давление непосредственно под выпуклой поверхностью жидкости больше давления под плоской поверхностью жидкости, а давление под вогнутой поверхностью жидкости меньше давления, чем под плоской поверхностью.

Расчет давления под сферической поверхностью жидкости

Она представляет из себя тонкий слой воды, который имеет две ограничивающие поверхности: внутреннюю и внешнюю. Радиусы кривизны этих поверхностей можно считать одинаковыми, так как толщина пленки в тысячи раз меньше радиуса пузыря. Вода из этого слоя постепенно стекает, слой утончается и, наконец, рвется. Так что пузыри по воде плавают не очень долго: от долей секунды до десятка секунд. Надо отметить, что по мере утончения водяной пленки размер пузыря практически не меняется.

Рассчитаем избыточное давление в таком пузыре. Для простоты рассмотрим однослойную полусферу радиуса r, располагающуюся на горизонтальной поверхности, будем так же считать, что снаружи воздуха нет. Пленка удерживается на заштрихованной поверхности за счет смачивания (рис. 2.3). При этом на нее вдоль границы контакта с поверхностью действует сила поверхностного натяжения, равная

где - коэффициент поверхностного натяжения жидкости,

Длина границы раздела пленка-поверхность равная .

Т. е. имеем:

.

Эта сила, действующая на пленку, а через нее и на воздух, направлена перпендикулярно поверхности (см. рис 2.3). Так что давление воздуха на поверхность и, следовательно, внутри пузыря можно рассчитать так:

Где F - сила поверхностного натяжения, равная ,

S - площадь поверхности: .

Подставляя значение силы F и площади S в формулу расчета давления получим:

и окончательно .

В нашем примере с воздушным пузырем на поверхности воды пленка двойная и, следовательно, избыточное давление равно .

На рисунке 2.4 приведены примеры однослойных сферических поверхностей, которые могут образоваться на поверхности жидкости. Над жидкостью находится газ, имеющий давление .

Капилля́рность (от лат. capillaris - волосяной), капиллярный эффект - физическое явление, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. Поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т. п. Понижение жидкости происходит в трубках и каналах, не смачиваемых жидкостью, например ртуть в стеклянной трубке.

На основе капиллярности основана жизнедеятельность животных и растений, химические технологии, бытовые явления (например, подъём керосина по фитилю в керосиновой лампе, вытирание рук полотенцем). Капиллярность почвы определяется скоростью, с которой вода поднимается в почве и зависит от размера промежутков между почвенными частицами.



Формула Лапласа

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки. Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и даётся формулой Лапласа:

Здесь R 1,2 - радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак - если по разную cторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому

Для случая поверхности кругового цилиндра радиуса R имеем

Известно, что поверхность жидкости около стенок сосуда искривляется. Свободная поверхность жидкости, искривлённая около стенок сосуда, называется мениском (рис. 145).

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Из-за действия сил поверхностного натяжения в каплях жидкости и внутри мыльных пузырей возникает добавочное давление (плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки ).

Рис. 146.

Рассмотрим поверхность жидкости, опирающуюся на некоторый плоский контур (рис.146, а ). Если поверхность жидкости не плоская, то стремление ее к сокращению и приведет к возникновению давления , дополнительного к тому, которое испытывает жидкость с плоской поверхностью. В случае выпуклой поверхности это дополнительное давление положительно (рис. 146, б ), в случае вогнутой поверхности – отрицательно (рис. 146, в ). В последнем случае поверхностный слой, стремясь сократиться, растягивает жидкость.

Величина добавочного давления, очевидно, должна возрастать с увеличением коэффициента поверхностного натяжения и кривизны поверхности .

Рис. 147.
Вычислим добавочное давление для сферической поверхности жидкости. Для этого рассечем мысленно сферическую каплю жидкости диаметральной плоскостью на два полушария (рис. 147). Из-за поверхностного натяжения оба полушария притягиваются друг к другу с силой, равной:

.

Эта сила прижимает друг к другу оба полушария по поверхности и, следовательно, обусловливает дополнительное давление:

Кривизна сферической поверхности всюду одинакова и определяется радиусом сферы . Очевидно, что чем меньше , тем больше кривизна сферической поверхности.

Избыточное давление внутри мыльного пузыря в два раза больше, так как пленка имеет две поверхности:

Добавочное давление обусловливает изменение уровня жидкости в узких трубках (капиллярах), вследствие чего называется иногда капиллярным давлением .

Кривизну произвольной поверхности принято характеризовать так называемой средней кривизной , которая может оказаться различной для разных точек поверхности.

Величина дает кривизну сферы. В геометрии доказывается, что полусумма обратных радиусов кривизны для любой пары взаимно перпендикулярных нормальных сечений имеет одно и то же значение:

. (1)

Эта величина и есть средняя кривизна поверхности в данной точке. В этой формуле радиусы – алгебраические величины. Если центр кривизны нормального сечения находится под данной поверхностью, соответствующий радиус кривизны положителен; если центр кривизны лежит над поверхностью, радиус кривизны отрицателен (рис.148).

Рис. 148.
Таким образом, неплоская поверхность может иметь среднюю кривизну, равную нулю. Для этого нужно, чтобы радиусы кривизны были одинаковы по величине и противоположны по знаку.

Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому и . Для случая поверхности кругового цилиндра радиуса имеем: , и .

Можно доказать, что для поверхности любой формы справедливо соотношение:

Подставив в формулу (2) выражение (1), получим формулу добавочного давления под произвольной поверхностью, называемую формулой Лапласа (рис. 148):

. (3)

Радиусы и в формуле (3) – алгебраические величины. Если центр кривизны нормального сечения находится под данной поверхностью, соответствующий радиус кривизны положителен; если центр кривизны лежит над поверхностью, радиус кривизны отрицателен.

Пример. Если в жидкости имеется пузырек газа, то поверхность пузырька, стремясь сократиться, будет оказывать на газ дополнительное давление . Найдем радиус пузырька в воде, при котором добавочное давление равно1 aтм . .Коэффициент поверхностного натяжения воды при равен . Следовательно, для получается следующее значение: .

Решим следующую задачу (задача Банаха). Некто носит в кармане две коробки спичек (по 60 спичек каждая) и всякий раз, когда нужна спичка, наугад берет коробку и вынимает спичку. Какова вероятность того, что когда первая коробка будет пуста, во второй все еще останется 20 спичек? Выбор коробки можно рассматривать как независимое испытание, в котором с вероятностью выбирается первая коробка. Всего опытов производитсяn = 60+40=100, и в этих ста опытах первая коробка должна быть выбрана 60 раз. Вероятность этого равна:

.

Из записи видно, что при больших n пользоваться формулой Бернулли затруднительно из-за громоздких вычислений. Существуют специальные приближенные формулы, которые позволяют находить вероятности
, еслиn велико. Одну из таких формул дает следующая теорема.

Теорема 2.1. (Лапласа локальная). Если в схеме Бернулли
, то вероятность того, что событиеA наступит ровноk раз, удовлетворяет при большихn соотношению

где
.

Для удобства вводится в рассмотрение функция
– локальная функция Лапласа, с помощью которой теорему Лапласа можно записать так:

Существуют специальные таблицы функции
, по которым для любого значения:
можно найти соответствующее значение функции. Получены эти таблицы путем разложения функции
в ряд.

Геометрически этот результат означает, что для больших n многоугольник распределения хорошо вписывается в график функции, стоящей в формуле справа (рис. 2.3) и вместо истинного значения вероятности
можно для каждогоk брать значение функции в точкеk .

Рис. 2.3. Локальная функция Лапласа

Вернемся теперь к задаче. Используя формулу (2.1) находим:

,

где значение
определено по таблице .

2.2.2. Интегральная теорема Лапласа

Теорема 2.2 (Лапласа интегральная). Вероятность того, что в схемеn независимых испытаний событие наступит отk 1 доk 2 раз, приближенно равна

P n (k 1
k
2 )
,

– интегральная функция Лапласа, для которой составлены таблицы. ФункцияФ(х) нечетная:Ф(-х)=-Ф(х) иФ (х4)=0,5.

Рассмотрим пока без доказательства еще одно утверждение.

Отклонение относительной частоты от вероятностиp вn независимых испытаниях равно

(

.

Замечание. Обоснование этих фактов будет рассмотрено далее в разделе 7 (подразд. 7.2, 7.3). Теоремы Лапласа иногда называют теоремами Муавра–Лапласа.

Пример 2.3.

Вероятность появления события в каждом из 900 независимых испытаний равна 0.5. 1) найти вероятность того, что событие произойдет от 400 до 500 раз, 2) найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,02.

Решение

1) Р 900 (400<k <500)=
=

2)

=

2.3. Формула Пуассона

Если зафиксировать число опытов n , а вероятность появления события в одном опытер изменять, то многоугольник распределения будет иметь различный вид в зависимости от величиныр (рис.2.4). При значенияхp , близких к 1/2, многоугольник почти симметричен и хорошо вписывается в симметричный график функции Лапласа. Поэтому приближенная формула Лапласа дает хорошую точность.

Для малых р (на практике меньших) приближение плохое из-за несимметричности многоугольника распределения. Поэтому возникает задача найти приближенную формулу для вычисления вероятностей
в случае большихn и малых р . Ответ на этот вопрос дает формула Пуассона.

Итак, рассмотрим схему независимых испытаний, в которой n велико (чем больше, тем лучше), ар мало (чем меньше, тем лучше). Обозначимn р =λ . Тогда по формуле Бернулли имеем

.

Последнее равенство верно в силу того, что
(второй замечательный предел). При получении формулы наивероятнейшего числа появления событияk 0 было рассмотрено отношение вероятностей. Из него следует, что

Таким образом, при k много меньшихn имеем рекуррентное соотношение

.

Для k =0 учтем полученный ранее результат:
, тогда

………………

Итак, если в схеме независимых испытаний nвелико, ар мало, то имеет местоформула Пуассона

Р n (к)
, где λ= n р.

Закон Пуассона еще называют законом редких явлений.

Пример 2.4.

Вероятность выпуска бракованной детали равна 0,02. Детали упаковываются в коробки по 100 штук. Какова вероятность того, что а) в коробке нет бракованных деталей, б) в коробке больше двух бракованных деталей?

Решение

a ) Так какn велико, ар мало, имеем ; Р 100 (0)
;

б )Р 100 (k >2)= 1-Р 1-

Таким образом, в схеме независимых испытаний для вычисления вероятности Р n (k ) следует пользоваться формулой Бернулли, еслиn невелико, а еслиn велико, то в зависимости от величиныр используется одна из приближенных формул Лапласа или формула Пуассона.

Локальная теорема Муавра -Лапласа. 0 и 1, то вероятность Р т п того , что событие А произойдет т раз в п независимых испытаниях при достаточно большом числе п, приближенно равна

- функция Гаусса и

Чем больше и, тем точнее приближенная формула (2.7), называемая локальной формулой Муавра-Лапласа. Приближенные значения вероятности Р тпУ даваемые локальной формулой (2.7), на практике используются как точные при пру порядка двух и более десятков, т.е. при условии пру > 20.

Для упрощения расчетов, связанных с применением формулы (2.7), составлена таблица значений функции /(х) (табл. I, приведенная в приложениях). Пользуясь этой таблицей, необходимо иметь в виду очевидные свойства функции /(х) (2.8).

  • 1. Функция /(х) является четной , т.е. /(-х) = /(х).
  • 2. Функция /(х) - монотонно убывающая при положительных значениях х, причем при х -> со /(х) -» 0.
  • (Практически можно считать, что уже при х > 4 /(х) « 0.)

[> Пример 2.5. В некоторой местности из каждых 100 семей 80 имеют холодильники. Найти вероятность того, что из 400 семей 300 имеют холодильники.

Решение. Вероятность того, что семья имеет холодильник, равна р = 80/100 = 0,8. Так как п = 100 достаточно велико (условие пру = = 100 0,8(1-0,8) = 64 > 20 выполнено), то применяем локальную формулу Муавра - Лапласа.

Вначале определим по формуле (2.9)

Тогда по формуле (2.7)

(значение /(2,50) найдено по табл. I приложений). Весьма малое значение вероятности /300,400 не должно вызывать сомнения, так как кроме события

«ровно 300 семей из 400 имеют холодильники» возможно еще 400 событий: «0 из 400», «1 из 400»,..., «400 из 400» со своими вероятностями. Все вместе эти события образуют полную группу, а значит, сумма их вероятностей равна единице. ?

Пусть в условиях примера 2.5 необходимо найти вероятность того, что от 300 до 360 семей (включительно) имеют холодильники. В этом случае по теореме сложения вероятность искомого события

В принципе вычислить каждое слагаемое можно по локальной формуле Муавра - Лапласа, но большое количество слагаемых делает расчет весьма громоздким. В таких случаях используется следующая теорема.

Интегральная теорема Муавра - Лапласа. Если вероятность р наступления события А в каждом испытании постоянна и отлична от 0 и 1, то вероятность того , что число т наступления события А в п независимых испытаниях заключено в пределах от а до Ь (включительно ), при достаточно большом числе п приближенно равна

- функция (или интеграл вероятностей) Лапласа",

(Доказательство теоремы приведено в параграфе 6.5.)

Формула (2.10) называется интегральной формулой Муавра-Лапласа. Чем больше п, тем точнее эта формула. При выполнении условия пру > > 20 интегральная формула (2.10), так же как и локальная, дает, как правило, удовлетворительную для практики погрешность вычисления вероятностей.

Функция Ф(дг) табулирована (см. табл. II приложений). Для применения этой таблицы нужно знать свойства функции Ф(х).

1. Функция ф(х) нечетная, т.е. Ф(-х) = -Ф(х).

? Сделаем замену переменной? = -г. Тогда (к =

= -(12. Пределами интегрирования но переменной 2 будут 0 и х. Получим

поскольку величина определенного интеграла не зависит от обозначения переменной интегрирования. ?

2. Функция Ф(х)монотонно возрастающая , причем при х -> +со ф(.г) -> 1 (практически можно считать, что уже при х > 4 Ф(х)~ 1).

Так как производная интеграла по переменному верхнему пределу равна подынтегральной функции при значении верхнего предела, г.с.

, и всегда положительна, то Ф(х) монотонно возрастает

на всей числовой прямой.

Сделаем замену переменнойтогда пределы интегрирования не меняются и

(так как интеграл от четной функции

Учитывая, что (интеграл Эйлера - Пуассона), получим

?

О Пример 2.6. По данным примера 2.5 вычислить вероятность того, что от 300 до 360 (включительно) семей из 400 имеют холодильники.

Решение. Применяем интегральную теорему Муавра - Лапласа {пру = 64 > 20). Вначале определим по формулам (2.12)

Теперь по формуле (2.10), учитывая свойства Ф(.т), получим

(по табл. II приложений ?

Рассмотрим следствие интегральной теоремы Муавра - Лапласа. Следствие. Если вероятность р наступления события А в каждом испытании постоянна и отлична от 0 и I, то при достаточно большом числе п независимых испытаний вероятность того, что:

а) число т наступлений события А отличается от произведения пр не более чем на величину е > 0 {по абсолютной величине), т.е.

б) частость т/п события А заключена в пределах от а до р (вклю - чительноУ , т.е.

в) частость события А отличается от его вероятности р не более чем на величину А > 0 {по абсолютной величине ), т.е.

А) Неравенство |/?7-7?/?| равносильно двойному неравенству пр-е Поэтому по интегральной формуле (2.10)

  • б) Неравенство а равносильно неравенству а при а = па и Ь = /?р. Заменяя в формулах (2.10), (2.12) величины а и Ь полученными выражениями, получим доказываемые формулы (2.14) и (2.15).
  • в) Неравенство mjn- р равносильно неравенству т-пр Заменяя в формуле (2.13) г = Ап, получим доказываемую формулу (2.16). ?

[> Пример 2.7. По данным примера 2.5 вычислить вероятность того, что от 280 до 360 семей из 400 имеют холодильники.

Решение. Вычислить вероятность Р 400 (280 т пр = 320. Тогда по формуле (2.13)

[> Пример 2.8. По статистическим данным, в среднем 87% новорожденных доживают до 50 лет.

  • 1. Найти вероятность того, что из 1000 новорожденных доля (частость) доживших до 50 лет будет: а) заключена в пределах от 0,9 до 0,95; б) будет отличаться от вероятности этого события не более чем на 0,04 (но абсолютной величине).
  • 2. При каком числе новорожденных с надежностью 0,95 доля доживших до 50 лет будет заключена в границах от 0,86 до 0,88?

Решение. 1, а) Вероятность р того, что новорожденный доживет до 50 лет, равна 0,87. Так как п = 1000 велико (условие прд =1000 0,87 0,13 = = 113,1 > 20 выполнено), то используем следствие интегральной теоремы Муавра - Лапласа. Вначале определим по формулам (2.15)

Теперь по формуле (2.14)

1, б) По формуле (2.16)

Таккак неравенство равносильно неравенству

полученный результат означает, что практически достоверно, что от 0,83 до 0,91 числа новорожденных из 1000 доживут до 50 лет. ?

2. По условию или

По формуле (2.16) при А = 0,01

По табл. II приложений Ф(Г) = 0,95 при Г = 1,96, следовательно,

откуда

т.е. условие (*) может быть гарантировано при существенном увеличении числа рассма триваемых новорожденных до п = 4345. ?

  • Доказательство теоремы приведено в параграфе 6.5. Вероятностный смысл величинпр, прс{ устанавливается в параграфе 4.1 (см. замечание на с. 130).
  • Вероятностный смысл величины рч/п устанавливается в параграфе 4.1.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Курсовая работа

По курсу «Подземная гидромеханика»

Тема: «Вывод уравнения Лапласа. Плоские задачи теории фильтрации»


Введение

1. Дифференциальные уравнения движения сжимаемой и несжимаемой жидкости в пористой среде. Вывод уравнения Лапласа.

2.1 Приток к совершенной скважине

2.1.1 Фильтрационный поток от нагнетательной скважины к эксплуатационной

2.1.2 Приток к группе скважин с удаленным контуром питания

2.1.3 Приток к скважине в пласте с прямолинейным контуром питания

2.1.4 Приток к скважине, расположенной вблизи непроницаемой прямолинейной границы

2.1.5 Приток к скважине в пласте с произвольным контуром питания

2.1.6 Приток к бесконечным цепочкам и кольцевым батареям скважин

2.1.6.1 Приток к скважинам кольцевой батареи

2.1.6.2 Приток к прямолинейной батареи скважин

2.1.7 Метод эквивалентных фильтрационных сопротивлений

Литература


Введение

Подземная гидромеханика - наука о движении жидкостей, газов и их смесей в пористых и трещиноватых горных породах - теоретическая основа разработки нефтяных и газовых месторождений, одна из профилирующих дисциплин в учебном плане промыслового и геологического факультетов нефтяных вузов.

В основе подземной гидравлики лежит представление о том, что нефть, газ и вода, заключенные в пористой среде, составляют единую гидравлическую систему.

Теоретической основой ПГД является теория фильтрации - наука, описывающая данное движение флюида с позиций механики сплошной среды, т.е. гипотезы сплошности (неразрывности) течения.

Особенностью теории фильтрации нефти и газа в природных пластах является одновременное рассмотрение процессов в областях, характерные размеры которых различаются на порядки: размер пор (до десятков микрометров), диаметр скважин (до десятков сантиметров), толщины пластов (до десятков метров), расстояния между скважинами (сотни метров), протяженность месторождений (до сотен километров).

В данной курсовой работе выводится основное уравнение Лапласа и рассматриваются плоские задачи теории фильтрации, а так же их решение.


1. Дифференциальные уравнения движения сжимаемой и несжимаемой жидкости в пористой среде. Вывод уравнения Лапласа

При выводе дифференциального уравнения движения сжимаемой жидкости исходными уравнениями являются следующие:

закон фильтрации жидкости; в качестве закона фильтрации принимаем линейный закон фильтрации, выражающийся формулами (3.1)

, (3.1)

уравнение неразрывности (3.2)

, (3.2)

уравнение состояния. Для капельной сжимаемой жидкости уравнение состояния может быть представлено в виде (3.3)

, (3.3) - плотность жидкости при атмосферном давлении .

Подставляя в уравнение неразрывности (3.2) вместо проекций скорости фильтрации vx, vy и vz их значения из линейного закона, выражающегося формулой (3.1), получим:

, (3.4)

уравнения состояния (3.3) имеем:

, (3.5) , , . (3.6)

Подставляя эти значения частных производных

, и в уравнение (3.4), получим:

Вводя оператор Лапласа


уравнение (3.7) более кратко можно написать в виде

, (3.8)

Учитывая, что

, (3.9)

уравнение (3.7) можно приближенно представить в виде:

,(3.10)

Уравнение (3.7) или приближенное заменяющее его уравнение (3.10) есть искомое дифференциальное уравнение неустановившегося движения сжимаемой жидкости в пористой среде. Упомянутые уравнения имеют вид «уравнения теплопроводности», интегрирование которого при различных начальных и граничных условиях рассматривается в каждом курсе математической физики.

Решение различных задач о неустановившемся движении однородной сжимаемой жидкости в пористой среде, основанное на интегрировании уравнения (3.7) при различных начальных и граничных условиях, дается в книгах В. Н. Щелкачева, И. А. Чарного и М.Маскета. При установившемся движении сжимаемой жидкости

и вместо уравнения (3.7) имеем: , (3.11)

Уравнение (3.11) называется уравнением Лапласа.

При установившейся и неустановившейся фильтрации несжимаемой жидкости плотность жидкости постоянна следовательно, величина, стоящая в правой части уравнения (3.4), равна нулю. Сокращая левую часть этого уравнения на постоянную

и выполнив дифференцирование, получим: , (3.12)

Таким образом, установившаяся и неустановившаяся фильтрация несжимаемой жидкости описывается уравнением Лапласа (3.12).


2. Плоские задачи теории фильтрации

При разработке нефтяных и газовых месторождений (НГМ) возникает два вида задач:

1. Задаётся дебит скважин и требуется определить необходимое для этого дебита забойное давление и, кроме того, давление в любой точке пласта. В данном случае величина дебита определяется значением предельной для имеющихся коллекторов депрессией, при которой ещё не наступает их разрушение, или прочностными характеристиками скважинного оборудования, или физическим смыслом. Последнее означает, например, невозможность установления нулевого или отрицательного забойного давления.

2. Задаётся забойное давление и требуется определить дебит. Последний вид условия встречается наиболее часто в практике разработки НГМ. Величина забойного давления определяется условиями эксплуатации. Например, давление должно быть больше давления насыщения для предотвращения дегазации нефти в пласте или выпадения конденсата при разработке газоконденсатных месторождений, что снижает продуктивные свойства скважин. Наконец, если возможен вынос песка из пласта на забой скважины, то скорость фильтрации на стенке скважины должна быть меньше некоторой предельной величины.

Замечено, что при эксплуатации группы скважин в одинаковых условиях, т.е. с одинаковым забойным давлением, дебит всего месторождения растёт медленнее увеличения числа новых скважин с теми же забойными условиями (рис.4.1). Увеличение дебита при этом требует понижения забойного давления.

Для решения поставленных задач решим задачу плоской интерференции (наложения) скважин. Предположим, что пласт - неограниченный, горизонтальный, имеет постоянную мощность и непроницаемые подошву и кровлю. Пласт вскрыт множеством совершенных скважин и заполнен однородной жидкостью или газом. Движение жидкости - установившееся, подчиняется закону Дарси и является плоским. Плоское движение означает, что течение происходит в плоскостях, параллельных между собой и картина движения во всех плоскостях идентична. В связи с этим разбирается течение в одной из этих плоскостей - в основной плоскости течения.

Решение задач будем строить на принципе суперпозиции (наложения) потоков. Основанный на этом принципе метод суперпозиции заключается в следующем.

При совместном действии в пласте нескольких стоков (эксплуатационных скважин) или источников (нагнетательных скважин) потенциальная функция, определяемая каждым стоком (источником), вычисляется по формуле для единственного стока (источника). Потенциальная функция, обусловленная всеми стоками (источниками), вычисляется путём алгебраического сложения этих независимых друг от друга значений потенциальной функции. Суммарная скорость фильтрации определяется как векторная сумма скоростей фильтрации, вызванная работой каждой скважины (рис.4.2b).

Пусть в неограниченном пласте действует n стоков с положительным массовым дебитом G и источников с отрицательным дебитом (рис. 4.2a).. Поток в окрестности каждой скважины в этом случае плоскорадиален и потенциал

,(4.1)