Функции sin, cos, tg и ctg всегда сопровождаются арксинусом, арккосинусом, арктангенсом и арккотангенсом. Одно является следствием другого, а пары функций одинаково важны для работы с тригонометрическими выражениями.

Рассмотрим рисунок единичной окружности, на котором графически отображено значений тригонометрических функций.

Если вычислить arcs OA, arcos OC, arctg DE и arcctg MK, то все они будут равны значению угла α. Формулы, приведенные ниже, отражают взаимосвязь основных тригонометрических функций и соответствующих им арков.

Чтобы больше понять о свойствах арксинуса, необходимо рассмотреть его функцию. График имеет вид асимметричной кривой, проходящей через центр координат.

Свойства арксинуса:

Если сопоставить графики sin и arcsin , у двух тригонометрических функций можно найти общие закономерности.

Арккосинус

Arccos числа а — это значение угла α, косинус которого равен а.

Кривая y = arcos x зеркально отображает график arcsin x, с той лишь разницей, что проходит через точку π/2 на оси OY.

Рассмотрим функцию арккосинуса более подробно:

  1. Функция определена на отрезке [-1; 1].
  2. ОДЗ для arccos — .
  3. График целиком расположен в I и II четвертях, а сама функция не является ни четной, ни нечетной.
  4. Y = 0 при x = 1.
  5. Кривая убывает на всей своей протяженности. Некоторые свойства арккосинуса совпадают с функцией косинуса.

Некоторые свойства арккосинуса совпадают с функцией косинуса.

Возможно, школьникам покажется излишним такое «подробное» изучение «арков». Однако, в противном случае, некоторые элементарные типовые задания ЕГЭ могут ввести учащихся в тупик.

Задание 1. Укажите функции изображенные на рисунке.

Ответ: рис. 1 – 4, рис.2 — 1.

В данном примере упор сделан на мелочах. Обычно ученики очень невнимательно относятся к построению графиков и внешнему виду функций. Действительно, зачем запоминать вид кривой, если ее всегда можно построить по расчетным точкам. Не стоит забывать, что в условиях теста время, затраченное на рисунок для простого задания, потребуется для решения более сложных заданий.

Арктангенс

Arctg числа a – это такое значение угла α, что его тангенс равен а.

Если рассмотреть график арктангенса, можно выделить следующие свойства:

  1. График бесконечен и определен на промежутке (- ∞; + ∞).
  2. Арктангенс нечетная функция, следовательно, arctg (- x) = — arctg x.
  3. Y = 0 при x = 0.
  4. Кривая возрастает на всей области определения.

Приведем краткий сравнительный анализ tg x и arctg x в виде таблицы.

Арккотангенс

Arcctg числа a — принимает такое значение α из интервала (0; π), что его котангенс равен а.

Свойства функции арккотангенса:

  1. Интервал определения функции – бесконечность.
  2. Область допустимых значений – промежуток (0; π).
  3. F(x) не является ни четной, ни нечетной.
  4. На всем своем протяжении график функции убывает.

Сопоставить ctg x и arctg x очень просто, нужно лишь сделать два рисунка и описать поведение кривых.

Задание 2. Соотнести график и форму записи функции.

Если рассуждать логически, из графиков видно, что обе функции возрастающие. Следовательно, оба рисунка отображают некую функцию arctg. Из свойств арктангенса известно, что y=0 при x = 0,

Ответ: рис. 1 – 1, рис. 2 – 4.

Тригонометрические тождества arcsin, arcos, arctg и arcctg

Ранее нами уже была выявлена взаимосвязь между арками и основными функциями тригонометрии. Данная зависимость может быть выражена рядом формул, позволяющих выразить, например, синус аргумента, через его арксинус, арккосинус или наоборот. Знание подобных тождеств бывает полезным при решении конкретных примеров.

Также существуют соотношения для arctg и arcctg:

Еще одна полезная пара формул, устанавливает значение для суммы значений arcsin и arcos, а также arcctg и arcctg одного и того же угла.

Примеры решения задач

Задания по тригонометрии можно условно разделить на четыре группы: вычислить числовое значение конкретного выражения, построить график данной функции, найти ее область определения или ОДЗ и выполнить аналитические преображения для решения примера.

При решении первого типа задач необходимо придерживаться следующего плана действий:

При работе с графиками функций главное – это знание их свойств и внешнего вида кривой. Для решения тригонометрических уравнений и неравенств необходимы таблицы тождеств. Чем больше формул помнит школьник, тем проще найти ответ задания.

Допустим в ЕГЭ необходимо найти ответ для уравнения типа:

Если правильно преобразовать выражение и привести к нужному виду, то решить его очень просто и быстро. Для начала, перенесем arcsin x в правую часть равенства.

Если вспомнить формулу arcsin (sin α) = α , то можно свести поиск ответов к решению системы из двух уравнений:

Ограничение на модель x возникло, опять таки из свойств arcsin: ОДЗ для x [-1; 1]. При а ≠0, часть сиcтемы представляет собой квадратное уравнение с корнями x1 = 1 и x2 = — 1/a. При a = 0, x будет равен 1.

Обратные тригонометрические функции имеют широкое применение в математическом анализе. Однако у большинства старшеклассников задачи, связанные с данным видом функций, вызывают значительные затруднения. В основном это связано с тем, что во многих учебниках и учебных пособиях задачам такого вида уделяется слишком мало внимания. И если с задачами на вычисление значений обратных тригонометрических функций учащиеся хоть как-то справляются, то уравнения и неравенства, содержащие такие функции, в большинстве своем ставят ребят в тупик. На самом деле, в этом нет ничего удивительного, ведь практически ни в одном учебнике не объясняется методика решения даже самых простейших уравнений и неравенств, содержащих обратные тригонометрические функции.

Рассмотрим несколько уравнений и неравенств, содержащих обратные тригонометрические функции, и решим их с подробным объяснением.

Пример 1.

Решить уравнение: 3arccos (2x + 3) = 5π/2.

Решение.

Выразим из уравнения обратную тригонометрическую функцию, получим:

arccos (2x + 3) = 5π/6. Теперь воспользуемся определением арккосинуса.

Арккосинусом некоторого числа a, принадлежащего отрезку от -1 до 1, является такой угол y из отрезка от 0 до π, что его косинус и равен числу x. Поэтому можно записать так:

2x + 3 = cos 5π/6.

Распишем правую часть полученного уравнения по формуле приведения:

2x + 3 = cos (π – π/6).

2x + 3 = -cos π/6;

2x + 3 = -√3/2;

2x = -3 – √3/2.

Приведем правую часть к общему знаменателю.

2x = -(6 + √3) / 2;

x = -(6 + √3) / 4.

Ответ: -(6 + √3) / 4 .

Пример 2.

Решить уравнение: cos (arccos (4x – 9)) = x 2 – 5x + 5.

Решение.

Так как cos (arcсos x) = x при x принадлежащем [-1; 1], то данное уравнение равносильно системе:

{4x – 9 = x 2 – 5x + 5,
{-1 ≤ 4x – 9 ≤ 1.

Решим уравнение, входящее в систему.

4x – 9 = x 2 – 5x + 5.

Оно квадратное, поэтому получим, что

x 2 – 9x + 14 = 0;

D = 81 – 4 · 14 = 25;

x 1 = (9 + 5) / 2 = 7;

x 2 = (9 – 5) / 2 = 2.

Решим двойное неравенство, входящее в систему.

1 ≤ 4x – 9 ≤ 1. Прибавим ко всем частям 9, будем иметь:

8 ≤ 4x ≤ 10. Разделим каждое число на 4, получим:

2 ≤ x ≤ 2,5.

Теперь объединим полученные ответы. Легко видеть, что корень x = 7 не удовлетворяет ответу неравенства. Поэтому единственным решением уравнения будет x = 2.

Ответ: 2.

Пример 3.

Решить уравнение: tg (arctg (0,5 – x)) = x 2 – 4x + 2,5 .

Решение.

Так как tg (arctg x) = x при всех действительных числах, то данное уравнение равносильно уравнению:

0,5 – x = x 2 – 4x + 2,5.

Решим полученное квадратное уравнение с помощью дискриминанта, предварительно приведя его в стандартный вид.

x 2 – 3x + 2 = 0;

D = 9 – 4 · 2 = 1;

x 1 = (3 + 1) / 2 = 2;

x 2 = (3 – 1) / 2 = 1.

Ответ: 1; 2 .

Пример 4.

Решить уравнение: arcctg (2x – 1) = arcctg (x 2 /2 + x/2) .

Решение.

Так как arcctg f(x) = arcctg g(x) тогда и только тогда, когда f(x) = g(x), то

2x – 1 = x 2 /2 + x/2. Решим полученное квадратное уравнение:

4x – 2 = x 2 + x;

x 2 – 3x + 2 = 0.

По теореме Виета получим, что

x = 1 или x = 2.

Ответ: 1; 2.

Пример 5.

Решить уравнение: arcsin (2x – 15) = arcsin (x 2 – 6x – 8) .

Решение.

Так как уравнение вида arcsin f(x) = arcsin g(x) равносильно системе

{f(x) = g(x),
{f(x) € [-1; 1],

то исходное уравнение равносильно системе:

{2x – 15 = x 2 – 6x + 8,
{-1 ≤ 2x – 15 ≤ 1.

Решим полученную систему:

{x 2 – 8x + 7 = 0,
{14 ≤ 2x ≤ 16.

Из первого уравнения по теореме Виета имеем, что x = 1 или x = 7. Решая второе неравенство системы, получаем, что 7 ≤ x ≤ 8. Поэтому в окончательный ответ подходит только корень x = 7.

Ответ: 7 .

Пример 6.

Решить уравнение: (arccos x) 2 – 6 arccos x + 8 = 0.

Решение.

Пусть arccos x = t, тогда t принадлежит отрезку и уравнение принимает вид:

t 2 – 6t + 8 = 0. Решим полученное квадратное уравнение по теореме Виета, получим, что t = 2 или t = 4.

Так как t = 4 не принадлежит отрезку , то получим, что t = 2, т.е. arccos x = 2, а значит x = cos 2.

Ответ: cos 2.

Пример 7.

Решить уравнение: (arcsin x) 2 + (arccos x) 2 = 5π 2 /36 .

Решение.

Воспользуемся равенством arcsin x + arccos x = π/2 и запишем уравнение в виде

(arcsin x) 2 + (π/2 – arcsin x) 2 = 5π 2 /36.

Пусть arcsin x = t, тогда t принадлежит отрезку [-π/2; π/2] и уравнение принимает вид:

t 2 + (π/2 – t) 2 = 5π 2 /36.

Решим полученное уравнение:

t 2 + π 2 /4 – πt + t 2 = 5π 2 /36;

2t 2 – πt + 9π 2 /36 – 5π 2 /36 = 0;

2t 2 – πt + 4π 2 /36 = 0;

2t 2 – πt + π 2 /9 = 0. Умножим каждое слагаемое на 9, чтобы избавиться от дробей в уравнении, получим:

18t 2 – 9πt + π 2 = 0.

Найдем дискриминант и решим полученное уравнение:

D = (-9π) 2 – 4 · 18 · π 2 = 9π 2 .

t = (9π – 3π) / 2 · 18 или t = (9π + 3π) / 2 · 18;

t = 6π/36 или t = 12π/36.

После сокращения имеем:

t = π/6 или t = π/3. Тогда

arcsin x = π/6 или arcsin x = π/3.

Таким образом, x = sin π/6 или x = sin π/3. То есть x = 1/2 или x =√3/2.

Ответ: 1/2; √3/2.

Пример 8.

Найти значение выражения 5nx 0 , где n – количество корней, а x 0 – отрицательный корень уравнения 2 arcsin x = - π – (x + 1) 2 .

Решение.

Так как -π/2 ≤ arcsin x ≤ π/2, то -π ≤ 2 arcsin x ≤ π. Кроме того, (x + 1) 2 ≥ 0 при всех действительных x,
тогда -(x + 1) 2 ≤ 0 и -π – (x + 1) 2 ≤ -π.

Таким образом, уравнение может иметь решение, если обе его части одновременно равны –π , т.е. уравнение равносильно системе:

{2 arcsin x = -π,
{-π – (x + 1) 2 = -π.

Решим полученную систему уравнений:

{arcsin x = -π/2,
{(x + 1) 2 = 0.

Из второго уравнения имеем, что x = -1, соответственно n = 1, тогда 5nx 0 = 5 · 1 · (-1) = -5.

Ответ: -5.

Как показывает практика, умение решать уравнения с обратными тригонометрическими функциями является необходимым условием успешной сдачи экзаменов. Именно поэтому тренировка в решении таких задач просто необходима и является обязательной при подготовке к ЕГЭ.

Остались вопросы? Не знаете, как решать уравнения?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Обра́тные тригонометри́ческие фу́нкции-это математические функции, являющиеся обратными тригонометрическим функциям.

Функция y=arcsin(x)

Арксинусом числа α называют такое число α из промежутка [-π/2;π/2], синус которого равен α.
График функции
Функция у= sin⁡(x) на отрезке [-π/2;π/2], строго возрастает и непрерывна; следовательно, она имеет обратную функцию, строго возрастающую и непрерывную.
Функция, обратная для функции у= sin⁡(x), где х ∈[-π/2;π/2], называется арксинусом и обозначается y=arcsin(x),где х∈[-1;1].
Итак, согласно определению обратной функции, областью определения арксинуса является отрезок [-1;1], а множеством значений - отрезок [-π/2;π/2].
Отметим, что график функцииy=arcsin(x),где х ∈[-1;1].симметричен графику функции у= sin(⁡x), где х∈[-π/2;π/2],относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arcsin(x).

Пример№1.

Найти arcsin(1/2)?

Так как область значений функцииarcsin(x)принадлежит промежутку [-π/2;π/2], то подходит только значениеπ/6 .Следовательноarcsin(1/2) =π/6.
Ответ:π/6

Пример №2.
Найти arcsin(-(√3)/2)?

Так как область значений arcsin(x) х ∈[-π/2;π/2], то подходит только значение -π/3.Следовательноarcsin(-(√3)/2) =- π/3.

Функция y=arccos(x)

Арккосинусом числа α называют такое число α из промежутка , косинус которого равен α.

График функции

Функция у= cos(⁡x) на отрезке , строго убывает и непрерывна; следовательно, она имеет обратную функцию, строго убывающую и непрерывную.
Функция, обратная для функции у= cos⁡x, где х ∈, называется арккосинусом и обозначается y=arccos(x),где х ∈[-1;1].
Итак, согласно определению обратной функции, областью определения арккосинуса является отрезок [-1;1], а множеством значений - отрезок .
Отметим, что график функцииy=arccos(x),где х ∈[-1;1] симметричен графику функции у= cos(⁡x), где х ∈,относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arccos(x).

Пример №3.

Найти arccos(1/2)?


Так как область значений arccos(x) х∈, то подходит только значение π/3.Следовательно arccos(1/2) =π/3.
Пример №4.
Найти arccos(-(√2)/2)?

Так как область значений функции arccos(x) принадлежит промежутку , то подходит только значение 3π/4.Следовательноarccos(-(√2)/2) =3π/4.

Ответ: 3π/4

Функция y=arctg(x)

Арктангенсом числа α называют такое число α из промежутка [-π/2;π/2], тангенс которого равен α.

График функции

Функция тангенс непрерывная и строго возрастающая на интервале(-π/2;π/2); следовательно, она имеет обратную функцию, которая непрерывна и строго возрастает.
Функция, обратная для функции у= tg⁡(x), где х∈(-π/2;π/2); называется арктангенсом и обозначается y=arctg(x),где х∈R.
Итак, согласно определению обратной функции, областью определения арктангенса является интервал(-∞;+∞), а множеством значений - интервал
(-π/2;π/2).
Отметим, что график функции y=arctg(x),где х∈R, симметричен графику функции у= tg⁡x, где х ∈ (-π/2;π/2), относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arctg(x).

Пример№5?

Найти arctg((√3)/3).

Так как область значений arctg(x) х ∈(-π/2;π/2), то подходит только значение π/6 .Следовательноarctg((√3)/3) =π/6.
Пример№6.
Найти arctg(-1)?

Так как область значений arctg(x) х ∈(-π/2;π/2), то подходит только значение -π/4 .Следовательноarctg(-1) = - π/4.

Функция y=arcctg(x)


Арккотангенсом числа α называют такое число α из промежутка (0;π), котангенс которого равен α.

График функции

На интервале (0;π),функция котангенс строго убывает; кроме того,она непрерывна в каждой точке этого интервала; следовательно, на интервале (0;π), эта функция имеет обратную функцию, которая является строго убывающей и непрерывной.
Функция, обратная для функции у=ctg(x), где х ∈(0;π), называется арккотангенсом и обозначается y=arcctg(x),где х∈R.
Итак, согласно определению обратной функции, областью определения арккотангенса будет R,а множеством значений –интервал (0;π).График функции y=arcctg(x),где х∈R симметричен графику функции y=ctg(x) х∈(0;π),относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arcctg(x).




Пример№7.
Найти arcctg((√3)/3)?


Так как область значений arcctg(x) х ∈(0;π), то подходит только значение π/3.Следовательно arccos((√3)/3) =π/3.

Пример№8.
Найти arcctg(-(√3)/3)?

Так как область значений arcctg(x) х∈(0;π), то подходит только значение 2π/3.Следовательноarccos(-(√3)/3) =2π/3.

Редакторы: Агеева Любовь Александровна, Гаврилина Анна Викторовна