского Сobaltum.

Со, химический элемент с атомным номером 27. Его атомная масса 58,9332. Химический символ элемента Cо произносится так же, как и название самого элемента.

Природный кобальт состоит из двух стабильных нуклидов: 59 Со (99,83% по массе) и 57 Со (0,17%). В периодической системе элементов Д. И. Менделеева кобальт входит в группу VIIIВ и вместе с железом и никелем образует в 4-м периоде в этой группе триаду близких по свойствам переходных металлов. Конфигурация двух внешних электронных слоев атома кобальта 3s 2 p 6 d 7 4s 2 . Образует соединения чаще всего в степени окисления +2, реже - в степени окисления +3 и очень редко в степенях окисления +1, +4 и +5.

Радиус нейтрального атома кобальта 0,125 Нм, радиус ионов (координационное число 6) Со 2+ - 0,082 Нм, Со 3+ - 0,069 Нм и Со 4+ - 0,064 Нм. Энергии последовательной ионизации атома кобальта 7,865, 17,06, 33,50, 53,2 и 82,2 ЭВ. По шкале Полинга электроотрицательность кобальта 1,88.

Кобальт - блестящий, серебристо-белый, тяжелый металл с розоватым оттенком.

История открытия

С древности оксиды кобальта использовались для окрашивания стекол и эмалей в глубокий синий цвет. До 17 века секрет получения краски из руд держался в тайне. Эти руды в Саксонии называли «кобольд» (нем. Kobold - домовой, злой гном, мешавший рудокопам добывать руду и выплавлять из нее металл). Честь открытия кобальта принадлежит шведскому химику Г. Брандту. В 1735 году он выделил из коварных «нечистых» руд новый серебристо-белый со слабым розоватым оттенком металл, который предложил называть «кобольдом». Позднее это название трансформировалось в «кобальт».

Нахождение в природе

В земной коре содержание кобальта равно 410 -3 % по массе. Кобальт входит в состав более 30 минералов. К ним относятся каролит CuCo 2 SO 4 , линнеит Co 3 S 4 , кобальтин CoAsS, сферокобальтит CoCO 3 , смальтит СоAs 2 и другие. Как правило, кобальту в природе сопутствуют его соседи по 4-му периоду - никель, железо, медь и марганец. В морской воде приблизительно (1-7)·10 -10 % кобальта.

Получение

Кобальт - относительно редкий металл, и богатые им месторождения в настоящее время практически исчерпаны. Поэтому кобальтсодержащее сырье (часто это никелевые руды, содержащие кобальт как примесь) сначала обогащают, получают из него концентрат. Далее для извлечения кобальта концентрат или обрабатывают растворами серной кислоты или аммиака, или методами пирометаллургии перерабатывают в сульфидный или металлический сплав. Этот сплав затем выщелачивают серной кислотой. Иногда для извлечения кобальта проводят сернокислотное «кучное» выщелачивание исходной руды (измельченную руду размещают в высоких кучах на специальных бетонных площадках и сверху поливают эти кучи выщелачивающим раствором).

Для очистки кобальта от сопутствующих примесей все более широко применяют экстракцию. Наиболее сложная задача при очистке кобальта от примесей - это отделение кобальта от наиболее близкого к нему по химическим свойствам никеля. Раствор, содержащий катионы двух этих металлов, часто обрабатывают сильными окислителями - хлором или гипохлоритом натрия NaOCl; кобальт при этом переходит в осадок. Окончательную очистку (рафинирование) кобальта осуществляют электролизом его сульфатного водного раствора, в который обычно добавлена борная кислота Н3ВО3.

Физические и химические свойства

Кобальт - твердый металл, существующий в двух модификациях. При температурах от комнатной до 427°C устойчива a-модификация (кристаллическая решетка гексагональная с параметрами а=0,2505 Нм и с=0,4089 Нм). Плотность 8,90 кг / дм 3 . При температурах от 427°C до температуры плавления (1494°C) устойчива b-модификация кобальта (решетка кубическая гранецентрированная). Температура кипения кобальта около 2960°C. Кобальт - ферромагнетик, точка Кюри 1121°C. Стандартный электродный потенциал Со 0 /Со 2+ –0,29 B.

На воздухе компактный кобальт устойчив, при нагревании выше 300°C покрывается оксидной пленкой (высокодисперсный кобальт пирофорен). С парами воды, содержащимися в воздухе, водой, растворами щелочей и карбоновых кислот кобальт не взаимодействует. Концентрированная азотная кислота пассивирует поверхность кобальта, как пассивирует она и поверхность железа.

Известно несколько оксидов кобальта. Оксид кобальта(II) СоО обладает основными свойствами. Он существует в двух полиморфных модификациях: a-форма (кубическая решетка), устойчивая при температурах от комнатной до 985°C, и существующая при высоких температурах b-форма (также кубическая решетка). СоО можно получить или нагреванием в инертной атмосфере гидроксоркарбоната кобальта Со(ОН) 2 СоСО 3 , или осторожным восстановлением Со 3 О 4 .

Если нитрат кобальта Со(NO 3) 2 , его гидроксид Со(ОН) 2 или гидроксокарбонат прокалить на воздухе при температуре около 700°C, то образуется оксид кобальта Со 3 О 4 (CoO·Co 2 O 3). Этот оксид по химическому поведению похож на Fe 3 О 4 . Оба эти оксида сравнительно легко восстанавливаются водородом до свободных металлов:

Со 3 О 4 + 4H 2 = 3Со + 4H 2 O.

При прокаливании Со(NO 3) 2 , Со(ОН) 2 и т. д. при 300°C возникает еще один оксид кобальта - Со 2 О 3 .

При приливании раствора щелочи к раствору соли кобальта(II) выпадает осадок Со(ОН) 2 , который легко окисляется. Так, при нагревании на воздухе при температуре немногим выше 100°C Со(ОН) 2 превращается в СоООН.

Если на водные растворы солей двухвалентного кобальта действовать щелочью в присутствии сильных окислителей, то образуется Со(ОН) 3 .

При нагревании кобальт реагирует со фтором с образованием трифторида СоF 3 . Если на СоО или СоCO 3 действовать газообразным HF, то образуется еще один фторид кобальта СоF 2 . При нагревании кобальт взаимодействует с хлором и бромом с образованием, соответственно, дихлорида СоСl 2 и дибромида СоBr 2 . За счет реакции металлического кобальта с газообразным НI при температурах 400-500°C можно получить дииодид кобальта СоI 2 .

Сплавлением порошков кобальта и серы можно приготовить серебристо-серый сульфид кобальта СоS (b-модификация). Если же через раствор соли кобальта(II) пропускать ток сероводорода H 2 S, то выпадает черный осадок сульфида кобальта СоS (a-модификация):

CoSO 4 + H 2 S = CoS + H 2 SO 4

При нагревании CoS в атмосфере H 2 S образуется Со 9 S 8 с кубической кристаллической решеткой. Известны и другие сульфиды кобальта, в том числе Co 2 S 3 , Co 3 S 4 и CoS 2 .

С графитом кобальт образует карбиды Со 3 C и Со 2 С, c фосфором - фосфиды составов СоP, Со 2 P, СоP 3 . Кобальт реагирует и с другими неметаллами, в том числе с азотом (возникают нитриды Со 3 N и Co 2 N), селеном (получены селениды кобальта CoSe и CoSe 2), кремнием (известны силициды Co 2 Si, CoSi CoSi 2) и бором (в числе известных боридов кобальта - Со 3 В, Со 2 В, СоВ).

Металлический кобальт способен поглощать значительные объемы водорода, не образуя при этом соединений постоянного состава. Косвенным путем синтезированы два стехиометрических гидрида кобальта СоН 2 и СоН.

Известны растворимые в воде соли кобальта - сульфат СоSO 4 , хлорид СоСl 2 , нитрат Со(NO 3) 2 и другие. Интересно, что разбавленные водные растворы этих солей имеют бледно-розовую окраску. Если же перечисленные соли (в виде соответствующих кристаллогидратов) растворить в спирте или ацетоне, то возникают темно-синие растворы. При добавлении воды к этим растворам их окраска мгновенно переходит в бледно-розовую.

К нерастворимым соединениям кобальта относятся фосфат Со 3 (PO 4) 2 , силикат Со 2 SiO 4 и многие другие.

Для кобальта, как и для никеля, характерно образование комплексных соединений. Так, в качестве лигандов при образовании комплексов с кобальтом часто выступают молекулы аммиака NH 3 . При действии аммиака на растворы солей кобальта(II) возникают амминные комплексы кобальта красного или розового цвета, содержащие катионы состава 2+ . Эти комплексы довольно неустойчивы и легко разлагаются даже водой.

Значительно стабильнее амминные комплексы трехвалентного кобальта, которые можно получить действием аммиака на растворы солей кобальта в присутствии окислителей. Так, известны гексамминные комплексы с катионом 3+ (эти комплексы желтого или коричневого цвета получили название лутеосолей), аквапентамминные комплексы красного или розового цвета с катионом 3+ (так называемые розеосоли) и др. В ряде случаев лиганды вокруг атома кобальта могут иметь различное пространственное расположение, и тогда существуют цис- и транс-изомеры соответствующих комплексов.

Кобальтом называют 27 элемент таблицы Менделеева. Относится он к металлам. Цвет кобальта серебристый с отливом. На его поверхности постепенно образуется оксидная пленка, которая придает металлу различные оттенки. Плотность кобальта составляет 8,9 г/см 3 . Плавится металл при температуре 1495°С, кипит при 2870°С. Теплота плавления составляет 15,48 кДж/кг. Кобальт - ферромагнетик. Переход через точку Кюри происходит при нагреве до 1121°C.

О применении кобальта, его особенностях и свойствах

Кобальт используется в качестве добавок. Благодаря легированию ним, улучшаются механические свойства, повышается жаропрочность и износоустойчивость стали. Её называют инструментальной. Сталь с такими характеристиками используют для изготовления резцов, сверл и других изделий.

Для изготовления быстрорежущего инструмента используют твердые сплавы с содержанием кобальта. Основной их компонент - карбид титана или вольфрама. Он спекается с порошком металлического кобальта, благодаря чему улучшается вязкость сплава и устойчивость к механическим воздействиям. За счет нанесения кобальтового сплава на поверхность деталей, повышается их устойчивость к износу даже при воздействии больших нагрузок. В такой способ срок службы стальной детали может быть увеличен в 4-8 раз.

Кобальт - это металл с качественными магнитными свойствами, которые сохраняются даже после неоднократного намагничивания. Основные требования к магнитам - устойчивость к размагничиванию, воздействию температур, вибрациям. Такие изделия должны поддаваться механической обработке. Например, при добавлении кобальта в сталь, магнитные свойства сплава сохраняются надолго, не зависимо от того, в каких условиях и при каких температурах она эксплуатируется. Сопротивления размагничиванию также увеличивается.

Не обходится без применения кобальта и производство сплавов с постоянными магнитными свойствами. Они на 50% состоят из данного металла. В их состав также входят ванадий или хром. Благодаря качественным магнитным свойствам кобальтовых сплавов, из них изготавливают элементы аппаратуры магнитной записи, сердечники электромоторов и трансформаторов. Также кобальт нашел свое применение в качестве катализатора.

Силицид кобальта является отличным термоэлектрическим материалом, который применяют для термоэлектрогенераторов с высоким КПД. Кобальт лития используется для производства литиевых аккумуляторов. Из него получают высокоэффективные положительные электроды. В медицине и гамма-дефектоскопии применяется радиоактивный кобальт-60. Он является источником ядерной энергии.

Применяется кобальт в космической и авиационной промышленности. Сплавы с содержанием данного металла оказывают достойную конкуренцию никелевым, которые давно применяются в этих отраслях. Из них производят детали двигателей и авиационных турбин. Кобальт способен выдерживать значительные температуры и при этом сохранять свои эксплуатационные характеристики, тогда как никелевым сплавам при нагреве до 1038°С свойственно терять прочность.

Марки кобальта и их применение

изготавливают слитки, катодные листы способом электролиза, которые нашли свое применение во многих отраслях промышленности

К1, К1А, К1Ау

изготавливают слитки, катодные листы способом электролиза или огневого рафинирования, которые нашли свое применение во многих отраслях промышленности

производится в виде кобальтового порошка, применяется в процессе производства изделий методом порошковой металлургии, также, из него изготавливаются магниты.

Кобальт находит широкое и разнообразное применение в различных отраслях промышленности, сельском хозяйстве и медицине, что связано с замечательными свойствами этого металла и его сплавов.

В чистом виде кобальт применяется относительно мало: только в виде радиоактивного 60 Со в промышленной γ -дефектоскопии и γ -терапии и для изготовления измерительных инструментов.

Около 80% кобальта расходуется на получение сверхтвердых, жаропрочных, инструментальных и износостойких сплавов, а также постоянных магнитов. Эти сплавы находят применение в машиностроении, в авиационной технике, ракетостроении, электротехнической и атомной промышленности.

В качестве легирующего элемента кобальт применяется при производстве вольфрамовых быстрорежущих инструментальных сталей, обладающих большой прочностью и обеспечивающих высокие скорости механической обработки. Как правило, эти стали содержат, %: 15-19 W , 4 Cr , 1 V, 5-13 Со и 0,5-0,8 С. Режущая способность инструментальных сталей пропорциональна содержанию в них кобальта до 13%. Добавки кобальта к молибденовым сталям также улучшают их режущие свойства. Присутствие кобальта в быстрорежущих сталях не увеличивает их твердость, но сдвигает температуру начала потери твердости до 600°С,в то время как у обычной стали она уменьшается с 200°С.

Широкое применение находят сверхтвердые сплавы на основе кобальта и хрома - стеллиты.

Химический состав и твердость типичных стеллитов приведены ниже:

Кобальтовые сплавы - стеллиты, содержащие до 30% Сг, а также вольфрам, кремний и углерод, применяют для наплавки на инструменты и детали машин (без последующей термической обработки) в целях повышения их сопротивления износу.

Кобальт широко используется в качестве легирующего элемента при производстве каропрочных сталей, а также жаропрочных кобальтовых сплавов. Деформируемые хобальтовые сплавы системы Co - Cr - Ni - Mn , содержащие до 50% Со, имеют высокое сопротивление термической усталости и удовлетворительно обрабатываются давлением. Общее количество легирующих элементов в них достигает 8-9, а их содержание составляет 10- 25%. Температурный предел применения жаропрочных сталей составляет 800-850°С, а сплавов на кобальтовой основе - 1000°С и выше. Примером жаропрочного сплава на кобальтовой основе является сплав с содержанием, %: 12-15 Ni , 18-24 Сг, 8-12 W , 1,25 Мп, 1,1 Si , 0,5 С.

Следующая группа сплавов, в производстве которых широкое применение находит кобальт, это тугоплавкие жаропрочные сплавы, получаемые металлокерамическим способом на основе карбидов, силицидов, боридов титана, вольфрама, циркония, ниобия, тантала и ванадия. Особенностью этих сплавов является высокое содержание в них кобальта и никеля, применяемых для связки. Эти сплавы применяют до температуры 1050-1100°С.

Значительный интерес для атомной промышленности в качестве конструкционного материала ядерных реакторов представляют собой нержавеющие стали с низким содержанием кобальта (<0,05%).

Кобальт находит также широкое применение для получения магнитных материалов с высокой магнитной проницаемостью и сплавов для постоянных магнитов (сплавы кобальта с железом, платиной; сплавы на основе кобальта, легированные алюминием, никелем, медью, титаном, самарием, лантаном, церием). Введение в сплавы добавок кобальта в количестве 0,5- 4,0% способствует уменьшению величины зерна, благодаря чему возрастают коэрцитивная сила (сопротивление размагничиванию) и остаточное намагничивание. Промышленные сплавы для магнитов типа «алнико» содержат алюминий, никель, кобальт, остальное железо. Отдельные сплавы включают также медь и титан:

Сплав

А l

Со

Алнико 1

Алнико II

АлникоIV

Алнико V

Алнико VI

Алнико ХП

Сплавы «алнико» обладают высокими коэрцитивной силой и магнитной энергией. Эти сплавы применяют при изготовлении магнитных подшипников, генераторов и электродвигателей с постоянными магнитами.

Кобальто-платиновые магнитные сплавы, содержащие 50% Со. имеют наилучшие магнитные свойства.

Магнитный сплав, содержащий 49% Со, 49% Fe и 2% V, обладает высокой остаточной магнитной индукцией, а кроме того, его можно прокатывать от толщины 2,31 до 0,0075 мм без промежуточных отжигов и потери пластичности. Его применение обеспечивает повышение к. п. д. двигателей космических кораблей.

Кобальт - также один из элементов большого количества кислотоупорных сплавов. Так, наилучшим для изготовления нерастворимых анодов является сплав состава. %: 75 Со, 13 Si , 7 Сг и 5 Мп. Этот сплав по стойкости в азотной и соляной кислотах превосходит платину. Хорошей стойкостью в концентрированной соляной, кислоте при температуре 80°С обладает сплав состава, %: 56 Ni , 19,5 Со, 22 Fe и 2,5 Мп.

Кобальт используется совместно с никелем для электролитического покрытия различных изделий для придания им коррозионностойких свойств. Анодом при электролизе служит сплав никеля с 1-18%Со в зависимости от содержания хрома в ванне, электролитом - сульфата о- хлоридные растворы. При электроосаждении кобальта или никеля, легированного фосфором в количестве до 15%, образуются твердые, коррозионностойкие и блестящие покрытия с хорошей пластичностью, надежно сцепляющиеся с основным металлом. Такие покрытия наносятся на калибры, стенки цилиндров, поршневые кольца и стержни клапанов.

В химической и нефтехимической промышленности порошкообразный кобальт и его оксид используются в качестве катализатора при гидоогенизации жиров, синтезе бензина, при производстве азотной кислоты, соды и сульфата аммония.

Широко известно применение кобальта в лакокрасочной, стекольной и керамической отраслях промышленности. Эта область применения металла основана на способности закиси кобальта при сплавлении со стеклом или эмалью давать окрашенные в синий цвет силикаты и алюмосиликаты, например, смальту (двойной силикат кобальта и калия). Смальта ввиду её большой устойчивости пои высоких темпер атур ах и легкоплавкости является незаменимым материалом для окраски стекол, эмалей и других керамических изделий.

В качестве красителей используются и другие соединения кобальта. Из кобальтовых красок представляют интерес следующие: синяя - алюминат кобальта ; фиолетовая - безводная фосфорнокислая соль Со 3 (Р0 4 )2; желтая - соль Фишера К 3 [Со(NO 2 ) 6 ]Н 2 0, зеленая - CoOxZnO ; розовая, получаемая прокаливанием карбоната магния с нитратом кобальта. Все эти соединения кобальта используются для производства масляных художественных красок и в керамическом производстве. Кобальтовые краски отличаются большой стойкостью и неизменяемостью окраски. Турецкая зелень, или сине-зеленая краска, получаемая прокалкой карбоната кобальта, оксида хрома и гидроксида алюминия в соотношении 1:1:2, применяется для окраски фарфора.

Кобальтовые соли и некоторые кобальтсодержащие сплавы используются также в стекольной промышленности.

Оксиды кобальта применяются при эмалировании жести. Для получения прочной эмали в состав грунта вводят до 0,2% оксидов кобальта, а также никель и марганец.

Кобальт в соединении с серебром используется при изготовлении аккумуляторных батарей.

Радиоактивный изотоп 60 Со (с периодом полураспада Т 1/2 = 5,27 года) широко используется в качестве длительно действующего источника у - излучения («кобальтовая пушка»). В технике его применяют для у - дефектоскопии, а в медицине - при лучевой терапии опухолей и стерилизации медикаментов. Кроме того, 60 Со используется для уничтожения насекомых в зерне и овощах.

Соли кобальта применяют в сельском хозяйстве как микроудобрения, а также в качестве подкормки животных.

Кобальт – химический элемент, который относится к группе металлов. Представляет собой вещество серебристо-белого цвета, обладает слегка розовым или сиреневым отливом (см. фото).

Открыл этот элемент Г.Брандт, который использовал в качестве сырья руды «кобольд» из Саксонии. С древних времен соединения кобальта использовались для изготовления синей краски, и вплоть до 17 века рецептура сохранялась в секрете. История этого вещества связана с мистикой и нечистой силой. Работники рудников при обработке неизвестной руды часто получали отравления, поэтому решили, что их защищает зловредный гном Кобольд. Это имя потом трансформировалось в кобальт – название элемента.

В современное время его применяют в производстве материалов, обладающих жаростойкостью и повышенной твердостью, например для инструментов – сверл и резаков. Также известно о его использовании в медицине для проведения стерилизации инструментов и в лучевой терапии. В сельском хозяйстве практикуется добавление соединений элемента в качестве удобрений и добавки к корму животных, что обусловлено их благотоворными свойствами.

Действие кобальта

Действие макроэлемента очень значительно, т.к. выяснилось, что физиологической формой кобальта в организме является витамин В12 – кобаламин. Всего в организме содержится до 2 мг элемента, но это малое количество распределено в жизненно важных органах – печень, костная ткань, кровь, почки, щитовидная железа и лимфатические узлы.

Функции, которые выполняет элемент в организме, довольно обширны:

Кроме того, что кобальт защищает организм от заболеваний, он также помогает ему восстановиться во время выздоровления. Особенно полезно его употребление при сахарном диабете, анемии или онкологии крови.

Самые важные его свойства и функции, конечно, выполняются в составе витамина В12, т.к. является центром молекулы кобаламина. Таким образом оказывается влияние на формирование белка и жиров в структуре миелинового слоя нервной клетки, а это, в свою очередь, предотвращает возникновение переутомления, раздражительности, заболеваний нервной системы.

Находится в тесном контакте с аскорбиновой кислотой, В5, В9, регулируя действия друг друга.

Суточная норма

Суточная норма макроэлемента не определена окончательно и, соответственно, называются противоречивые данные. Но достаточно точно можно определить пределы, в которых элемент оказывает полезное действие, они колеблются приблизительно от 8 до 200 мкг в зависимости от возраста массы тела и других факторов вроде вегетарианского питания, болезни булимия и анорексия, период восстановления после травм, отравлений, больших кровопотерь и ожогов. Также в категорию риска можно отнести альпинистов, людей, работающих в горах. В этом случае полезно будет назначение препаратов с содержанием кобальта, но только согласно рекомендациям врача.

Недостаток кобальта

Недостаток макроэлемента наблюдается в основном у заядлых курильщиков, вегетарианцев и людей пожилого возраста. Также страдают от нехватки жители местностей, где почва обеднена содержанием элемента, а значит и продукты, выращенные на этих землях.

Дефицит может быть вызван хроническими болезнями желудочно-кишечного тракта, которые не позволяют элементу усваиваться в полной мере. Интересно, что нехватка, в свою очередь, вызывает эти самые болезни.

Основными симптомами и последствиями нехватки элемента являются такие явления, как:

  • хроническая слабость и утомляемость, ухудшение памяти, депрессия;
  • нарушение работы центральной нервной системы, вызывающее невралгию, астму;
  • анемия, заболевания системы кровообращения;
  • аритмия;
  • болезни печени;
  • поражение слизистой желудка, что вызывает гастриты, язвы, нарушения стула;
  • замедление выздоровления и восстановления после болезней;
  • торможение развития организма детей;
  • дистрофия костной ткани.

Избыток кобальта в организме

Переизбыток макроэлемента возникает при отравлении организма токсичным количеством кобальта – 200-500 мг в сутки. Причинами такого довольно редкого явления могут стать злоупотребления препаратами витамина В12 и пивом. Также неприятные последствия могут возникнуть при нехватке железа, из-за чего уровень усвоения кобальта очень ускоряется, и так он способен накапливаться в печени. Работники предприятий химической промышленности, производства керамических изделий, жидкого топлива рискуют получить отравление при вдыхании насыщенной пыли или через кожные покровы.

Последствиями служат заболевания сердца, нервной системы, щитовидной железы, легких, органов слуха, а кроме того последсвиями могут стать аллергические реакции, астма, гипертония, дерматиты, пневмония, а еще нарушение защитных функций кровообращения.

Продукты, в которых содержится кобальт, очень разнообразны, поэтому правильный рацион сможет полностью пополнить организм необходимым количеством элемента.

Самое большое количество макроэлемента обнаружено в бобовых, зерновых культурах, яблоках, абрикосах, винограде, клубнике, орехах, грибах. Также богаты кобальтом продукты животного происхождения – молоко и его производные, мясо говядины, птицы, морские продукты, яйца.

Очень много элемента в чае и какао, но в них также образуются канцерогенные нитрозамины. Если обойтись без них вы не можете, то лучше перейти на зеленый, красный чай или добавлять лимон, который способен предотвращать возникновение токсинов.

Показания к назначению

Показания к назначению макроэлемента носят в основном предупредительный и восстановительный характер. Медики практикуют назначение препаратов при заболеваниях суставов, болезненных менструациях, климаксе, ухудшении памяти, язве желудка, варикозном расширении вен, судорогах.

Энергия ионизации
(первый электрон) Термодинамические свойства простого вещества Плотность (при н. у.) Температура плавления Температура кипения Уд. теплота плавления

15,48 кДж/моль

Уд. теплота испарения

389,1 кДж/моль

Молярная теплоёмкость Кристаллическая решётка простого вещества Структура решётки

гексагональная

Параметры решётки Отношение c /a Температура Дебая Прочие характеристики Теплопроводность

(300 K) 100 Вт/(м·К)


История

Соединения кобальта известны человеку с глубокой древности, синие кобальтовые стёкла, эмали, краски находят в гробницах Древнего Египта. Так, в гробнице Тутанхамона нашли много осколков синего кобальтового стекла, неизвестно, было ли приготовление стёкол и красок сознательным или случайным. Первое приготовление синих красок относится к 1800 году.

Происхождение названия

Название химического элемента кобальт происходит от нем. Kobold - домовой, гном. При обжиге содержащих мышьяк кобальтовых минералов выделяется летучий ядовитый оксид мышьяка . Руда, содержащая эти минералы, получила у горняков имя горного духа Кобольда . Древние норвежцы приписывали отравления плавильщиков при переплавке серебра проделкам этого злого духа. В этом происхождение названия кобальта схоже с происхождением названия никеля .

Нахождение в природе

Массовая доля кобальта в земной коре 4·10 −3 %. Кобальт входит в состав минералов: каролит CuCo 2 S 4 , линнеит Co 3 S 4 , кобальтин CoAsS, сферокобальтит CoCO 3 , смальтин CoAs 2 , скуттерудит (Co, Ni)As 3 и других. Всего известно около 30 кобальтосодержащих минералов. Кобальту сопутствуют железо , никель , хром , марганец и медь . Содержание в морской воде приблизительно (1,7)·10 −10 %.

Месторождения

Самый крупный поставщик кобальта - Демократическая Республика Конго . Также есть богатые месторождения в Канаде, США, Франции, Замбии, Казахстане, России.

Получение

Кобальт получают в основном из никелевых руд, обрабатывая их растворами серной кислоты или аммиака. Также используется методы пирометаллургии . Для отделения от близкого по свойствам никеля используется хлор , хлорат кобальта (Co(ClO 3) 2) выпадает в осадок, а соединения никеля остаются в растворе.

Изотопы

Кобальт имеет только один стабильный изотоп - 59 Co (изотопная распространённость 100 %). Известны ещё 22 радиоактивных изотопа кобальта.

Физические свойства

Кобальт - твердый металл, существующий в двух модификациях . При температурах от комнатной до 427 °C устойчива α-модификация. При температурах от 427 °C до температуры плавления (1494 °C) устойчива β-модификация кобальта (решётка кубическая гранецентрированная). Кобальт - ферромагнетик , точка Кюри 1121 °C. Желтоватый оттенок ему придает тонкий слой оксидов .

Химические свойства

Оксиды

  • На воздухе кобальт окисляется при температуре выше 300 °C.
  • Устойчивый при комнатной температуре оксид кобальта представляет собой сложный оксид Co 3 O 4 , имеющий структуру шпинели , в кристаллической структуре которого одна часть узлов занята ионами Co 2+ , а другая - ионами Co 3+ ; разлагается с образованием CoO при температуре выше 900 °C.
  • При высоких температурах можно получить α-форму или β-форму оксида CoO.
  • Все оксиды кобальта восстанавливаются водородом:
\mathsf{Co_3O_4 + 4H_2 \rightarrow 3Co + 4H_2O}
  • Оксид кобальта (III) можно получить, прокаливая соединения кобальта (II), например:
\mathsf{4Co(OH)_2 + O_2 \rightarrow 2Co_2O_3 + 4H_2O}

Другие соединения

  • При нагревании кобальт реагирует с галогенами, причём соединения кобальта (III) образуются только с фтором.
\mathsf{2Co + 3F_2 \rightarrow 2CoF_3} \mathsf{Co + Cl_2 \rightarrow CoCl_2}
  • С серой кобальт образует 2 различных модификации CoS. Серебристо-серую α-форму (при сплавлении порошков) и чёрную β-форму (выпадает в осадок из растворов).
  • При нагревании CoS в атмосфере сероводорода получается сложный сульфид Со 9 S 8
  • С другими окисляющими элементами, такими, как углерод , фосфор , азот , селен , кремний , бор . Кобальт тоже образует сложные соединения, являющиеся смесями, где присутствует кобальт со степенями окисления 1, 2, 3.
  • Кобальт способен растворять водород , не образуя химических соединений. Косвенным путём синтезированы два стехиометрических гидрида кобальта СоН 2 и СоН.
  • Растворы солей кобальта CoSO 4 , CoCl 2 , Со(NO 3) 2 придают воде бледно-розовую окраску. Растворы солей кобальта в спиртах темно-синие. Многие соли кобальта нерастворимы.
  • Кобальт образует комплексные соединения. В степени окисления +2 кобальт образует лабильные комплексы, в то время как в степени окисления +3 - очень инертные. Это приводит к тому, что комплексные соединения кобальта(III) практически невозможно получить путём непосредственного обмена лигандов, поскольку такие процессы идут чрезвычайно медленно. Наиболее известны аминокомплексы кобальта.

Наиболее устойчивыми комплексами являются лутеосоли (например, 3+) жёлтого цвета и розеосоли (например, 3+) красного или розового цвета.

  • Также кобальт образует комплексы с CN − , NO 2 − и многими другими лигандами. Комплексный анион гексанитрокобальтат 3- образует нерастворимый осадок с катионами калия, что используется в качественном анализе.

Применение

  • Легирование кобальтом стали повышает её жаропрочность, улучшает механические свойства. Из сплавов с применением кобальта создают обрабатывающий инструмент: свёрла, резцы, и т. п.
  • Магнитные свойства сплавов кобальта находят применение в аппаратуре магнитной записи, а также сердечниках электромоторов и трансформаторов.
  • Для изготовления постоянных магнитов иногда применяется сплав, содержащий около 50 % кобальта, а также ванадий или хром .
  • Кобальт применяется как катализатор химических реакций.
  • Кобальтат лития применяется в качестве высокоэффективного положительного электрода для производства литиевых аккумуляторов.
  • Силицид кобальта - отличный термоэлектрический материал, он позволяет производить термоэлектрогенераторы с высоким КПД.
  • Радиоактивный кобальт-60 (период полураспада 5,271 года) применяется в гамма-дефектоскопии и медицине.
  • 60 Со используется в качестве топлива в .

Биологическая роль

Кобальт - один из микроэлементов, жизненно важных организму. Он входит в состав витамина В 12 (кобаламин). Кобальт задействован при кроветворении, функциях нервной системы и печени, ферментативных реакциях. Потребность человека в кобальте - 0,007-0,015 мг, ежедневно. В теле человека содержится 0,2 мг кобальта на каждый килограмм массы человека. При отсутствии кобальта развивается акобальтоз .

Токсикология

Избыток кобальта для человека вреден.

В 1960-х годах соли кобальта использовались некоторыми пивоваренными компаниями для стабилизации пены. Регулярно выпивавшие более четырёх литров пива в день получали серьёзные побочные эффекты на сердце, и, в отдельных случаях, это приводило к смерти. Известные случаи т. н. кобальтовой кардиомиопатии в связи с употреблением пива происходили с 1964 по 1966 годы в Омахе (штат Небраска), Квебеке (Канада), Левене (Бельгия), и Миннеаполисе (штат Миннесота). С тех пор его использование в пивоварении прекращено, и в настоящее время является незаконным .

ПДК пыли кобальта в воздухе 0,5 мг/м³, в питьевой воде допустимое содержание солей кобальта 0,01 мг/л.

Токсическая доза (LD50 для крыс) - 50 мг.

Особенно токсичны пары октакарбонила кобальта Со 2 (СО) 8 .

Стоимость металлического кобальта

На 20 января 2013 г. стоимость кобальта на мировом рынке, по данным , составляет около 26 долл./кг.

Напишите отзыв о статье "Кобальт"

Примечания

Ссылки