Уравнение состояния идеального газа (уравнение Менделеева - Клапейрона).

До этого рассматривались газовые процессы, при которых один из параметров состояния газа оставался неизменным, а два других изменялись. Теперь рассмотрим общий случай, когда изменяются все три параметра состояния газа и получим уравнение, связывающее все эти параметры. Закон, описывающий такого рода процессы, был установлен в 1834г. Клапейроном (французский физик, с 183г. работал в Петербургском институте путей сообщения) путем объединения рассмотренных выше законов.

Пусть имеется некоторый газ массой “m”. На диаграмме (P, V) рассмотрим два его произвольных состояния, определяемых значениями параметров P 1 , V 1 , T 1 и P 2 , V 2 , T 2 . Из состояния 1 в состояние 2 будем переводить газ двумя процессами:

1. изотермического расширения (1®1¢);

2. изохорического охлаждения (1¢®2).

Первый этап процесса описывается законом Бойля-Мариотта, поэтому

. (9.5)

Второй этап процесса описывается законом Гей-Люссака:

Исключая из этих уравнений , получим:

. (9.7)

Поскольку состояния 1 и 2 были взяты совершенно произвольно, то можно утверждать, что для любого состояния:

где С – постоянная для данной массы газа величина.

Недостатком этого уравнения является то, что величина “C” различна для различных газов, Для устранения этого недостатка Менделеев в 1875г. несколько видоизменил закон Клапейрона, объединив его с законом Авогадро.

Запишем полученное уравнение для объема V км. одного 1 киломоля газа, обозначив постоянную буквой “R”:

Согласно закону Авогадро при одинаковых значениях P и T киломоли всех газов будут иметь одинаковые объемы V км. и, следовательно, постоянная “R” будет одинакова для всех газов.

Постоянная “R”называется универсальной газовой постоянной. Полученное уравнение связывает параметры киломоля идеального газа и, следовательно, представляет уравнение состояния идеального газа.

Значение постоянной “R” можно вычислить:

.

От уравнения для 1кмоль легко перейти к уравнению для любой массы газа “m”, приняв во внимание, что при одинаковых давлениях и температуре “z” киломолей газа будут занимать в ”z” раз больший объем, чем 1 кмоль. (V=z×V км.).

С другой стороны отношение , где m – масса газа, m – масса 1 кмоля, будет определять число молей газа.

Умножим обе части уравнения Клапейрона на величину , получим

Þ (9.7а)

Это и есть уравнение состояния идеального газа, записанное для любой массы газа.

Уравнению можно придать другой вид. Для этого введем величину

где R – универсальная газовая постоянная;

N A – число Авогадро;

Подстановка числовых значений R и N A дает следующее значение:

.

Умножим и разделим правую часть уравнения на N A , тогда , здесь – число молекул в массе газа “m”.

С учетом этого

(*)

Вводя величину – число молекул в единице объема, приходим к формуле.

1. Идеальным газом называется газ, в котором отсутствуют силы межмолекулярного взаимодействия. С достаточной степенью точности газы можно считать идеальными в тех случаях, когда рассматриваются их состояния, далекие от областей фазовых превращений.
2. Для идеальных газов справедливы следующие законы:

а) Закон Бойля - Mаpuomma: при неизменных температуре и массе произведение численных значений давления и объема газа постоянно:
pV = const

Графически этот закон в координатах РV изображается линией, называемой изотермой (рис.1).

б) Закон Гей-Люссака: при постоянном давлении объем данной массы газа прямо пропорционален его абсолютной температуре:
V = V0(1 + at)

где V - объем газа при температуре t, °С; V0 - его объем при 0°С. Величина a называется температурным коэффициентом объемного расширения. Для всех газов a = (1/273°С-1). Следовательно,
V = V0(1 +(1/273)t)

Графически зависимость объема от температуры изображается прямой линией - изобарой (рис. 2). При очень низких температурах (близких к -273°С) закон Гей-Люссака не выполняется, поэтому сплошная линия на графике заменена пунктиром.

в) Закон Шарля: при постоянном объеме давление данной массы газа прямо пропорционально его абсолютной температуре:
p = p0(1+gt)

где р0 - давление газа при температуре t = 273,15 К.
Величина g называется температурным коэффициентом давления. Ее значение не зависит от природы газа; для всех газов = 1/273 °С-1. Таким образом,
p = p0(1 +(1/273)t)

Графическая зависимость давления от температуры изображается прямой линией - изохорой (Рис. 3).

г) Закон Авогадро: при одинаковых давлениях и одинаковых температурах и равных объемах различных идеальных газов содержится одинаковое число молекул; или, что то же самое: при одинаковых давлениях и одинаковых температурах грамм-молекулы различных идеальных газов занимают одинаковые объемы.
Так, например, при нормальных условиях (t = 0°C и p = 1 атм = 760 мм рт. ст.) грамм-молекулы всех идеальных газов занимают объем Vm = 22,414 л.· Число молекул, находящихся в 1 см3 идеального газа при нормальных условиях, называется числом Лошмидта; оно равно 2,687*1019> 1/см3
3. Уравнение состояния идеального газа имеет вид:
pVm = RT

где р, Vm и Т - давление, молярный объем и абсолютная температура газа, а R - универсальная газовая постоянная, численно равная работе, совершаемой 1 молем идеального газа при изобарном нагревании на один градус:
R = 8.31*103 Дж/(кмоль*град)

Для произвольной массы M газа объем составит V = (M/m)*Vm и уравнение состояния имеет вид:
pV = (M/m) RT

Это уравнение называется уравнением Менделеева - Клапейрона.
4. Из уравнения Менделеева - Клапейрона следует, чти число n0 молекул, содержащихся в единице объема идеального газа, равно
n0 = NA/Vm = p*NA /(R*T) = p/(kT)

где k = R/NA = 1/38*1023 Дж/град - постоянная Больцмана, NA - число Авогадро.

Оно выведено на основе объединенного закона Бойля-Мариотта и Гей-Люссака с применением закона Авогадро. Для одной грамм-молекулы любого вещества, находящегося в идеальном газовом состоянии, уравнение Менделеева-Клапейрона имеет выражение:

Или PV = RT (11) .

В том случае, если имеется не один, а n молей газа выражение принимает вид:

где R- универсальная газовая постоянная, не зависящая от природы газа.

Так как число грамм-молей газа , где m- масса газа, а М- его молекулярная масса, то выражение (12) принимает вид:

Числовое значение R зависит от единицы измерения дав­ления и объема. Величина ее выражается в единицах энергия/моль´град. Для нахождения числовых значений R используем уравнение (11), применив его для 1 моля идеального газа, находящегося в нормальных условиях,

Подставив в уравнение (11) числовые значения Р=1 атм, T= 273° и V = 22,4 л, получаем

В международной системе единиц СИ давление выра­жается в ньютонах на м 2 (н/м 2), а объем в м 3 . Тогда .

Пользуясь уравнением Менделеева-Клапейрона можно производить следующие расчеты: а) нахождение физи­ческих параметров состояния газа по его молекулярной массе и другим данным, б) нахождение молекулярной мас­сы газа по данным о его физическом состоянии (см. при­мер 22).

Пример 11. Сколько весит азот, находящийся в газгольдере диаметром 3,6 м и высотой 25 м при темпе­ратуре 25ºС и давлении 747 мм рт. ст.?

IIример 12. В колбе емкостью 500 мл при 25ºС находится 0,615 г оксида азота (II). Каково давление газа в атмосферах, в н/м 2 ?

Пример 13. Масса колбы емкостью 750 см 3 , на­полненной кислородом при 27°С, равна 83,35 г. Масса пустой колбы 82,11 г. Определить давление кислорода и мм рт.ст. на стенки колбы.

Закон Дальтона

Сформулирован этот закон так: общее давление смесей газов, не реагирующих друг с другом, равно сумме пар­циальных давлении составных частей (компонентов).

P = p 1 + p 2 + p 3 + ….. + p n (14)

где Р - общее давление смеси газов; p 1 , p 2 , p 3 , …., p n – парциальные давления компонентов смеси.

Парциальным давлением называется давление, оказы­ваемое каждым компонентом газовой смеси, если предста­вить этот компонент занимающим объем, равный объему смеси при той же температуре. Иными словами, парциаль­ным давлением называется та часть общего давления га­зовой смеси, которая обусловлена данным газом.

Из закона Дальтона следует, что при наличии смеси газов п в уравнении (12) представляет собой сумму числа молей всех компонентов, образующих данную смесь, а Р- общее давление смеси, занимающей при температу­ре Т объем V.

Зависимость между парциальными давлениями и общим выражается уравнениями:

где n 1 , n 2 , n 3 - число молей компонента 1, 2, 3, соответ­ственно, в смеси газов.

Отношения называются мольными долями данного компонента.

Если мольную долю обозначить через N, то парциальное давление любого i-го компонента смеси (где i = 1,2,3,...) будет равно:

Таким образом, парциальное давление каждого компо­нента смеси равно произведению его мольной доли па общее давление газовой смеси.

Помимо парциального давления у газовых смесей раз­личают парциальный объем каждого из газов v 1 , v 2 , v 3 и т. д.

Парциальным называют объем, который занимал бы отдельный идеальный газ, входящий в состав идеальной смеси газов, если бы при том же количестве, он имел давление и температуру смеси.

Сумма парциальных объемов всех компонентов газовой смеси равна общему объему смеси

V = v 1 , + v 2 + v 3 + ... + v n (16) .

Отношение и т. д. называется объемной долей первого, второго и т.д. компонентов газовой смеси. Для идеальных газов мольная доля равна объемной доле. Следовательно, парциальное давление каждого ком­понента смеси равно также произведению его объемной доли на общее давление смеси.

; ; p i = r i ´P (17).

Парциальное давление обычно находят из величины общего давления с учетом состава газовой смеси. Состав газовой смеси выражают в весовых процентах, объемных процентах и в мольных процентах.

Объемным процентом называется объемная доля, уве­личенная в 100 раз (число единиц объема данного газа, содержащегося в 100 единицах объема смеси)

Мольным процентом q называется мольная доля, уве­личенная в 100 раз.

Весовой процент данного газа - число единиц массы его, содержащихся в 100 единицах массы газовой смеси.

где m 1 , m 2 – массы отдельных компонентой газовой смеси; m – общая масса смеси.

Для перехода от объемных процентов к весовым, что бывает необходимым в практических расчетах, пользуют­ся формулой:

где r i (%) - объемное процентное содержание i-гo компонен­та газовой смеси; M i -молекулярная масса этого газа; М ср - средняя молекулярная масса смеси газов, которую вычисляют по формуле

М ср = М 1 ´r 1 + M 2 ´r 2 + M 3 ´r 3 + ….. + M i ´r i (19)

где М 1 , M 2 , M 3 , M i - молекулярные мaccы отдельных газов.

Если состав газовой смеси выражен количеством масс отдельных компонентов, то среднюю молекулярную массу смеси можно выразить по формуле

где G 1 , G 2 , G 3 , G i – доли масс газов в смеси: ; ; и т.д.

Пример 14. 5 л азота под давлением 2 атм, 2 л кислорода под давлением 2,5 атм и 3 л углекислою газа под давлением 5 атм перемешаны, причем объем, пре­доставленный смеси, равен 15 л. Вычислить, под каким давлением находятся смесь и парциальные давления каж­дого газа.

Азот, занимавший объем 5 л при давлении Р 1 = 2 атм, после смешения с другими газами распространился в объе­ме V 2 = 15 л. Парциальное давление азота р N 2 = Р 2 нахо­дим из закона Бойля-Мариотта (P 1 V 1 = P 2 V 2). Откуда

Парциальное давления кислорода и углекислого газа на­ходим аналогичным способом:

Общее давление смеси равно .

Пример 15. Смесь, состоящая из 2 молей водоро­да, некоторого количества молей кислорода и 1 моля азота при 20°С и давлении 4 атм, занимает объем 40 литров. Вычислить число молей кислорода в смеси и парциальные давления каждого из газов.

Из уравнения (12) Менделеева-Клапейрона находим общее число молей всех газов, составляющих смесь

Число молей кислорода в смеси равно

Парциальные давления каждого из газов вычисляем по уравнениям (15а):

Пример 17. Состав паров бензольных углеводоро­дов над поглотительным маслом в бензольных скрубберах, выраженный в единицах массы, характеризуется такими величинами: бензола C 6 H 6 - 73%, толуола С 6 Н 5 СН 3 - 21%, ксилола С 6 Н 4 (СН 3) 2 - 4%, триметилбензола С 6 Н 3 (СН 3) 3 - 2%. Вычислить содержание каждой составной части по объе­му и парциальные давления паров каждого вещества, если общее давление смеси равно 200 мм рт. ст.

Для вычисления содержания каждой составной части смеси паров по объему используем формулу (18)

Следовательно, необходимо знать М ср, которую можно вычислить из формулы (20):

Парциальные давления каждого компонента в смеси вычисляем, используя уравнение (17)

p бензола = 0,7678´200 = 153,56 мм рт.ст. ; p толуола = 0,1875´200 = 37,50 мм рт.ст. ;

p ксилола = 0,0310´200 = 6,20 мм рт.ст. ; p триметилбензола = 0,0137´200 = 2,74 мм рт.ст.


Похожая информация.


Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Менделеева - Клапейрона ) - формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

Так как , где-количество вещества, а , где- масса,-молярная масса, уравнение состояния можно записать:

Эта форма записи носит имя уравнения (закона) Менделеева - Клапейрона.

В случае постоянной массы газа уравнение можно записать в виде:

Последнее уравнение называют объединённым газовым законом . Из него получаются законы Бойля - Мариотта, Шарля и Гей-Люссака:

- закон Бойля - Мариотта .

- Закон Гей-Люссака .

- закон Шарля (второй закон Гей-Люссака, 1808 г.).А в форме пропорции этот закон удобен для расчёта перевода газа из одного состояния в другое. С точки зрения химика этот закон может звучать несколько иначе: Объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как простые целые числа. Например, 1 объёмводородасоединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода:

1 Объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака:

- закон Бойля - Мариотта . Закон Бойля - Мариотта назван в честь ирландского физика, химика и философа Роберта Бойля (1627-1691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (1620-1684), который открыл этот закон независимо от Бойля в 1677 году. В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме

где -показатель адиабаты, - внутренняя энергия единицы массы вещества.Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля - Мариотта. И это обстоятельство может быть прояснено на основании молекулярных представлений.

С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки. С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведениеувеличивается.

5. Основное уравнение молекулярно-кинетической теории идеальных газов

Для вывода основного уравнения молеку­лярно-кинетической теории рассмотрим одноатомный идеальный газ. Предполо­жим, что молекулы газа движутся хаоти­чески, число взаимных столкновений меж­ду молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку DS и вычислим давле­ние, оказываемое на эту площадку. При каждом соударении молекула, движущая­ся перпендикулярно площадке, передает ей импульс m 0 v-(-m 0 v)=2m 0 v, где т 0 - масса молекулы, v - ее скорость.

За время Dt площадки DS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием DS и высотой v Dt .Число этих молекул равно n DSv Dt (n- концентрация молекул).

Необходимо, однако, учитывать, что реально молекулы движутся к площадке

DS под разными углами и имеют различ­ные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движе­ние молекул заменяют движением вдоль трех взаимно перпендикулярных направ­лений, так что в любой момент времени вдоль каждого из них движется 1 / 3 моле­кул, причем половина молекул (1 / 6) дви­жется вдоль данного направления в одну сторону, половина - в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку DS будет 1 / 6 nDSvDt. При столкновении с пло­щадкой эти молекулы передадут ей им­пульс

DР = 2m 0 v 1 / 6 n DSv Dt = 1 / 3 nm 0 v 2 DS Dt .

Тогда давление газа, оказываемое им на стенку сосуда,

p =DP/(DtDS)= 1 / 3 nm 0 v 2 . (3.1)

Если газ в объеме V содержит N молекул,

движущихся со скоростями v 1 , v 2 , ..., v N , то

целесообразно рассматривать среднюю квадратичную скорость

характеризующую всю совокупность моле­кул газа.

Уравнение (3.1) с учетом (3.2) при­мет вид

р = 1 / 3 пт 0 2 . (3.3)

Выражение (3.3) называется основ­ным уравнением молекулярно-кинетической теории идеальных газов. Точный рас­чет с учетом движения молекул по все-

возможным направлениям дает ту же формулу.

Учитывая, что n = N/V, получим

где Е - суммарная кинетическая энергия поступательного движения всех молекул газа.

Так как масса газа m =Nm 0 , то урав­нение (3.4) можно переписать в виде

pV = 1 / 3 m 2 .

Для одного моля газа т = М (М - моляр­ная масса), поэтому

pV m = 1 / 3 M 2 ,

где V m - молярный объем. С другой сто­роны, по уравнению Клапейрона - Мен­делеева, pV m =RT. Таким образом,

RT= 1 / 3 М 2 , откуда

Так как М = m 0 N A , где m 0 -масса од­ной молекулы, а N А - постоянная Авогад­ро, то из уравнения (3.6) следует, что

где k = R/N A -постоянная Больцмана. Отсюда найдем, что при комнатной темпе­ратуре молекулы кислорода имеют сред­нюю квадратичную скорость 480 м/с, во­дорода - 1900 м/с. При температуре жид­кого гелия те же скорости будут соответ­ственно 40 и 160 м/с.

Средняя кинетическая энергия посту­пательного движения одной молекулы иде­ального газа

) 2 /2 = 3 / 2 kT(43.8)

(использовали формулы (3.5) и (3.7)) пропорциональна термодинамической тем­пературе и зависит только от нее. Из этого уравнения следует, что при T=0 =0,т. е. при 0 К прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Таким образом, термодинамическая температура является мерой средней кинетической энергии по­ступательного движения молекул идеаль­ного газа и формула (3.8) раскрывает молекулярно-кинетическое толкование температуры.

Подробности Категория: Молекулярно-кинетическая теория Опубликовано 05.11.2014 07:28 Просмотров: 13238

Газ - одно из четырёх агрегатных состояний, в которых может находиться вещество.

Частицы, из которых состоит газ, очень подвижны. Они практически свободно и хаотично движутся, периодически сталкиваясь друг с другом подобно биллиардным шарам. Такое столкновение называют упругим столкновением . Во время столкновения они резко изменяют характер своего движения.

Так как в газообразных веществах расстояние между молекулами, атомами и ионами намного превышает их размеры, то между собой эти частицы взаимодействую очень слабо, и их потенциальная энергия взаимодействия очень мала по сравнению с кинетической.

Связи между молекулами в реальном газе сложные. Поэтому также довольно сложно описывать зависимость его температуры, давления, объёма от свойств самих молекул, их количества, скорости их движения. Но задача значительно упрощается, если вместо реального газа рассматривать его математическую модель - идеальный газ .

Предполагается, что в модели идеального газа между молекулами нет сил притяжения и отталкивания. Все они движутся независимо друг от друга. И к каждой из них можно применить законы классической механики Ньютона. А между собой они взаимодействуют только во время упругих столкновений. Время самого столкновения очень мало по сравнению со временем между столкновениями.

Классический идеальный газ

Попробуем представить молекулы идеального газа маленькими шариками, находящимися в огромном кубе на большом расстоянии друг от друга. Из-за этого расстояния они не могут друг с другом взаимодействовать. Следовательно, их потенциальная энергия равна нулю. Но эти шарики двигаются с огромной скоростью. А значит, обладают кинетической энергией. Когда они сталкиваются друг с другом и со стенками куба, они ведут себя как мячики, то есть упруго отскакивают. При этом они меняют направление своего движения, но не меняют скорости. Примерно так выглядит движение молекул в идеальном газе.

  1. Потенциальная энергия взаимодействия молекул идеального газа настолько мала, что ею пренебрегают по сравнению с кинетической энергией.
  2. Молекулы в идеальном газе также имеют настолько маленькие размеры, что их можно считать материальными точками. А это означает, что и их суммарный объём также ничтожно мал по сравнению с объёмом сосуда, в котором находится газ. И этим объёмом также пренебрегают.
  3. Среднее время между столкновениями молекул намного превышает время их взаимодействия при соударении. Поэтому временем взаимодействия пренебрегают также.

Газ всегда принимает форму сосуда, в котором находится. Движущиеся частицы сталкиваются друг с другом и со стенками сосуда. Во время удара каждая молекула действует на стенку с некоторой силой в течение очень короткого промежутка времени. Так возникает давление . Суммарное давление газа складывается из давлений всех молекул.

Уравнение состояния идеального газа

Состояние идеального газа характеризуют три параметра: давление , объём и температура . Зависимость между ними описывается уравнением:

где р - давление,

V M - молярный объём,

R - универсальная газовая постоянная,

T - абсолютная температура (градусы Кельвина).

Так как V M = V / n , где V - объём, n - количество вещества, а n = m/M , то

где m - масса газа, М - молярная масса. Это уравнение называется уравнением Менделеева-Клайперона .

При постоянной массе уравнение приобретает вид:

Это уравнение называют объединённым газовым законом .

Используя закон Менделеева-Клайперона, можно определить один из параметров газа, если известны два других.

Изопроцессы

С помощью уравнения объединённого газового закона можно исследовать процессы, в которых масса газа и один из важнейших параметров - давление, температура или объём - остаются постоянными. В физике такие процессы называются изопроцессами .

Из объединённого газового закона вытекают другие важнейшие газовые законы: закон Бойля-Мариотта , закон Гей-Люссака , закон Шарля, или второй закон Гей-Люссака.

Изотермический процесс

Процесс, в котором изменяются давление или объём, но температура остаётся постоянной, называется изотермическим процессом .

При изотермическом процессе T = const, m = const .

Поведение газа в изотермическом процессе описывает закон Бойля-Мариотта . Этот закон открыли экспериментальным путём английский физик Роберт Бойль в 1662 г. и французский физик Эдм Мариотт в 1679 г. Причём сделали они это независимо друг от друга. Закон Бойля-Мариотта формулируется следующим образом: В идеальном газе при постоянной температуре произведение давления газа на его объём также постоянно .

Уравнение Бойля-Мариотта можно вывести из объединённого газового закона. Подставив в формулу Т = const , получаем

p · V = const

Это и есть закон Бойля-Мариотта . Из формулы видно, что давление газа при постоянной температуре обратно пропорционально его объёму . Чем выше давление, тем меньше объём, и наоборот.

Как объяснить это явление? Почему же при увеличении объёма газа его давление становится меньше?

Так как температура газа не меняется, то не меняется и частота ударов молекул о стенки сосуда. Если увеличивается объём, то концентрация молекул становится меньше. Следовательно, на единицу площади придётся меньшее количество молекул, которые соударяются со стенками в единицу времени. Давление падает. При уменьшении объёма число соударений, наоборот, возрастает. Соответственно растёт и давление.

Графически изотермический процесс отображают на плоскости кривой, которую называют изотермой . Она имеет форму гиперболы .

Каждому значению температуры соответствует своя изотерма. Чем выше температура, тем выше расположена соответсвующая ей изотерма.

Изобарный процесс

Процессы изменения температуры и объёма газа при постоянном давлении, называются изобарными . Для этого процесса m = const, P = const.

Зависимость объёма газа от его температуры при неизменяющемся давлении также была установлена экспериментальным путём французским химиком и физиком Жозефом Луи Гей-Люссаком , опубликовавшем его в 1802 г. Поэтому её называют законом Гей-Люссака : " Пр и постоянном давлении отношение объёма постоянной массы газа к его абсолютной температуре является постоянной величиной".

При Р = const уравнение объединённого газового закона превращается в уравнение Гей-Люссака .

Пример изобарного процесса - газ, находящийся внутри цилиндра, в котором перемещается поршень. При повышении температуры растёт частота ударов молекул о стенки. Увеличивается давление, и поршень приподнимается. В итоге увеличивается объём, занимаемый газом в цилиндре.

Графически изобарный процесс отображается прямой линией, которая называется изобарой .

Чем больше давление в газе, тем ниже расположена на графике соответствующая изобара.

Изохорный процесс

Изохорным, или изохорическим, называют процесс изменения давления и температуры идеального газа при постоянном объёме.

Для изохорного процесса m = const, V = const.

Представить такой процесс очень просто. Он происходит в сосуде фиксированного объёма. Например, в цилиндре, поршень в котором не двигается, а жёстко закреплён.

Изохорный процесс описывается законом Шарля : «Для данной массы газа при постоянном объёме его давление пропорционально температуре ». Французский изобретатель и учёный Жак Александр Сезар Шарль установил эту зависимость с помощью экспериментов в 1787 г. В 1802 г. её уточнил Гей-Люссак. Поэтому этот закон иногда называют вторым законом Гей-Люссака.

При V = const из уравнения объединённого газового закона получаем уравнение закона Шарля, или второго закона Гей-Люссака .

При постоянном объёме давление газа увеличивается, если увеличивается его температура .

На графиках изохорный процесс отображается линией, которая называется изохорой .

Чем больше объём занимаемый газом, тем ниже расположена изохора, соответствующая этому объёму.

В реальности ни один параметр газа невозможно поддерживать неизменным. Это возможно сделать лишь в лабораторных условиях.

Конечно, в природе идеального газа не существует. Но в реальных разреженных газах при очень низкой температуре и давлении не выше 200 атмосфер расстояние между молекулами намного превышает их размеры. Поэтому их свойства приближаются к свойствам идеального газа.