Гармонический осциллятор.

Систему, описываемую уравнением , где , будем называть гармоническим осциллятором. Решение этого уравнения, как известно, имеет вид:

.

Следовательно, гармонический осциллятор представляет собой систему, которая совершает гармонические колебания около положения равновесия.

Для гармонического осциллятора справедливы все результаты, полученные ранее для гармонического колебания.

Рассмотрим и обсудим ещё дополнительно к ним два вопроса.

Найдем импульс гармонического осциллятора. Продифференцируем выражение по t и, умножив полученный результат на массу осциллятора, получим:

В каждом положении, характеризуемом отклонением “x”, осциллятор имеет некоторое значение ”p”. Чтобы найти ”p” как функцию ”x”, нужно исключить ”t” из написанных для ”p” и ”x” уравнений, Представим эти уравнения в виде:

(8.9)

Возведя эти выражения в квадрат и складывая, получим:

. (8.10)

Нарисуем график, показывающий зависимость ”p” импульса гармонического осциллятора от отклонения ”x” (рис. 8.6). Координатную плоскость (”p”, ”x”) принято называть фазовой плоскостью , а соответствующий график – фазовой траекторией . Фазовая траектория гармонического осциллятора представляет собой эллипс с полуосями “A” и ”A·m·w 0 ”. Каждая точка фазовой траектории изображает состояние осциллятора для некоторого момента времени (т.е. его отклонение и импульс). С течением времени точка, изображающая состояние, перемещается по фазовой траектории, совершая за период колебания полный обход. Причем это перемещение совершается по часовой стрелке [а именно, если в некоторый момент времени t¢ x=A, p=0, то в следующий момент времени ”x” будет уменьшаться, а ”p” принимать все возрастающие по модулю отрицательные значения, т.е. движение изобразительной точки (т.е. точки изображающей состояние) будет происходить по часовой стрелке].

Найдем теперь площадь эллипса . Или

.

Здесь , где n 0 – собственная частота осциллятора, являющаяся для данного осциллятора величиной постоянной.

Следовательно, . Откуда

Таким образом, полная энергия гармонического осциллятора пропорциональна площади эллипса, причем коэффициентом пропорциональности служит собственная частота осциллятора.

8.6. Малые колебания системы вблизи положения равновесия.

Рассмотрим произвольную механическую систему, положение которой может быть задано с помощью одной величины “x”. Величиной ”x”, определяющей положение системы может быть угол, отсчитываемый от некоторой плоскости или расстояние, отсчитываемое вдоль заданной кривой.

Потенциальная энергия такой системы будет функцией одной переменной ”x”: E p =E p (x).

Выберем начало отсчета таким образом, чтобы в положении равновесия x=0. Тогда функция E p (x) будет иметь минимум при x=0.

(ввиду малости “x” остальными членами пренебрегаем)

Так как E p (x) при x=0 имеет минимум, то , а . Обозначим E p (x) = b и , тогда .

Это выражение идентично с выражением для потенциальной энергии системы, в которой действует квазиупругая сила (константу “b” можно положить равной 0).

Сила, действующая на систему, может быть определена по формуле: . Получено с учетом, что работа совершается за счет убыли потенциальной энергии .

Итак, потенциальная энергия системы при малых отклонениях от положения равновесия оказывается квадратичной функцией смещения, а сила, действующая на систему, имеет вид квазиупругой силы. Следовательно, при малых отклонениях от положения равновесия любая механическая система будет совершать колебания, близкие к гармоническим.

8.7. Математический маятник.

ОПРЕДЕЛЕНИЕ: математическим маятником будем называть идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке.

Отклонение маятника от положения равновесия будет характеризоваться углом j (рис. 8.7). При отклонении маятника от положения равновесия возникает вращательный момент , он имеет такое направление, что стремится вернуть маятник в положение равновесия, поэтому моменту M и угловому смещению j нужно приписать разные знаки.

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Лекция 1

КОЛЕБАНИЯ

КОЛЕБАНИЯ. ВОЛНЫ. ОПТИКА

Колебание – один из самых распространённых процессов в природе и технике. Колебания – это процессы, повторяющиеся во времени. Колеблются высотные здания и высоковольтные провода под действием ветра, маятник заведённых часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни. Звук – это колебания давления воздуха, радиоволны – периодические изменения напряжённости электрического и магнитного поля, свет – это тоже электромагнитные колебания. Землетрясения – колебания почвы, приливы и отливы – изменение уровней морей и океанов, вызываемые притяжением луны и т.д.

Колебания бывают механические, электромагнитные, химические, термодинамические и др. Несмотря на такое многообразие, все колебания описываются одними и теми же дифференциальными уравнениями.

Первыми учёными, изучавшими колебания, были Галилео Галилей и Христиан Гюйгенс. Галилей установил независимость периода колебаний от амплитуды. Гюйгенс изобрёл часы с маятником.

Любая система, которая, будучи слегка выведена из положения равновесия, совершает устойчивые колебания, называется гармоническим осциллятором. В классической физике такими системами являются математический маятник в пределах малых углов отклонения, груз в пределах малых амплитуд колебаний, электрический контур, состоящий из линейных элементов ёмкости и индуктивности.

Гармонический осциллятор можно считать линейным, если смещение от положения равновесия прямо пропорционально возмущающей силе. Частота колебаний гармонического осциллятора не зависит от амплитуды. Для осциллятора выполняется принцип суперпозиции - если действуют несколько возмущающих сил, то эффект их суммарного действия может быть получен как результат сложения эффектов от действующих сил в отдельности.

Гармонические колебания описываются уравнением (рис.1.1.1)

(1.1.1)

где х -смещение колеблющейся величины от положения равновесия, А – амплитуда колебаний, равная величине максимального смещения, - фаза колебаний, определяющая смещение в момент времени , - начальная фаза, определяющая величину смещения в начальный момент времени, - циклическая частота колебаний.

Время одного полного колебания называется периодом, , где - число колебаний, совершенных за время .

Частота колебаний определяет число колебаний, совершаемых в единицу времени, она связана с циклической частотой соотношением , тогда период .

Скорость колеблющейся материальной точки

ускорение

Таким образом, скорость и ускорение гармонического осциллятора также изменяются по гармоническому закону с амплитудами и соответственно. При этом скорость опережает по фазе смещение на , а ускорение – на (рис.1.1.2).



Из сопоставления уравнений движения гармонического осциллятора (1.1.1) и (1.1.2) следует, что , или

Это дифференциальное уравнение второго порядка называется уравнением гармонического осциллятора. Его решение содержит два постоянные а и , которые определяются заданием начальных условий

.

Если периодически повторяющийся процесс описывается уравнениями, не совпадающими с (1.1.1), он н6азывается ангармоническим. Система, совершающая ангармонические колебания, называется ангармоническим осциллятором.

1.1.2 . Свободные колебания систем с одной степенью свободы. Комплексная форма представления гармонических колебаний

В природе очень распространены малые колебания, которые система совершает вблизи своего положения равновесия. Если система, выведенная из положения равновесия, предоставлена себе, то есть на неё не действуют внешние силы, то такая система будет совершать свободные незатухающие колебания. Рассмотрим систему с одной степенью свободы.

Устойчивому равновесию соответствует такое положение системы, в котором её потенциальная энергия имеет минимум (q – обобщённая координата системы). Отклонение системы от положения равновесия приводит к возникновению силы , которая стремится вернуть систему обратно. Значение обобщённой координаты, соответствующей положению равновесия, обозначим , тогда отклонение от положения равновесия

Будем отсчитывать потенциальную энергию от минимального значения . Примем Полученную функцию разложим в ряд Маклорена и оставим первый член разложения, имеем: о

Рассмотрим колебания грузика массой m на пружинке с коэффициентом жесткости k, который лежит на плоском горизонтальном столе, предполагая, что трение грузика об поверхности стола отсутствует. Если грузик вывести из положения равновесия, он будет совершать колебания относительно этого положения. Эти колебания мы будем описываем зависящей от времени функцией, считая, что она определяет отклонение грузика из своего положения равновесия в момент времени t.

В горизонтальном направлении на грузик действует только одна сила - сила упругости пружинки, определенная известным законом Гука

Деформация пружины является функцией времени, в силу чего, также является переменной.

Из второго закона Ньютона имеем

поскольку ускорение является второй производной от смещения: .

Уравнение (9) можно переписать в форме

где. Это уравнение получило название уравнение гармонического осциллятора.

Замечание. В математической литературе, при написании дифференциального уравнения обычно не указывают аргумент (t) около всех, зависящих от него функций. Такая зависимость предполагается по умолчанию. При использовании же математического пакета Maple в (10) необходимо указывать явную зависимость функции.

В отличие от предыдущего примера движения тела под действием постоянной силы в нашем случае сила изменяется с течением времени, и уравнение (10) уже нельзя решить с помощью обычной процедуры интегрирования. Попытаемся угадать решение этого уравнения, зная, что оно описывает некоторый колебательный процесс. В качестве одного из возможных решений уравнения (10) можно выбрать следующую функцию:

Дифференцируя функцию (11), имеем

Подставляя выражение (12) в уравнение (10), убеждаемся, что оно удовлетворяется тождественно при любом значении t.

Однако, функция (11) не является единственным решением уравнения гармонического осциллятора. Например, в качестве другого его решения можно выбрать функцию, что также легко проверить аналогичным образом. Более того, можно проверить, что любая линейная комбинация этих двух наугад названных решений

с постоянными коэффициентами A и B также является решениеv уравнения гармонического осциллятора.

Можно доказать, что зависящее от двух постоянных решение (13) является общим решением уравнения гармонического осциллятора (10). Это означает, что формула (13) исчерпывает все возможные решения этого уравнения. Иными словами, других частных решений, кроме тех, которые получаются из формулы (13) фиксацией произвольных постоянных А и В, уравнение гармонического осциллятора не имеет.

Заметим, что в физике наиболее часто приходится искать именно некоторые частные решения отдельных ОДУ или их систем. Рассмотрим этот вопрос более подробно.

Возбудить колебания в рассматриваемой нами системе грузика на пружинке можно разными способами. Пусть мы задали следующие начальные условия

Это значит, что в начальный момент времени грузик был отведен из положения равновесия на величину a и свободно отпущен (т.е. он начинает свое движение с нулевой начальной скоростью). Можно представить себе и много разных других способов возбуждения, например, грузику в положении равновесия «щелчком» придается некоторая начальная скорость и т.д. [общем случае, ].

Мы рассматриваем начальные условия (14) как некоторые дополнительные условия для выделения из общего решения (13) некоторого частного решения, соответствующего нашему способу возбуждения колебаний грузика.

Полагая t=0 в выражении (13), имеем, откуда следует, что B=a. Таким образом, мы нашли одну из ранее произвольных констант в решении (13). Далее, дифференцируя в формуле (13), имеем

Полагая в этом выражении t=0 и учитывая второе начальное условие из (14), получим, отсюда следует, что A=0 и, таким образом, исходное частное решение имеет вид

Оно описывает колебательный режим рассматриваемой механической системы, который определяется условиями начального возбуждения (14).

Из школьного курса физики известно, что в формуле (16) a является амплитудой колебаний (она задает максимальную величину отклонения грузика от своего положения равновесия), является циклической частотой, а - фазой колебаний (начальная фаза оказывается при этом равной нулю).

Уравнение гармонического осциллятора (10) является примером линейного ОДУ. Это значит, что неизвестная функция и все ее производные входят в каждый член уравнения в первой степени. Линейные дифференциальные уравнения обладают чрезвычайно важным отличительным свойством: они удовлетворяют принципу суперпозиции. Это значит, что любая линейная комбинация двух каких либо решений линейного ОДУ также является его решением.

В рассматриваемом нами примере уравнения гармонического осциллятора, произвольная линейная комбинация двух частных решений и является не просто каким-то новым решением, но общим решением этого уравнения (оно исчерпывает все возможные его решения).

В общем случае, это не так. Например, если бы мы имели дело с линейным дифференциальным уравнением третьего порядка, (т.е. если бы в уравнение входила бы третья производная), то линейная комбинация каких-либо двух его частных решений также была бы решением этого уравнения, но не представляла бы собой его общее решение.

В курсе дифференциальных уравнений доказывается теорема о том, что общее решение ОДУ N-ого порядка (линейного или нелинейного) зависит от N произвольных постоянных. В случае нелинейного уравнения эти произвольные постоянные могут входить в общее решение (в отличие от (13)), нелинейным образом.

Принцип суперпозиции играет в теории ОДУ исключительно важную роль, поскольку с его помощью можно построить общее решение дифференциального уравнения в виде суперпозиции его частных решений. Например, для случая линейных ОДУ с постоянными коэффициентами и их систем (уравнение гармонического осциллятора относится именно к этому типу уравнений) в теории дифференциальных уравнений разработан общий метод решения. Суть его заключается в следующем. Ищется частное решение в виде. В результате его подстановки в исходное уравнение, все зависящие от времени множители сокращаются и мы приходим к некоторому характеристическому уравнению, которое для ОДУ N-ого порядка представляет собой алгебраическое уравнение N-ой степени. Решая его, мы находим, тем самым, все возможные частные решения, произвольная линейная комбинация которых и дает общее решение исходного ОДУ. Мы не будем далее останавливаться на этом вопросе, отсылая читателя к соответствующим учебникам по теории дифференциальным уравнениям, в которых можно найти дальнейшие детали, в частности, рассмотрение случая, когда характеристическое уравнение содержит кратные корни.

Если рассматривается линейное ОДУ с переменными коэффициентами, (его коэффициенты зависят от времени), то принцип суперпозиции также справедлив, но построить в явном виде общее решение этого уравнение каким-либо стандартным методом, уже не представляется возможным. Мы вернемся к этому вопросу далее, обсуждая явление параметрического резонанса и связанным с его исследованием уравненем Матье.

Гармоническим осциллятором называют частицу, совершающую одномерное движение под действием квазиупругой силы . Потенциальная энергия такой частицы имеет вид

Выразив в формуле (27.1) k через получим

В одномерном случае Поэтому уравнение Шрёдингера (см. (21.5)) для осциллятора выглядит следующим образом:

Полная энергия, осциллятора). В теории дифференциальных уравнений доказывается, что уравнение (27.2) имеет конечные, однозначные и непрерывные решения при значениях параметра Е, равных

На рис. 27.1 дана схема энергетических уровней гармонического осциллятора. Для наглядности уровни вписаны в кривую потенциальной энергии. Однако следует помнить, что в квантовой механике полная энергия не может быть представлена в виде суммы точно определенных энергий Т и U (см. последний абзац предыдущего параграфа).

Уровни энергии гармонического осциллятора являются эквидистантными, т. е. отстоящими друг от друга на одинаковое расстояние. Наименьшее возможное значение энергии равно . Это значение называется нулевой энергией.

Существование нулевой энергии подтверждается экспериментами по изучению рассеяния света кристаллами при низких температурах. Оказывается, что интенсивность рассеянного света по мере понижения температуры стремится не к нулю, а к некоторому конечному значению, указывающему на то, что и при абсолютном нуле колебания атомов в кристаллической решетке не прекращаются.

Квантовая механика позволяет вычислить вероятности различных переходов квантовой системы из одного состояния в другое. Подобные вычисления показывают, что для гармонического осциллятора возможны лишь переходы между соседними уровнями. При таких переходах квантовое число изменяется на единицу:

Условия, накладываемые на изменения квантовых чисел при переходах системы из одного состояния в другое, называются правилами отбора.

Таким образом, для гармонического осциллятора существует правило отбора, выражаемое формулой (27.4).

Из правила (27.4) вытекает, что энергия гармонического осциллятора может изменяться только порциями /гto. Этот результат, получающийся естественным образом в квантовой механике, совпадает с тем весьма чужеродным для классической физики предположением, которое пришлось сделать Планку, чтобы вычислить испускательную способность абсолютно черного тела (см. § 7). Отметим, что Планк предполагал, что энергия гармонического осциллятора может быть лишь целой кратной На. В действительности же имеется еще нулевая энергия, существование которой было установлено только после создания квантовой механики.

Систему, описываемую уравнением , где , будем называть гармоническим осциллятором. Решение этого уравнения, как известно, имеет вид:

.

Следовательно, гармонический осциллятор представляет собой систему, которая совершает гармонические колебания около положения равновесия.

Для гармонического осциллятора справедливы все результаты, полученные ранее для гармонического колебания.

Рассмотрим и обсудим ещё дополнительно к ним два вопроса.

Найдем импульс гармонического осциллятора. Продифференцируем выражение по t и, умножив полученный результат на массу осциллятора, получим:

В каждом положении, характеризуемом отклонением “x”, осциллятор имеет некоторое значение ”p”. Чтобы найти ”p” как функцию ”x”, нужно исключить ”t” из написанных для ”p” и ”x” уравнений, Представим эти уравнения в виде:

(8.9)

Возведя эти выражения в квадрат и складывая, получим:

. (8.10)

Нарисуем график, показывающий зависимость ”p” импульса гармонического осциллятора от отклонения ”x” (рис. 8.6). Координатную плоскость (”p”, ”x”) принято называть фазовой плоскостью , а соответствующий график – фазовой траекторией . Фазовая траектория гармонического осциллятора представляет собой эллипс с полуосями “A” и ”A·m·w 0 ”. Каждая точка фазовой траектории изображает состояние осциллятора для некоторого момента времени (т.е. его отклонение и импульс). С течением времени точка, изображающая состояние, перемещается по фазовой траектории, совершая за период колебания полный обход. Причем это перемещение совершается по часовой стрелке [а именно, если в некоторый момент времени t¢ x=A, p=0, то в следующий момент времени ”x” будет уменьшаться, а ”p” принимать все возрастающие по модулю отрицательные значения, т.е. движение изобразительной точки (т.е. точки изображающей состояние) будет происходить по часовой стрелке].

Найдем теперь площадь эллипса . Или

.

Здесь , где n 0 – собственная частота осциллятора, являющаяся для данного осциллятора величиной постоянной.

Следовательно, . Откуда

Таким образом, полная энергия гармонического осциллятора пропорциональна площади эллипса, причем коэффициентом пропорциональности служит собственная частота осциллятора.

8.6. Малые колебания системы вблизи положения равновесия.

Рассмотрим произвольную механическую систему, положение которой может быть задано с помощью одной величины “x”. Величиной ”x”, определяющей положение системы может быть угол, отсчитываемый от некоторой плоскости или расстояние, отсчитываемое вдоль заданной кривой.

Потенциальная энергия такой системы будет функцией одной переменной ”x”: E p =E p (x).


Выберем начало отсчета таким образом, чтобы в положении равновесия x=0. Тогда функция E p (x) будет иметь минимум при x=0.

(ввиду малости “x” остальными членами пренебрегаем)

Так как E p (x) при x=0 имеет минимум, то , а . Обозначим E p (x) = b и , тогда .

Это выражение идентично с выражением для потенциальной энергии системы, в которой действует квазиупругая сила (константу “b” можно положить равной 0).

Сила, действующая на систему, может быть определена по формуле: . Получено с учетом, что работа совершается за счет убыли потенциальной энергии .

Итак, потенциальная энергия системы при малых отклонениях от положения равновесия оказывается квадратичной функцией смещения, а сила, действующая на систему, имеет вид квазиупругой силы. Следовательно, при малых отклонениях от положения равновесия любая механическая система будет совершать колебания, близкие к гармоническим.

8.7. Математический маятник.

ОПРЕДЕЛЕНИЕ: математическим маятником будем называть идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке.

Отклонение маятника от положения равновесия будет характеризоваться углом j (рис. 8.7). При отклонении маятника от положения равновесия возникает вращательный момент , он имеет такое направление, что стремится вернуть маятник в положение равновесия, поэтому моменту M и угловому смещению j нужно приписать разные знаки.