Пирамида - это многогранник, в основании которого лежит многоугольник. Все грани в свою очередь образуют треугольники, которые сходятся в одной вершине. Пирамиды бывают треугольными, четырехугольными и так далее. Для того чтобы определить, какая пирамида перед вами, достаточно посчитать количество углов в ее основании. Определение "высота пирамиды" очень часто встречается в задачах по геометрии в школьной программе. В статье попробуем рассмотреть разные способы ее нахождения.

Части пирамиды

Каждая пирамида состоит из следующих элементов:

  • боковые грани, которые имеют по три угла и сходятся в вершине;
  • апофема представляет собой высоту, которая опускается из ее вершины;
  • вершина пирамиды - это точка, которая соединяет боковые ребра, но при этом не лежит в плоскости основания;
  • основание - это многоугольник, на котором не лежит вершина;
  • высота пирамиды представляет собой отрезок, который пересекает вершину пирамиды и образует с ее основанием прямой угол.

Как найти высоту пирамиды, если известен ее объем

Через формулу V = (S*h)/3 (в формуле V - объем, S - площадь основания, h - высота пирамиды) находим, что h = (3*V)/S. Для закрепления материала давайте сразу же решим задачу. В треугольной основания равна 50 см 2 , тогда как ее объем составляет 125 см 3 . Неизвестна высота треугольной пирамиды, которую нам и необходимо найти. Здесь все просто: вставляем данные в нашу формулу. Получаем h = (3*125)/50 = 7,5 см.

Как найти высоту пирамиды, если известна длина диагонали и ее ребра

Как мы помним, высота пирамиды образует с ее основанием прямой угол. А это значит что высота, ребро и половина диагонали вместе образуют Многие, конечно же, помнят теорему Пифагора. Зная два измерения, третью величину найти будет несложно. Вспомним известную теорему a² = b² + c², где а - гипотенуза, а в нашем случае ребро пирамиды; b - первый катет или половина диагонали и с - соответственно, второй катет, или высота пирамиды. Из этой формулы c² = a² - b².

Теперь задачка: в правильной пирамиде диагональ равна 20 см, когда как длина ребра - 30 см. Необходимо найти высоту. Решаем: c² = 30² - 20² = 900-400 = 500. Отсюда с = √ 500 = около 22,4.

Как найти высоту усеченной пирамиды

Она представляет собой многоугольник, который имеет сечение параллельно ее основанию. Высота усеченной пирамиды - это отрезок, который соединяет два ее основания. Высоту можно найти у правильной пирамиды, если будут известны длины диагоналей обоих оснований, а также ребро пирамиды. Пусть диагональ большего основания равна d1, в то время как диагональ меньшего основания - d2, а ребро имеет длину - l. Чтобы найти высоту, можно с двух верхних противоположных точек диаграммы опустить высоты на ее основание. Мы видим, что у нас получились два прямоугольных треугольника, остается найти длины их катетов. Для этого из большей диагонали вычитаем меньшую и делим на 2. Так мы найдем один катет: а = (d1-d2)/2. После чего по теореме Пифагора нам остается лишь найти второй катет, который и является высотой пирамиды.

Теперь рассмотрим все это дело на практике. Перед нами задача. Усеченная пирамида имеет в основании квадрат, длина диагонали большего основания равняется 10 см, в то время как меньшего - 6 см, а ребро равняется 4 см. Требуется найти высоту. Для начала находим один катет: а = (10-6)/2 = 2 см. Один катет равен 2 см, а гипотенуза - 4 см. Получается, что второй катет или высота будет равна 16-4 = 12, то есть h = √12 = около 3,5 см.

– это многогранник, который образуется основанием пирамиды и параллельным ему сечением. Можно сказать, что усеченная пирамида – это пирамиду со срезанной верхушкой. Эта фигура обладает множеством уникальных свойств:

  • Боковые грани пирамиды являются трапециями;
  • Боковые ребра правильной усеченной пирамиды одинаковой длины и наклонены к основанию под одинаковым углом;
  • Основания являются подобными многоугольниками;
  • В правильной усеченной пирамиде, грани представляют собой одинаковые равнобедренные трапеции, площадь которых равна. Также они наклонены к основанию под одним углом.

Формула площади боковой поверхности усеченной пирамиды представляет собой сумму площадей ее сторон:

Так как стороны усеченной пирамиды представляют собой трапеции, то для расчета параметров придется воспользоваться формулой площади трапеции . Для правильной усеченной пирамиды можно применить другую формулу расчета площади. Так как все ее стороны, грани, и углы при основании равны, то можно применить периметры основания и апофему, а также вывести площадь через угол при основании.

Если по условиям в правильной усеченной пирамиде даны апофема (высота боковой стороны) и длины сторон основания, то можно произвести расчет площади через полупроизведение суммы периметров оснований и апофемы:

Давайте рассмотрим пример расчета площади боковой поверхности усеченной пирамиды.
Дана правильная пятиугольная пирамида. Апофема l = 5 см, длина грани в большом основании равна a = 6 см, а грань в меньшем основании b = 4 см. Рассчитайте площадь усеченной пирамиды.

Для начала найдем периметры оснований. Так как нам дана пятиугольная пирамида, мы понимаем, что основания представляют собой пятиугольники. Значит, в основаниях лежит фигура с пятью одинаковыми сторонами. Найдем периметр большего основания:

Таким же образом находим периметр меньшего основания:

Теперь можем рассчитывать площадь правильной усеченной пирамиды. Подставляем данные в формулу:

Таким образом, мы рассчитали площадь правильной усеченной пирамиды через периметры и апофему.

Еще один способ расчета площади боковой поверхности правильной пирамиды, это формула через углы у основания и площадь этих самых оснований .

Давайте рассмотрим пример расчета. Помним, что данная формула применяется только для правильной усеченной пирамиды.

Пусть дана правильная четырехугольная пирамида. Грань нижнего основания a = 6 см, а грань верхнего b = 4 см. Двухгранный угол при основании β = 60°. Найдите площадь боковой поверхности правильной усеченной пирамиды.

Для начала рассчитаем площадь оснований. Так как пирамида правильная, все грани оснований равны между собой. Учитывая, что в основании лежит четырехугольник, понимаем, что нужно будет рассчитать площадь квадрата . Она представляет собой произведение ширины на длину, но в квадрате эти значения совпадают. Найдем площадь большего основания:


Теперь используем найденные значения для расчета площади боковой поверхности.

Зная несколько несложных формул, мы легко рассчитали площадь боковой трапеции усеченной пирамиды через различные значения.

Данный урок поможет получить представление о теме «Пирамида. Правильная и усеченная пирамида». На этом занятии мы познакомимся с понятием правильной пирамиды, дадим ей определение. Затем докажем теорему о боковой поверхности правильной пирамиды и теорему о боковой поверхности правильной усеченной пирамиды.

Тема: Пирамида

Урок: Правильная и усечённая пирамиды

Определение: правильной n-угольной пирамидой называется такая пирамида, у которой в основании лежит правильный n-угольник, и высота проецируется в центр этого n-угольника (рис. 1).

Рис. 1

Правильная треугольная пирамида

Для начала рассмотрим ∆ABC (рис. 2), в котором AB=BC=CA (то есть в основании пирамиды лежит правильный треугольник). У правильного треугольника центр вписанной и описанной окружности совпадают и являются центром самого треугольника. В данном случае центр находится следующим образом: находим середину АВ - С 1 , проводим отрезок СС 1 , который является медианой, биссектрисой и высотой; аналогично находим середину AC - B 1 и проводим отрезок BB 1 . Пересечением BB 1 и СС 1 будет точка О, которая является центром ∆АВС.

Если соединить центр треугольника O с вершиной пирамиды S, то получим высоту пирамиды SO ⊥ ABC, SO = h.

Соединив точку S с точками А, В и С получим боковые ребра пирамиды.

Мы получили правильную треугольную пирамиду SABC (рис. 2).

На данном уроке мы рассмотрим усеченную пирамиду, познакомимся с правильной усеченной пирамидой, изучим их свойства.

Вспомним понятие n-угольной пирамиды на примере треугольной пирамиды. Задан треугольник АВС. Вне плоскости треугольника взята точка Р, соединенная с вершинами треугольника. Полученная многогранная поверхность и называется пирамидой (рис. 1).

Рис. 1. Треугольная пирамида

Рассечем пирамиду плоскостью , параллельной плоскости основания пирамиды . Полученная между этими плоскостями фигура и называется усеченной пирамидой (рис. 2).

Рис. 2. Усеченная пирамида

Основные элементы:

Верхнее основание ;

Нижнее основание АВС;

Боковая грань ;

Если РН - высота исходной пирамиды, то - высота усеченной пирамиды.

Свойства усеченной пирамиды вытекают из способа ее построения, а именно из параллельности плоскостей оснований:

Все боковые грани усеченной пирамиды являются трапециями. Рассмотрим, например, грань . У нее по свойству параллельных плоскостей (поскольку плоскости параллельны, то боковую грань исходной пирамиды АВР они рассекают по параллельным прямым), в то же время и не параллельны. Очевидно, что четырехугольник является трапецией, как и все боковые грани усеченной пирамиды.

Отношение оснований одинаково для всех трапеций:

Имеем несколько пар подобных треугольников с одинаковым коэффициентом подобия. Например, треугольники и РАВ подобны в силу параллельности плоскостей и , коэффициент подобия:

В то же время подобны треугольники и РВС с коэффициентом подобия:

Очевидно, что коэффициенты подобия для всех трех пар подобных треугольников равны, поэтому отношение оснований одинаково для всех трапеций.

Правильной усеченной пирамидой называется усеченная пирамида, полученная сечением правильной пирамиды плоскостью, параллельной основанию (рис. 3).

Рис. 3. Правильная усеченная пирамида

Определение.

Правильной называется пирамида, в основании которой лежит правильный n-угольник, а вершина проектируется в центр этого n-угольника (центр вписанной и описанной окружности).

В данном случае в основании пирамиды лежит квадрат, и вершина проектируется в точку пересечения его диагоналей. У полученной правильной четырехугольной усеченной пирамиды ABCD - нижнее основание, - верхнее основание. Высота исходной пирамиды - РО, усеченной пирамиды - (рис. 4).

Рис. 4. Правильная четырехугольная усеченная пирамида

Определение.

Высота усеченной пирамиды - это перпендикуляр, проведенный из любой точки одного основания к плоскости второго основания.

Апофема исходной пирамиды - РМ (М - середина АВ), апофема усеченной пирамиды - (рис. 4).

Определение.

Апофема усеченной пирамиды - высота любой боковой грани.

Ясно, что все боковые ребра усеченной пирамиды равны между собой, то есть боковые грани - равные равнобедренные трапеции.

Площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему.

Доказательство (для правильной четырехугольной усеченной пирамиды - рис. 4):

Итак, необходимо доказать:

Площадь боковой поверхности здесь будет состоять из суммы площадей боковых граней - трапеций. Поскольку трапеции одинаковы, имеем:

Площадь равнобедренной трапеции - это произведение полусуммы оснований и высоты, апофема является высотой трапеции. Имеем:

Что и требовалось доказать.

Для n-угольной пирамиды:

Где n - количество боковых граней пирамиды, a и b - основания трапеции, - апофема.

Стороны основания правильной усеченной четырехугольной пирамиды равны 3 см и 9 см, высота - 4 см. Найти площадь боковой поверхности.

Рис. 5. Иллюстрация к задаче 1

Решение. Проиллюстрируем условие:

Задано: , ,

Через точку О проведем прямую MN параллельно двум сторонам нижнего основания, аналогично через точку проведем прямую (рис. 6). Поскольку в основаниях усеченной пирамиды квадраты и построения параллельны, получим трапецию, равную боковым граням. Причем ее боковая сторона будет проходить через середины верхнего и нижнего ребра боковых граней и являться апофемой усеченной пирамиды.

Рис. 6. Дополнительные построения

Рассмотрим полученную трапецию (рис. 6). В этой трапеции известно верхнее основание, нижнее основание и высота. Требуется найти боковую сторону, которая является апофемой заданной усеченной пирамиды. Проведем перпендикулярно MN. Из точки опустим перпендикуляр NQ. Получим, что большее основание разбивается на отрезки по три сантиметра (). Рассмотрим прямоугольный треугольник , катеты в нем известны, это египетский треугольник, по теореме Пифагора определяем длину гипотенузы: 5 см.

Теперь есть все элементы для определения площади боковой поверхности пирамиды:

Пирамида пересечена плоскостью, параллельной основанию. Докажите на примере треугольной пирамиды, что боковые ребра и высота пирамиды делятся этой плоскостью на пропорциональные части.

Доказательство. Проиллюстрируем:

Рис. 7. Иллюстрация к задаче 2

Задана пирамида РАВС. РО - высота пирамиды. Пирамида рассечена плоскостью , получена усеченная пирамида , причем . Точка - точка пересечения высоты РО с плоскостью основания усеченной пирамиды . Необходимо доказать:

Ключом к решению является свойство параллельных плоскостей. Две параллельные плоскости рассекают любую третью плоскость так, что линии пересечения параллельны. Отсюда: . Из параллельности соответствующих прямых вытекает наличие четырех пар подобных треугольников:

Из подобия треугольников вытекает пропорциональность соответствующих сторон. Важная особенность заключается в том, что коэффициенты подобия у этих треугольников одинаковы:

Что и требовалось доказать.

Правильная треугольная пирамида РАВС с высотой и стороной основания рассечена плоскостью , проходящей через середину высоты РН параллельно основанию АВС. Найти площадь боковой поверхности полученной усеченной пирамиды.

Решение. Проиллюстрируем:

Рис. 8. Иллюстрация к задаче 3

АСВ - правильный треугольник, Н - центр данного треугольника (центр вписанной и описанной окружностей). РМ - апофема заданной пирамиды. - апофема усеченной пирамиды. Согласно свойству параллельных плоскостей (две параллельные плоскости рассекают любую третью плоскость так, что линии пересечения параллельны), имеем несколько пар подобных треугольников с равным коэффициентом подобия. В частности нас интересует отношение:

Найдем НМ. Это радиус окружности, вписанной в основание, соответствующая формула нам известна:

Теперь из прямоугольного треугольника РНМ по теореме Пифагора найдем РМ - апофему исходной пирамиды:

Из начального соотношения:

Теперь нам известны все элементы для нахождения площади боковой поверхности усеченной пирамиды:

Итак, мы ознакомились с понятиями усеченной пирамиды и правильной усеченной пирамиды, дали основные определения, рассмотрели свойства, доказали теорему о площади боковой поверхности. Следующий урок будет посвящен решению задач.

Список литературы

  1. И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е изд., испр. и доп. - М.: Мнемозина, 2008. - 288 с.: ил.
  2. Шарыгин И. Ф. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Е. В. Потоскуев, Л. И. Звалич. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е изд., стереотип. - М.: Дрофа, 2008. - 233 с.: ил.
  1. Uztest.ru ().
  2. Fmclass.ru ().
  3. Webmath.exponenta.ru ().

Домашнее задание