Вклад российских ученых в развитие энергетики

Основы теплоэнергетики как науки были заложены М.В. Ломоносовым в середине XVIII века. Созданная им кинетическая теория теплоты и четко сформулированные законы сохранения массы и энергии явились научными предпосылками для решения проблемы превращения теплоты в механическую работу.

В шестидесятых годах XVIII столетия (1763 г.) русский теплотехник И.И. Ползунов исходя из глубокого изучения имевшихся немногочисленных паро-атмосферных насосных машин воплотил в построенной им паровой машине идею универсального теплового двигателя. Им впервые была построена двухцилиндровая паровая машина, впервые применен автомат питания и построен для получения пара котел собственной конструкции.

В конце XVIII века выдающийся ученый - академик В.В. Петров, известный открытиями в области электричества, провел обширные эксперименты с процессами горения, способствовавшие краху лженаучной теории флогистона.

Ученый И.П. Алымов (1864 г.) исследовал природу естественной тяги в паровых котлах и предложил применение искусственной тяги.

В конце XIX века (1831 – 1895) И.А. Вышеградский развил теорию регулирования работы парового котла, предложил формулу расчета скорости изменения давления при растопке котла и создал основы общей теории регулирования паровых котлов.

В начале XX века (1907 г.) ученый Н.П. Петров на основе теории теплопроводности и теплопередачи проанализировал условия теплопередачи в котлах, дал рекомендации по конструированию котлов и впервые изложил основы теории циркуляции в паровых котлах.

В 1905 г. Гриневецкий, продолжив работу Н.П. Петрова, разработал графический метод расчета циркуляции в паровом котле.

К.В. Кирш, совместно с Гриневецким создал в Московском высшем техническом училище первоклассную лабораторию паровых котлов по изучению методов сжигания местных топлив и антрацитов, а также явился первым организатором Всесоюзного теплотехнического института в Москве (ВТИ).

В начале XX века М.В. Кирпичев своими работами внес значительный вклад в область теории теплового моделирования и теплового расчета котла. А.С. Предводителев провел глубокое изучение процессов горения углерода и создал теорию горения углерода.

В первой половине XX века многие российские ученые работали над созданием новых, прогрессивных конструкций котельных агрегатов. Л.К. Рамзин обогатил науку и технику в области различных технических разработок. В результате им создан первый в мире промышленный прямоточный котел.

Г.Ф. Кнорре разработал теорию циклонного сжигания и, изучив топочные процессы и устройства, создал циклонную топку. В области конструирования топок работает целая плеяда русских конструкторов. Среди них инженер В.Г. Шухов, ставший почетным членом Академии наук, создавший прогрессивную для того времени конструкцию котлоагрегата. Макарьевым предложена конструкция топки для сжигания фрезерного торфа без его измельчения. А.А. Шершнев создал первую в мире топку для сжигания фрезерного торфа во взвешенном состоянии. Перечень известных ученых, конструкторов, изобретателей можно продолжить. Перечисленные исследования и изобретения дают представление об объеме вклада наших ученых в развитие теплоэнергетики.

В настоящее время теоретические исследования и практическое их внедрение осуществляются нашими центральными научно - исследовательскими институтами, такими как Всесоюзный теплотехнический институт (ВТИ, г. Москва) и его филиалы Уральский (г. Челябинск), Сибирский (г. Красноярск), Центральный котлотурбинный институт (ЦКТИ г. Санкт - Петербург), энергетический институт им. Кржижановского (г. Москва) и др.

Разработкой новых конструкций паровых котлов занимаются конструкторские отделы при котлостроительных заводах, поддерживающие тесную связь с научно - исследовательскими институтами. В настоящее время паровые котлы изготавливают в России на следующих заводах: Таганрогский котлостроительный завод (ТКЗ), Подольский машиностроительный завод, Барнаульский котлостроительный завод (БКЗ), Бийский котлостроительный завод (котлы малой мощности).

Общие положения работы теплогенерирующих установок

При сжигании органического топлива горючие химические элементы (углерод, водород, сера), входящие в состав топлива, соединяются с кислородом воздуха, выделяют теплоту и образуют продукты сгорания (двуокись углерода, водяные пары, сернистый газ, окислы азота). От продуктов полного сгорания органического топлива тепловая энергия передается рабочему телу, которым обычно служит вода, сжатая до давления, выше атмосферного. Для превращения химической энергии топлива в тепловую энергию существует комплекс устройств, называемых котельной, или теплогенерирующей установкой.

Котельной установкой называют комплекс устройств и механизмов, предназначенных для производства тепловой энергии в виде водяного пара или горячей воды. Водяной пар используется для технологических нужд промышленных предприятий и получения электроэнергии, в сельском хозяйстве, а также для нагрева воды, направляемой на отопление, вентиляцию и горячее водоснабжение. Горячую воду используют для отопления производственных, общественных и жилых зданий, а также для коммунально-бытовых нужд населения.

В котельную установку необходимо подать некоторое количество топлива и окислителя (воздуха); обеспечить сгорание топлива и отдачу теплоты от продуктов сгорания топлива рабочему телу и удалить продукты сгорания топлива; подать рабочее тело – воду, сжатую до необходимого давления, нагреть эту воду до требуемой температуры или превратить ее в пар, отделить влагу из пара, а иногда и перегреть пар, обеспечив надежную работу всех элементов установки.

Для осуществления перечисленных процессов котельная установка должна включать в себя теплогенератор – паровой или водогрейный котельный агрегат (котел), хвостовые поверхности нагрева (водяной экономайзер, воздухоподогреватель, пароперегреватель), горелочные устройства, а также различные дополнительные устройства. Производительность теплогенератора определяется количеством теплоты или пара, получаемого в процессе сжигания в агрегате органического топлива.

На рис. 1.1 и 1.2 изображен план и продольный разрез котельной, работающей на природном газе или жидком топливе.

Рис. 1.1. План котельной с двумя котлами ДКВР-4-13


Рис. 1.2. Продольный разрез котельной с двумя котлами ДКВР-4-13

Радиационные поверхности нагрева размещены в топочной камере и воспринимают теплоту от продуктов сгорания топлива, одновременно защищая стены топки от прямого воздействия излучающей среды. Конвективные поверхности нагрева установлены за топкой, в газоходах котла. К конвективным или хвостовым поверхностям нагрева также относят пароперегреватели, водяные экономайзеры, контактные теплообменники, воздухоподогреватели, которые предназначены для снижения потерь теплоты с уходящими топочными газами, увеличения КПД котельного агрегата или установки и в конечном итоге для снижения расхода топлива.

Котельная или теплогенерирующая установка также включает в себя: горелочные устройства для подачи и подготовки топлива к сжиганию; дутьевой вентилятор для нагнетания воздуха, необходимого для горения топлива; дымосос для удаления продуктов сгорания; дымовую трубу для отвода дымовых газов; оборудование для химической очистки воды от вредных примесей и деаэрации; питательные насосы для увеличения давления воды и подачи ее в котельный агрегат. При сжигании твердого топлива в котельных, кроме того, имеются системы шлако- и золоудаления для удаления очаговых остатков топлива, а также золоуловители – отделяющие золу из дымовых газов. Все эти устройства размещаются в специальном здании, называемом котельной , включающей в себя котельные установки, а также помещения для различных вспомогательных служб и мастерских.

Рис. 1.3. Технологическая схема производственно-отопительной котельной:

1-воздухозаборный короб; 2-паросборный коллектор; 3-редукционная установка; 4-паропровод к бойлеру; 5-деаэратор; 6-пароводяной бойлер; 7-потребитель; 8-сетевой насос; 9-система химической подготовки воды; 10-подпиточный насос; 11-охладитель деаэрированной воды; 12-дымовая труба; 13-питательный насос; 14-подогреватель сырой воды; 15-дымосос; 16-расширитель непрерывной продувки; 17-водяной экономайзер; 18-насос; 19-трубопровод непрерывной продувки; 20-конвективные поверхности нагрева; 21-пароперегреватель; 22, 26-нижний и верхний барабаны; 23-дутьевой вентилятор; 24-горелка; 25-топка котельного агрегата; 27-ГРП котельной; 28-мазутохранилище; 29-фильтр; 30-насос.

Производственно-отопительная котельная, предназначена для выработки отопительным котлом пара с необходимыми параметрами качества, который используется технологическими потребителями, а также для выработки горячей воды для обеспечения систем отопления, вентиляции, кондиционирования и горячего водоснабжения.

Система отопления в котельной обеспечивает заданный тепловой режим в помещениях в холодное время года, компенсируя теплопотери через наружные ограждения зданий.

Система вентиляции в котельной создает требуемую чистоту воздуха в рабочей зоне производственных зданий, необходимый воздушный и тепловой режимы в общественных зданиях путем организации воздухообмена в помещениях.

Система кондиционирования воздуха в котельной применяется для создания в помещении микроклимата, удовлетворяющего повышенным санитарно-гигиеническим или технологическим требованиям, путем обеспечения строго заданных температуры, влажности, подвижности и чистоты воздуха в рабочей зоне.

Система горячего водоснабжения в котельной предназначена для подогрева и транспортирования воды к местам водоразбора на хозяйственно-бытовые или производственные нужды.

Теплотехнологическое оборудование в котельной является потребителем тепловой энергии в виде подогретой воды или водяного пара и включает в себя как специальные теплопроводы, так и разные теплообменные аппараты.

Природный газ в отопительном котле по газопроводу поступает на территорию предприятия в газорегуляторный пункт (ГРП) 27 (Рис. 1.3) или газорегуляторную установку (ГРУ), где давление городского газа снижают до рабочего и поддерживают его на заданном уровне. Из ГРП газ подается к горелкам 24 котельного агрегата.

Устройства для снижения давления газа перед котельной, магистрали для отвода газа и разводка трубопроводов в котельной должны быть выполнены в соответствии с указаниями «Правил безопасности в газовом хозяйстве» Госгортехнадзора.

Вода, предназначенная для подачи в паровые и водогрейные котлы или в тепловые сети, должна удовлетворять ряду технических, санитарных и экономических требований. В случае поступления воды в котельную из городского водопровода обработка сводится к ее умягчению и снижению щелочности в специальных фильтрах, а при использовании воды из открытых водоемов к этому добавляется еще и очистка от взвешенных веществ.

До поступления в устройства для химической очистки вода должна быть нагрета в теплообменниках. Загрязненный конденсат, возвращаемый от технологических потребителей, также подвергается очистке. Подготовленные тем или иным способом вода и конденсат направляются в устройства (деаэраторы) для удаления из них растворенных газов. После деаэраторов с помощью питательных насосов вода направляется в котельный агрегат или подпиточными насосами в тепловые сети.

В промышленных котельных с паровыми котлами, как правило, используются центробежные насосы с электрическим приводом и с приводом от паровой турбины. Для подпитки водой тепловых сетей, когда в качестве источника теплоснабжения установлены стальные водогрейные котлы, применяются центробежные насосы, обычно с электрическим приводом. В небольших котельных иногда для подачи питательной воды используют поршневые паровые насосы или инжекторы.

Отопительный котел имеет топку (25) с расположенными в ней испарительными поверхностями нагрева (кипятильными трубами), верхний (26) и нижний (22) барабаны, конвективные поверхности нагрева (20), пароперегреватель (21), водяной экономайзер (17).

Воздух в отопительном котле, необходимый для сжигания газа, забирается из верхней части котельной и по воздухозаборному коробу (1) поступает на вход дутьевого вентилятора (23), откуда под давлением подается в горелки (24). Продукты горения проходят последовательно через все теплоиспользующие элементы и с помощью дымососа (15) выбрасываются в дымовую трубу (12).

Пар в отопительном котле поступает в общий сборный коллектор (2), откуда направляется к технологическим потребителям. Часть пара после снижения давления в редукционной установке (3) подается в деаэратор (5), где происходит удаление из питательной воды растворенных в ней агрессивных газов для предотвращения коррозии поверхностей нагрева.

Для получения горячей воды, расходуемой на технологические нужды и теплоснабжение, в котельной установлен пароводяной бойлер (6). Пар в бойлер поступает из общего паросборного коллектора (2) по специальному паропроводу (4). Сетевая вода сетевым насосом 8, установленным на обратной линии, подается для нагрева в бойлер, из которого поступает в прямую линию системы теплоснабжения к потребителям (7) теплоты. Конденсат пара из бойлера поступает в деаэратор 5. Подпитка тепловой сети осуществляется подпиточным насосом (10), забирающим воду из деаэратора, общего для системы теплоснабжения и питания котла. Для уменьшения солесодержания котловой воды из барабана (26) по трубопроводу (19) производится непрерывная продувка.

Вода в отопительном котле направляется в расширитель непрерывной продувки (16), где в результате снижения давления вскипает. Образующийся при этом пар поступает в паровую линию к деаэратору, а горячая вода - в подогреватель сырой воды (14), которая насосом (18) подается в систему 9химической подготовки воды. Химически очищенная вода перед поступлением в деаэратор подогревается в охладителе 11 деаэрированной воды. Деаэрированная вода питательным насосом 13 направляется в водяной экономайзер (17) котла.

Теплогенераторы с давлением выше 0,07 МПа (0,7 кгс/см 2) и температурой выше 115 °С подлежат регистрации в государственной организации, контролирующей правильность конструкции котлоагрегата, соответствие установленным правилам и нормам оборудования и здания котельной и соблюдение обслуживающим персоналом Правил устройства и безопасной эксплуатации паровых и водогрейных котлов Госгортехнадзора РФ. Размеры зданий котельных, материалы, из которых они выполняются, проходы между стенами и оборудованием, а также расстояния до ферм и перекрытий определяются Правилами и нормами Госгортехнадзора РФ.

Эффективность работы котельных во многом определяется правильностью выбора метода сжигания топлива, совершенством оборудования и приборов, своевременностью и качеством проведения пуско-наладочных работ, квалификацией обслуживающего персонала и др. Безопасность, надежность и экономичность работы котельных установок и теплоэнергетического оборудования зависят от степени подготовки обслуживающего персонала, правильности выполнения производственных и должностных инструкций.

«Бережливое производство» - Вопросы экспертов к аудитории. Бережливое производство от Школы Эффективного Бизнеса. 1.Масштаб бизнеса. 5 важнейших вещей которые надо знать НОВИЧКУ о бережливом производстве. 10 идей про бережливое производство. Три основных критерия оценки лин развивается (вопрос НОВОМЕТ)? Наша фишка – «Бережливое производство для Вас, а не Вы для бережливого производства!».

«Экономика и экономическая деятельность» - Конкуренция. Пример иллюстрирует право собственника: Какое суждение верно? Причины инфляции. Виды рынков. Инфляция. Договорная дисциплина. Конвейер. 2. КАПИТАЛ – машины, инструменты, здания, деньги. Количество произведенных за единицу времени продуктов. Сбережения. Товары и услуги, удовлетворяющие наши потребности и имеющиеся в обществе в ограниченном количестве.

«Современное производство» - Растут противоречия между развитыми и развивающимися странами. Но компьютеры для многих заменяют общение с другими людьми. Отходы от производства загрязняют воздух и воду вокруг людей. О каких новых изобретениях вам стало известно в ходе урока? 2. Состав современного общества. Продолжите фразы: Мне нравится в современном обществе…

«Поток создания ценности» - Зачем нужна карта потока. Информационные потоки. Запасов. Данные для каждого этапа. Поток создания ценности (VSM). Карта текущего потока создания ценности. Коммуникация. Этапы процесса. Производство. Основные этапы процесса. Вычисление времени выполнения заказа. Детали о поставках. Создание Карты текущего состояния.

«Производство на предприятии» - Количество рабочих мест. Производственная структура. Факторы. Поточная линия. Оперативное время. Производственная структура цеха. Фаза. Время межоперационного пролеживания. Производственная структура предприятия с предметной специализацией. Цех. Непоточное производство. Технологические операции. Поточное производство.

«План продаж» - Процедура формирования ОПП: действия. Содержится в компьютерной системе предприятия. 3. Данные о ресурсах (производственных мощностях, персонале). Процедура формирования ОПП: выходная информация. Основные функции ОПП: Процедура формирования ОПП: входная информация. 1. Основной план на материалы и узлы по наименованиям и по периодам.

Мы перевели и снабдили иллюстрациями очень хорошую и доступную лекцию об истории энергетики от автора James C. Williams для Franklin Institute.

Введение

Энергия играет основополагающую роль в формировании человеческих условий существования. Потребность людей в энергии — это необходимость для выживания, поэтому не удивительно, что производство и потребление энергии являются одними из наиболее важных направлений человеческой деятельности. Действительно, существует мнение, что энергетика – это ключ к развитию цивилизации, что эволюция человеческого общества зависит от преобразования энергии для использования человеком. Немногие люди ставят под сомнение давнее предположение, что уровень жизни и качество цивилизации пропорциональны количеству энергии, используемой обществом. Однако, с определённой степенью точности, большинство людей все же уверены в стойкости формулы: энергия = прогресс = цивилизация.

Широко распространенное убеждение, что энергия и цивилизации неразрывно связаны, безусловно, имеет историческую основу. На протяжении всей истории люди были сосредоточены на контроле запасов энергии и явлений, которые являются частью природы. На протяжении десятков тысяч лет, люди полагались исключительно на химическую (калорийную) энергию, полученную из пищи, которая производит механическую (кинетическую) работу мышц. Но благодаря человеческому разуму, люди были в состоянии открыть и преодолеть физические ограничения, налагаемые на свои собственные мускульные силы, используя инструменты и осваивая энергию за пределами их собственного тела.

Самые ранние инструменты использовались для охоты на животных, сбора съедобных растений, ловли рыбы и птицы, а также переработки и транспортировки пищевых продуктов. Большинство семейных структур, общественных групп, политических и экономических институтов, создаваемые в течение тысячи лет, были сосредоточены главным образом на добыче, переработке, обмене и реализации продуктов питания, а также ископаемых и органических источников энергии (дрова, торф, уголь), использующихся для отопления, приготовления пищи, освещения или для растопки печей и топок, используемых в плавке руды.

Огромный массив уникальной человеческой культуры впитывал в себя необходимость поиска основных энергетических ресурсов в широком диапазоне человеческой деятельности: ритуалов, праздников, табу, мифов, танцев, игр, религии, языка, искусства и войны – во всем, что олицетворяют культурные ценности человечества в их самых основных формах. Довольно просто, человеческое существование всегда находилось во власти вековой потребности энергии.

Эпоха энергии воды

До современной эпохи, люди полагались на силу своих мускулов, на силу домашних животных, например, лошадей и волов, и на силу воды и ветра. Люди использовали эти энергетические ресурсы, чтобы возделывать множество значимых территорий, от полей и пастбищ до горных выработок и лесных участков. Затем были построены города и транспортные маршруты древних цивилизаций. Технологии, использовавшие эти энергоносители знакомы всем нам: топоры, кирки, плуги, жгуты, вагонетки и телеги, водяные и ветряные мельницы и парусные корабли.

Европа, которая обладала большими площадями водно-энергетического потенциала, в частности, получала выгоду от использования энергии производимой путем перемещения воды. Вертикальное водяное колесо, изобретённое, возможно, за два века до рождества Христова, распространилось по всей Европе в течение нескольких сотен лет. К концу римской эпохи, водяные мельницы обеспечивали энергией помол зерна, производство ткани, выделку кожи, распиловку дерева, плавку и формовку железа, и выполняли множество других ранних промышленных процессов. Производительность увеличивалась, зависимость от человеческой и животной мышечной силы постепенно снижались, и места с хорошими водно-энергетическими ресурсами стали центрами экономической и промышленной деятельности.

Историк Терри Рейнольдс замечает, что рост использования энергии воды, явился центральным элементом в западной технологии. В средние века, инженеры-гидравлики устанавливают мельницы на лодках и мостах, и вместе с этим появляются плотины для аккумуляции энергии воды и направления её по каналам на колёса. В пятнадцатом веке большие фрезерные комплексы во Франции реально зависели только от энергии воды. Изобретение и распространение распределительного коленчатого валов, позволило применить энергию воды к задачам, которые требуют возвратно-поступательного движения (например, работа молота и дутьё кузнечных мехов), и произвели революцию в черной металлургии. Количество водяных мельниц в Европе неуклонно возрастает. Появляется все больше и больше водно-промышленных комплексов, таких как большие водяные хлопчатобумажных фабрики Уильям Струтта и Ричарда Окрайта, действовавшие в течение 1770-х годов в Англии.


Между тем, освоение энергии ветра для движения парусных судов позволило пересечь океанские просторы, открыв европейцам Америку. Колонисты привезли с собой водяные мельницы, которые распространились от Латинской Америки до Канады. К 1800 году граждане вновь созданных Соединенных Штатов импортировали текстильные английские фабрики, и в течении двух десятилетий экспансивного водно-энергетического развития промышленные города появились в штатах Лоуэлл, Массачусетс и других местах новой Англии. К тому времени промышленной революции, евро-американская промышленность зависела почти исключительно от энергии воды.

Эпоха пара

Современная эпоха началась с восемнадцатого века с внедрения паровой энергии на английских угольных шахтах Томаса Сейвери и Томаса Ньюкомена. Их паровые двигатели и двигатель Джеймса Ватта вытеснили географически зависимые водяные установки. Взаимоотношения в областях добычи угля, железной промышленности и паросиловых установок привело к достижениям в области паровой техники, и с 1800 годов паровые двигатели дополняли водяные колёса на английских текстильных фабриках. Предприниматели поняли, что сила пара преодолела географическую зависимость от энергии воды, что один паровой двигатель может работать на несколько заводов, в то время как водяные колеса были подвержены остановкам, вызванными засухой, наводнениями, и замерзанием рек. Хотя энергия воды по-прежнему являлась доминирующим энергоносителем для производства на протяжении большей части девятнадцатого века, особенно во Франции и Соединенных Штатах, паровая энергия в конечном счете, оказалась более гибкой и экономически эффективной.

В девятнадцатом веке, паровые двигатели существенно улучшились. Американские бизнесмены привезли паровые двигатели из Англии, и в 1840-х годах они начали успешно конкурировать с водяными колёсами. Филадельфийский изобретатель Оливер Эванс, известный в среде автоматизации производства муки с использованием энергии воды, запатентовал один из первых успешных паровых двигателей высокого давления. Его двигатель и другие по его образцу вскоре распространились на речных судах и железных дорогах, что ознаменовало транспортную революцию в Америке XIX века. В Филадельфии в 1876 году огромный паровой двигатель Корлисса возвышался над главным залом и обеспечивал сотни машин показываемых на выставке Centennial.

Паровой двигатель установил постоянную связь между ископаемыми энергетическими ресурсами и индустриализацией. В Англии и Европе использовали уголь, как топливо для паровых двигателей до 1800 года, а к середине девятнадцатого века уголь гор Аппалачи стал выгоднее дерева в восточной части Соединенных Штатов. На тихоокеанском побережье, производители и перевозчики продолжали использовать дерево, но предпочитали использовать уголь и импортировали его по высокой цене из таких далеких мест, как Австралия. Дефицит и высокая стоимость хорошего угля на побережье Тихого океана в сочетании с открытием нефти в южной Калифорнии привели к использованию нефти в качестве топлива для паровых двигателей, которая вытеснила уголь, как топливо в течение первой половины двадцатого столетия.

Эпоха электричества

Одна из основных технологических проблем в использовании энергии — это её передача. К концу восемнадцатого века, увлечение феноменом электричества захватывает множество людей. Производство электроэнергии с помощью первых батарей, затем на основе явления электромагнитной индукции, передача электроэнергии по медным проводам, и развитие электродвигателей в конечном счете произвели революцию в транспортировке энергии. К концу XIX века, ограниченное и зависимое прямое подключение мануфактурных машин от водяных, ветряных мельниц и паровых двигателей через приводные валы и ремни уступило место электрическому приводу, получающему энергию по проводам протянутым от удалённых гидроэлектростанций и паротурбинных установок. Форма и характер заводов в ХХ веке изменилась кардинально, так как машины с электроприводом можно было установить где угодно. Кроме того, электроэнергия вытеснила конные и паровые повозки троллейбусами. Так же электроэнергия заменила газ для наружного освещения, керосин для домашнего освещения, дрова и уголь в печах и обогревателях.

Томас Эдисон внёс важнейший вклад в развитие электричества. Как отмечается в исследованиях Института Франклина, инновационный подход Эдисона к изобретению и продвижению развития электрического освещения, плюс развитие производства и распределения, позволили системе заработать. В 1880 году его лампы накаливания сделали возможным широкое распространение, надежной, коммерческой системы внутреннего освещения, и его центральная электростанция на Pearl Street в Манхэттене стала образцом для систем выработки и распределения электроэнергии. Не менее важным Эдисон считал вклад ряда других исследователей электроэнергетических технологий, в том числе Фрэнка Спарга, который построил первый коммерчески успешный электрический трамвай в Ричмонде, штат Вирджиния в 1887 году и Никола Теслу, который разработал генератор переменного тока.

Система Эдисона основанная на постоянном токе стала начальным стандартом для систем производства и распределения электроэнергии, питания электрических железных дорог и промышленных двигателей, а также освещения. К сожалению, она не могла быть легко применена для передачи электроэнергии на большие расстояния что возможно при использовании переменного тока. Осуществляя конкуренцию с компанией Эдисона в области электроэнергетики, компания Вестингауза, использовала переменный ток, что сделало возможным развитие крупных генерирующей электростанций, расположеных на больших расстояниях от потребителей. Как и запоминающееся освоение Вестингаузом гидроэнергетики на Ниагарском водопаде с приминением многофазной системы Теслы, так и события по передаче электроэнергии на переменном токе от далеких энергетических объектов в Калифорнии, Сьерра-Невада до прибрежных городов Сан-Франциско и Лос-Анджелес, установили стандарты по дальнейшей передачи электроэнергии.

К началу двадцатого века, электричество стало излюбленным методом для передачи энергии, но применение его человеком зависит от многих ученых и техников, работающих вместе. Возможно, самым важным изобретением Эдисона была лаборатория промышленных исследований, и в начале двадцатого века исследовательская лаборатория General Electric выступила в качестве модели для развития науки и техники. Там постоянно исследуются возможности по улучшению применения электричества человеком. Среди исследователей можно выделить Уильяма Кулиджа. Его внедрение вольфрамовой нити для ламп накаливания Эдисона, а затем рентгеновской трубки принесли ему самое почетное место в рядах выдающихся учёных и инженеров двадцатого века.

Эпоха атомной энергетики

Так как в течение двадцатого века электроэнергия стала повсеместным явлением, использование энергетических ресурсов возросло неимоверно. Гидроэнергетика продолжала играть важную роль в современной энергетической системе, но доступные участки для неё иссякали. Инженеры постоянно улучшали паротурбинные установки, для наибольшей выработки электроэнергии из меньшего количества топлива. Так как размер и эффективность электростанций увеличились, стоимость электроэнергии резко снизилась, что стимулировало еще большее потребление электроэнергии. Ископаемые виды топлива во-первых уголь, во-вторых нефть, стали важнейшими ресурсами для производства электроэнергии.

К сожалению, в 1960-х годах, рост эффективности электростанций почти прекратился, стоимость электроэнергии стала расти. Кроме того, растущее загрязнение, сопровождающееся кислотными дождями и других негативными воздействиями на окружающую среду было результатом активного использования ископаемого топлива. Поиски альтернативы ископаемым видам топлива для выработки электроэнергии привели многих людей к атомной энергии.

Вернёмся обратно в девятнадцатый век. Исследования в области физики привели к открытию явления радиации. Наиболее значимые работы в этой области принадлежат Марии Складовской-Кюри, чьи исследования излучения соединений урана подготовили почву для последующих разработок в атомной структуре и внутренней энергии атома. Первые десятилетия двадцатого столетия ознаменованы рядом успешных открытий и исследований в этой области, особенно в Европе. Итальянский физик Энрико Ферми в университете Рима был одним из первых среди ученых, работающих в этой захватывающей области, а в 1930-х годах он сосредоточился на производстве искусственного радиоактивного излучения при бомбардировке атомов урана нейтронами.

Так как с подъемом нацистской Германии европейский мир становился все более и более нестабильным, на волне союза Германии с итальянскими фашистами и накала антисемитского движения, Ферми и другие физики-ядерщики стали покидать свои университеты и научно-исследовательские лаборатории для того, чтобы уехать в Северную Америку. Обстоятельства эмиграции Ферми были весьма примечательными, потому что он был удостоен Нобелевской премии в 1938 году и получил разрешение от фашистского правительства Италии поехать в Стокгольм, чтобы получить награду. Однако, вместо возвращения в Италию, он и его жена-еврейка, и дети отправились в Соединенные Штаты, где Ферми стал профессором Колумбийского университета в Нью-Йорке.

С началом второй мировой войны в 1940 году, Ферми и другие физики в Европе и Америке поняли, что атом урана расщепленный нейтроном приводит к самовоспроизводящейся цепной реакции расщепления атомов, что позволяет высвободить огромную энергию. Этот процесс, называемый ядерной реакцией, предполагал возможное военное применение, и Ферми и его коллеги из Колумбийского университета вместе с Альбертом Эйнштейном, убедили правительство США изучить эту идею. Между тем, в университете, Ферми стремится к получению управляемой ядерной цепной реакции деления. В 1942 году, когда президент Франклин Рузвельт санкционировал разработку «Проекта Манхэттен», работа Ферми была передислоцирована в Университет Чикаго, где в декабре того же года он и его команда получили первой контролируемую цепную ядерную реакцию.

Работы Ферми и других физиков-ядерщиков непосредственно привели к созданию атомной бомбы, которую Соединенные Штаты дважды использовали против Японии в 1945 году. По результатам Второй Мировой войны, Соединенные Штаты создали комиссию по атомной энергетике (AEC) для наблюдения за разработкой ядерного оружия, а также для использования наработок ядерной энергетики в мирных целях. В 1950-е комиссия приступила к сотрудничеству с энергетическими компаниями, такими как Pacific Gas и Энергетическая Компания Калифорнии для развития производства электроэнергии с использованием ядерной реакции.

Вскоре ядерная энергия стала одной из самых расхваливаемых решений энергетической проблемы. Промышленно развитые страны во всем мире строили электростанции для удовлетворения постоянно повышающегося спроса на электроэнергию, но и в ядерной энергетике не обошлось без недостатков. К концу 1970-х годов, сейсмическая безопасность стала достаточно важным вопросом для калифорнийцев, что повлекло за собой мораторий на строительство новых атомных электростанций, и катастрофа на атомной станции «Three Mile Island» в 1979 году в Пенсильвании возбудила противников атомной энергетики. Эти инциденты в сочетании с нерешенной проблемой захоронения радиоактивных ядерных отходов, а также с увеличение времени строительства эффективных и безопасных объектов положили конец дальнейшему развитию АЭС в Соединенных Штатах. В 1986 году авария на Чернобыльской АЭС в Украине и последующее распространение радиационного отравления, направила Италию, Германию и другие страны по пути к прекращению зависимости от ядерной энергетики. Хотя атомная энергиетика не исчезла и по-прежнему рассматривается многими людьми как одно из лучших решений для удовлетворения человеческих потребностей в энергии, использование других ресурсов, таких как энергия солнца, ветра и биомассы, выглядит также достаточно многообещающе.

Независимо от того, где люди находили энергию для поддержания своего общества и культуры, ясно, что человеческая жизнь всегда была во власти вековой потребности в энергии. Небольшая история развития энергетики, представленная здесь показывает торжество уникальной изобретательности, подчеркивает научные и технологические поиски человечества по использованию энергетических ресурсов. Представьте себе, если можете, что будет следующим шагом в энергетической истории человечества.

Перевод Василия Горбунова

Использованы иллюстрации с сайтов neo-energy.ru, historylib.org, nauvopr.ru

Решающая роль в современном научно-техническом прогрессе принадлежит электрификации. Как известно, под электрификацией понимается широкое внедрение электрической энергии в родное хозяйство и быт, и сегодня нет такой области техники, в том или ином виде не использовалась бы электрическая энергия в будущем ее применение будет еще более расширяться.

Под электротехникой в широком смысле слова подразумевается область науки и техники, использующая электрические и магнитные явления для практических целей.

Это общее определение электротехники можно раскрыть более подробно, выделив те основные области, в которых используют электрические и магнитные явления: преобразование энергии природы (энергетическая); превращение вещества природы (технологическая); получение и передача сигналов или информации (информационная). Поэтому более полно электротехнику моя определить, как область науки и техники, использующую электрические и магнитные явления для осуществления процессов преобразования энергии и превращения вещества, а также для передачи сигналов и информации.

В последние десятилетия из электротехники выделилась промышленная электроника с тремя ее направлениями: информационное, энергетическое и технологическое, которые с каждым годом приобретают все большее значение в ускорении научно-технического прогресса.

В развитии электротехники условно можно выделить следующие шесть этапов.

1. Становление электростатики (до 1800 г.)

К этому периоду относятся первые наблюдения электрических и магнитных явлений, создание первых электростатических машин и приборов, исследования атмосферного электричества, разработка первых теорий электричества, установление закона Кулона, зарождение электромедицины.

2. Закладка фундамента электротехники, ее научных основ {1800 - 1830 гг.)

Начало этого периода ознаменовано созданием «вольтова столба» - первого электрохимического генератора, а вслед за ним «огромной наипаче батареи» В. В. Петрова, с помощью которой им была получена электрическая дуга и сделано много новых открытий. Важнейшими достижениями этого периода является открытие основных свойств электрического тока, законов Ампера, Био - Савара, Ома, создание прообраза электродвигателя, первого индикатора электрического тока (мультипликатора), установление связей между электрическими и магнитными явлениями.

3. Зарождение электротехники (1830-1870 гг.)

Самым знаменательным событием этого периода явилось открытие М. Фарадеем явления электромагнитной индукции, создание первого электромашинного генератора. Разрабатываются разнообразные конструкции электрических машин и приборов, формулируются законы Ленца и Кирхгофа, создаются первые источники электрического освещения, первые электроавтоматические приборы, зарождается электроизмерительная техника. Однако широкое практическое применение электрической энергии было невозможно из-за отсутствия экономичного электрического генератора.

4. Становление электротехники как самостоятельной отрасти техники (1870-1890 гг.)

Создание первого измышленного электромашинного генератора с самовозбуждением (динамомашины) открывает новый этап в развитии электротехники, которая становится самостоятельной отраслью техники.

В связи с развитием промышленности, ростом городов возникает острая потребность в электрическом освещении, начинается строительство «домовых» электрических станций, вырабатывающих постоянный ток. Электрическая энергия становится товаром, и все более остро ощущается необходимость централизованного производства и экономичной передачи электроэнергии на значительные расстояния. Решить эту проблему на базе постоянного тока было нельзя из-за невозможности трансформации постоянного тока.

Значительным стимулом к, внедрению переменного тока явилось изобретение «электрической свечи» П. Н. Яблочковым и разработка им схемы дробления электрической энергии посредством индукционных катушек, представлявших собой трансформаторе разомкнутой магнитной системой. Однако однофазные двигатели были непригодны для целей промышленного электропривода.

Одновременно разрабатываются способы передачи электрической энергии на большие расстояния посредством значительного повышения напряжения линий электропередач.

Дальнейшее развитие электрического освещения способствовало совершенствованию электрических машин и трансформаторов; в середине 80-х гг. началось серийное производство однофазных трансформаторов с замкнутой магнитной системой (М. Дери, О. Блати, К. Циперновский).

Идея П. Н. Яблочкова о централизованном производстве и распределении электроэнергии претворяется в жизнь, начинается строительство центральных электростанций переменного тока. Однако развивающееся производство требовало комплексного решения сложнейшей научно-технической проблемы: экономичной передачи электроэнергии на дальние расстояния и создания экономичного и надежного электрического двигателя, удовлетворяющего требованиям промышленного электропривода. Эта проблема была успешно решена на основе многофазных, в частности трехфазных систем.

5. Становление и развитие электрификации (с 1891 г.)

Важнейшей предпосылкой разработки трехфазных систем явилось открытие (1888 г.) явления вращающегося магнитного поля. Первые многофазные двигатели были двухфазными.

Трехфазная система оказалась наиболее рациональной, так как имела ряд преимуществ как перед однофазными цепями, так и перед другими многофазными системами. В разработку трехфазных систем большой вклад сделали ученые и инженеры разных стран. Но как будет показано далее, наибольшая заслуга принадлежит М. О. Доливо-Добровольскому, сумевшему придать своим работам практический характер, создавшему трехфазные синхронные генераторы и асинхронные двигатели, трансформаторы.

Убедительной иллюстрацией преимуществ трехфазных цепей была знаменитая Лауфен-Франкфуртская электропередача (1891 г.), сооруженная при активном участии Доливо-Добровольского.

С этого времени начинается бурное развитие электрификации: строятся мощные электростанции, возрастает напряжение электропередач, разрабатываются новые конструкции электрических машин, аппаратов и приборов. Электрический двигатель занимает господствующее положение в системе промышленного привода. Процесс электрификации постепенно охватывает все новые области производства: развивается электрометаллургия, электротермия, электрохимия. Электрическая энергия начинает все более широко использоваться в самых разнообразных отраслях промышленности, на транспорте, в сельском хозяйстве и в быту.

Широкое применение переменного тока потребовало теоретического осмысления и математического описания физических процессов, происходящих в электрических машинах, линиях электропередач, трансформаторах. Расширяются исследования явлений в цепях переменного тока с помощью векторных и круговых диаграмм.

Огромную прогрессивную роль в анализе процессов в цепях сыграл комплексный метод, предложенный в 1893-1897 гг. Ч. П. Штейнмецом.

С развитием крупных энергосистем и увеличением дальности электропередач возникла серьезная научно-техническая проблема обеспечения устойчивости параллельной работы генераторов электростанции, которая была решена отечественными и зарубежными учеными. Теоретические основы электротехники становятся базой учебных дисциплин в вузах и фундаментом научных исследований в области электротехники.

6. Зарождение и развитие электроники (первая четверть XX в.)

Рост потребности в постоянном токе (электрохимия, электротранспорт и др.) вызвал необходимость в развитии преобразовательной техники, что привело к зарождению, а затем бурному развитию промышленной электроники.

Электротехника становится базой для разработки автоматизированных систем управления энергетическими и производственными процессами. Создание разнообразных электронных, в особенности микроэлектронных устройств позволяет коренным образом повысить эффективность автоматизации процессов вычислений, обработки информации, осуществлять моделирование сложных физических явлений, решение логических задач и др. при значительном снижении габаритов, устройств, повышении их надежности и экономичности.

Значительный прогресс в электронике наметился после создания больших интегральных схем (БИС), быстродействие их измеряется миллиардными долями секунды, а минимальные размеры составляют 2-3 мкм. Внедрение БИС привело к созданию микропроцессоров, осуществляющих цифровую обработку информации по программе, и микроЭВМ.

Быстрое развитие микроэлектроники обусловило возникновение и заметный прогресс новой области науки и техники - информатики. Уже в начале 80-х гг. как в нашей стране, так и за рубежом стали изготовлять микропроцессоры и микроЭВМ в одном кристалле. Все это дает огромный эффект в повышении надежности, снижении габаритов и потребляемой энергии микроэлектронных устройств, используемых в различных производственных процессах, автоматизированных систем управления, на транспорте, в бытовых устройствах.

Фактически все, что нас с вами окружает, тем или иным образом связано с электричеством. Замечаем, что если где-то на подстанции выключили рубильник, то сразу меняется весь привычный мир. Электричество очень плотно внедрилось в нашу жизнь, а порою сама жизнь зависит от него. С электричеством существование человека гораздо комфортнее, легче и лучше.

Первоначальный опыт использования электрической энергии человечество имело ещё тысячелетия назад. При раскопках культурных слоев и вскрытии древних захоронений, обнаружены находки и рисунки, которые не многозначно говорят о применении электричества людьми. «Древние» - в нашем понимании народы, получали электрическую энергию гальваническим способом.

К сожалению, история не донесла до нас подробного текстового описания жизнедеятельности предков современного человеческого общества. Мы лишь можем строить догадки и делать предположения, на основе археологических открытий.

Для нашего исторического времени эпохальным периодом начала мощного развития изучения и использования электрического тока стал период 17-19 столетия.

Один из патриархов стоящих у подножия изучения явлений, связанных с электроэнергией, немецкий физик, философ, инженер Отто фон Герике, во второй половине 17-ого века первым наблюдал электролюминесценцию. Он изобрёл один из первых электростатических генераторов, производящих электричество трением - шар из серы, натираемый руками. Герике обнаружил свойство отталкивания однополярно заряженных предметов.

У всех на слуху привычные названия единиц измерения из области электротехники, такие как ом, ампер, вольт, фарад, ватт, герц и т.д. которые мы слышим при покупках различных девайсов и бытовой техники. Свои названия эти единицы, в подавляющем большинстве, получили от имен ученых сделавших открытие или сформулировавших законы и закономерности.

Так например: Выдающийся французский блестящий военный инженер и физик Шарль Огюстен дэ Кулон, член Парижской академии наук, один из основателей электростатики, внес в науку понятия: закономерности внешнего трения, закон кручения упругих нитей, основной закон электростатики (закон Кулона), закон взаимодействия магнитных полюсов. Название единицы электрического заряда «кулон» в физической терминологии, носит именно его имя.

Немецкий учёный Георг Симон Ом в 1826 году сформулировал закон описывающий зависимость таких величин как напряжение и сопротивление. Ом равен сопротивлению проводника, между концами которого возникает напряжение 1 вольт при силе постоянного тока 1 ампер. Единица сопротивления названа в честь этого ученого - Ом. Решением XI Генеральной конференции по мерам и весам в 1960 году, ом введен в международную систему единиц (СИ).

Величайшие умы, такие как – Михаил Ломоносов, Алессандро Вольта, Луиджи Гальвани, Ампер Андре-Мари и другие, все они вносили вклад в тогда еще малоизвестную науку - электротехнику.

Знаменитый французский физик, математик и естествоиспытатель, член Парижской Академии наук Андре-Мари Ампер, который занимался изучением связи электрических и магнитных явлений, ввел в физику само понятие «ток электрический» и «электродинамика». Именно он предложил теорию природы магнетизма. В честь этого ученого названа единица измерения силы тока – Ампер.

Граф Алессандро Джузеппе Антонио Анастасио Джероламо Умберто Вольта, итальянец по национальности, физик, химик, физиолог, является одним из основоположников учения об электричестве. В арсенале его многочисленных разработок, исследований, изобретений числятся: «закон ёмкостного сопротивления», первая аккумуляторная батарея (ученый считается отцом электромобиля), электростатическая машина (электрофор), вырабатывающая эл.заряд за счет трения. В честь Алессандро Вольта названа единица измерения электрического напряжения – вольт.

Майкл Фарадей пожалуй один из самых «результативных» ученых в вопросах количества и значимости открытий в области начинающей развиваться ЭЛЕКТРОТЕХНИКИ, как науки. Физик, химик, экспериментатор (около 30 тысяч экспериментов), естествоиспытатель, член Лондонского королевского общества, почётный член Петербургской академии наук, занимаясь изучением электромагнитных полей, открыл электромагнитную индукцию, создал первый трансформатор, первую модель электродвигателя. В результате титанической научно-практической деятельности Фарадея в обиходе появились понятия: физическое поле, анод, катод, электролит, диэлектрик, ион и многие другие. Среди его открытий числится жидкий хлор, гексохлоран, нержавеющая сталь, количественные законы электролиза, открытие поляризации света и связь магнетизма с оптикой.

Наука никогда не стояла на месте, от теоретических и модельных разработок она прогрессировала, встраиваясь в реалии человеческой жизни, обрастая при этом новыми идеями и новыми открытиями.

Изобретения, члена Петербургской Академии наук, Бориса Семеновича Якоби, служат ярким примером перехода от теории к используемой в деятельности человека практике. Это создание первого электродвигателя, с непосредственным вращением вала. Якоби впервые осуществил движение бота при помощи электроэнергии. Он является изобретателем коллектора для выпрямления тока электрического, гальванопластики, стрелочного и электромагнитного пишущего телеграфных аппаратов, а также первого в мире буквопечатающего телеграфного аппарата.

Далее темпы эволюции электродвигателей шли гигантскими шагами. Благодаря гениальности, инженера, физика, Николы Теслы, им была разработана конструкция двухфазного электродвигателя и генератора. В непостижимо короткий промежуток времени, на основе разработок Теслы, Михаилом Осиповичем Доливо-Добровольским была создана электрическая трехфазная система.

Доливо-Добровольский создал трехфазный трансформатор, трехфазный асинхронный двигатель, доказал на практике преимущества передачи трехфазного тока на расстояния. Можно сказать, что благодаря ему, асинхронный двигатель стал основным и востребованным в производственной сфере, во всем мире, принципиально не изменившись до сих пор.

На протяжении всего срока своего существования, человечество копило знания и опыт в области теоретического и практического использования электричества. Когда-то проводимые простые эксперименты со статическим электричеством, постепенно переросли в целую науку, включающую в себя многочисленные развивающиеся отрасли. Название этой науки – ЭЛЕКТРОТЕХНИКА.

Электротехника развивается, внедряясь во все научные сферы, и уже давно стала неотъемлемой частью нашей жизни. Этот прогресс несет в себе новые открытия и новые возможности для человеческой расы.