), с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической (галактическая плоскость).

Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и системы референции .

Энциклопедичный YouTube

    1 / 5

    Модель декартовой системы координат.

    Геометрия 11 класс - Прямоугольная система координат в пространстве

    Координатная плоскость ➽ Алгебра 7 класс ➽ Видеоурок

    Видеоурок "Полярная система координат"

    Прямоугольная система координат в пространстве. Координаты вектора. Видеоурок по геометрии 11 класс

    Субтитры

Основные системы

В этом разделе даются разъяснения к наиболее употребляемым системам координат в элементарной математике.

Декартовы координаты

Расположение точки P на плоскости определяется декартовыми координатами с помощью пары чисел (x , y) : {\displaystyle (x,y):}

В пространстве необходимо уже 3 координаты (x , y , z) : {\displaystyle (x,y,z):}

Полярные координаты

В полярной системе координат , применяемой на плоскости, положение точки P определяется её расстоянием до начала координат r = |OP| и углом φ её радиус-вектора к оси Ox .

В пространстве применяются обобщения полярных координат - цилиндрические и сферические системы координат.

Цилиндрические координаты

Цилиндрические координаты - трёхмерный аналог полярных, в котором точка P представляется упорядоченной тройкой (r , φ , z) . {\displaystyle (r,\varphi ,z).}

Примечание: в литературе для первой (радиальной) координаты иногда используется обозначение ρ , для второй (угловой, или азимутальной) - обозначение θ , для третьей координаты - обозначение h .

Полярные координаты имеют один недостаток: значение φ не определено при r = 0 .

Цилиндрические координаты полезны для изучения систем, симметричных относительно некоторой оси. Например, длинный цилиндр с радиусом R в декартовых координатах (с осью z , совпадающей с осью цилиндра) имеет уравнение x 2 + y 2 = R 2 , {\displaystyle x^{2}+y^{2}=R^{2},} тогда как в цилиндрических координатах оно выглядит гораздо проще, как r = R .

Сферические координаты

Сферические координаты - трёхмерный аналог полярных.

В сферической системе координат расположение точки P определяется тремя компонентами: (ρ , φ , θ) . {\displaystyle (\rho ,\varphi ,\theta).} В терминах декартовой системы координат,

Примечание: в литературе иногда азимут обозначается θ , а полярный угол - φ . Иногда для радиальной координаты используется r вместо ρ . Кроме того, диапазон углов для азимута может выбираться как (−180°, +180°] вместо диапазона , а не в диапазоне . Иногда порядок координат в тройке выбирается отличным от описанного; например, полярный и азимутальный углы могут быть переставлены.

Сферическая система координат также имеет недостаток: φ и θ не определены, если ρ = 0; угол φ не определён также и для граничных значений θ = 0 и θ = 180° (или для θ = ±90°, в случае принятия соответствующего диапазона для этого угла).

Для построения точки P по её сферическим координатам нужно от полюса вдоль положительной полуоси z отложить отрезок, равный ρ , повернуть его на угол θ вокруг оси y x , и затем повернуть на угол θ вокруг оси z в направлении положительной полуоси y .

Сферические координаты полезны при изучении систем, симметричных относительно точки. Так, уравнение сферы с радиусом R в декартовых координатах с началом отсчёта в центре сферы выглядит как x 2 + y 2 + z 2 = R 2 , {\displaystyle x^{2}+y^{2}+z^{2}=R^{2},} тогда как в сферических координатах оно становится намного проще: ρ = R . {\displaystyle \rho =R.}

Другие распространённые системы координат

  • Аффинная (косоугольная) система координат - прямолинейная система координат в аффинном пространстве . На плоскости задается точкой начала координат О и двумя упорядоченными неколлинеарными векторами , которые представляют собой аффинный базис. Осями координат в данном случае называются прямые , проходящие через точку начала координат параллельно векторам базиса, которые, в свою очередь, задают положительное направление осей. В трехмерном пространстве , соответственно, аффинная система координат задается тройкой линейно независимых векторов и точкой начала координат. Для определения координат некоторой точки М вычисляются коэффициенты разложения вектора ОМ по векторам базиса .
  • Барицентрические координаты были впервые введены в 1827 году А. Мебиусом , решавшим вопрос о центре тяжести масс, расположенных на вершинах треугольника . Они аффинно инвариантны, представляют собой частный случай общих однородных координат . Точка с барицентрическими координатами расположена в n -мерном векторном пространстве E n , а собственно координаты при этом относятся к фиксированной системе точек, которые не лежат в (n −1)-мерном подпространстве. Барицентрические координаты используются также и в алгебраической топологии применительно к точкам симплекса .
  • Биангулярные координаты - частный случай бицентрических координат, система координат на плоскости, задаваемая двумя фиксированными точками С 1 и С 2 , через которые проводится прямая, выступающая в качестве оси абсцисс. Позиция некоторой точки P , которая не лежит на этой прямой, определяется углами PC 1 C 2 и PC 2 C 1 .
  • Биполярные координаты характеризуются тем, что в качестве координатных линий на плоскости в этом случае выступают два семейства окружностей с полюсами A и B , а также семейство окружностей, ортогональных к ним. Преобразование биполярных координат в декартовы прямоугольные осуществляется посредством специальных формул. Биполярные координаты в пространстве называются бисферическими; в этом случае координатными поверхностями являются сферы , поверхности, образуемые вращением дуг окружностей, а также полуплоскости , проходящие через ось O z .
  • Бицентрические координаты - всякая система координат, которая основана на двух фиксированных точках и в рамках которой положение некоторой другой точки определяется, как правило, степенью её удаления или вообще позицией относительно этих двух основных точек. Системы подобного рода могут быть довольно полезны в определённых сферах научных исследований .
  • Бицилиндрические координаты - система координат, которая образуется в том случае, если система биполярных координат на плоскости O xy параллельно переносится вдоль оси O z . В качестве координатных поверхностей в этом случае выступают семейство пар круговых цилиндров , оси которых параллельны, семейство ортогональных к ним круговых цилиндров, а также плоскость. Для перевода бицилиндрических координат в декартовы прямоугольные для трехмерного пространства также применяются специальные формулы .
  • Конические координаты - трехмерная ортогональная система координат, состоящая из концентрических сфер, которые описываются посредством их радиуса , и двух семейств перпендикулярных конусов , расположенных вдоль осей x и z .
  • Координаты Риндлера используются преимущественно в рамках теории относительности и описывают ту часть плоского пространства-времени , которая обыкновенно называется пространством Минковского . В специальной теории относительности равномерно ускоряющаяся частица находится в гиперболическом движении , и для каждой такой частицы в координатах Риндлера может быть выбрана такая точка отсчёта , относительно которой она покоится.
  • Параболические координаты - это двумерная ортогональная система координат, в которой координатными линиями является совокупность конфокальных парабол . Трехмерная модификация параболических координат строится путём вращения двумерной системы вокруг оси симметрии этих парабол. У параболических координат также имеется определенный спектр потенциальных практических приложений: в частности, они могут использоваться применительно к эффекту Штарка . Параболические координаты связаны определенным отношением с прямоугольными декартовыми .
  • Проективные координаты существуют, согласно наименованию, в проективном пространстве П n (К ) и представляют собой взаимно однозначное соответствие между его элементами и классами конечных подмножеств элементов тела К , характеризующихся свойствами эквивалентности и упорядоченности. Для определения проективных координат проективных подпространств достаточно определить соответствующие координаты точек проективного пространства. В общем случае относительно некоторого базиса проективные координаты вводятся чисто проективными средствами .
  • Тороидальная система координат - трехмерная ортогональная система координат, получаемая в результате вращения двумерной биполярной системы координат вокруг оси, разделяющей два её фокуса. Фокусы биполярной системы, соответственно, превращаются в кольцо с радиусом а , лежащее на плоскости xy тороидальной системы координат, в то время как ось z становится осью вращения системы. Фокальное кольцо также называют иногда базовой окружностью .
  • Трилинейные координаты являются одним из образцов однородных координат и имеют своей основой заданный треугольник, так что положение некоторой точки определяется относительно сторон этого треугольника - главным образом степенью удаленности от них, хотя возможны и другие вариации. Трилинейные координаты могут быть относительно просто преобразованы в барицентрические; кроме того, они также конвертируемы в двумерные прямоугольные координаты, для чего используются соответствующие формулы .
  • Цилиндрические параболические координаты - трехмерная ортогональная система координат, получаемая в результате пространственного преобразования двумерной параболической системы координат. Координатными поверхностями, соответственно, служат конфокальные параболические цилиндры. Цилиндрические параболические координаты связаны определенным отношением с прямоугольными, могут быть применены в ряде сфер научных исследований .
  • Эллипсоидальные координаты - эллиптические координаты в пространстве. Координатными поверхностями в данном случае являются эллипсоиды , однополостные гиперболоиды , а также двуполостные гиперболоиды, центры которых расположены в начале координат. Система ортогональна. Каждой тройке чисел, являющихся эллипсоидальными координатами, соответствуют восемь точек, которые относительно плоскостей системы O xyz симметричны друг другу .

Переход из одной системы координат в другую

Декартовы и полярные

где u 0 - функция Хевисайда с u 0 (0) = 0 , {\displaystyle u_{0}(0)=0,} а sgn - функция signum . Здесь функции u 0 и sgn используются как «логические» переключатели, аналогичные по значению операторам «если.. то» (if…else) в языках программирования. Некоторые языки программирования имеют специальную функцию atan2 (y , x ), которая возвращает правильный φ в необходимом квадранте , определённом координатами x и y .

Декартовы и цилиндрические

x = r cos ⁡ φ , {\displaystyle x=r\,\cos \varphi ,} y = r sin ⁡ φ , {\displaystyle y=r\,\sin \varphi ,} r = x 2 + y 2 , {\displaystyle r={\sqrt {x^{2}+y^{2}}},} φ = arctg ⁡ y x + π u 0 (− x) sgn ⁡ y , {\displaystyle \varphi =\operatorname {arctg} {\frac {y}{x}}+\pi u_{0}(-x)\,\operatorname {sgn} y,} z = z . {\displaystyle z=z.\quad } (d x d y d z) = (r cos ⁡ θ − r sin ⁡ φ 0 r sin ⁡ θ r cos ⁡ φ 0 0 0 1) ⋅ (d r d φ d z) , {\displaystyle {\begin{pmatrix}dx\\dy\\dz\end{pmatrix}}={\begin{pmatrix}r\cos \theta &-r\sin \varphi &0\\r\sin \theta &r\cos \varphi &0\\0&0&1\end{pmatrix}}\cdot {\begin{pmatrix}dr\\d\varphi \\dz\end{pmatrix}},} (d r d φ d z) = (x x 2 + y 2 y x 2 + y 2 0 − y x 2 + y 2 x x 2 + y 2 0 0 0 1) ⋅ (d x d y d z) . {\displaystyle {\begin{pmatrix}dr\\d\varphi \\dz\end{pmatrix}}={\begin{pmatrix}{\frac {x}{\sqrt {x^{2}+y^{2}}}}&{\frac {y}{\sqrt {x^{2}+y^{2}}}}&0\\{\frac {-y}{\sqrt {x^{2}+y^{2}}}}&{\frac {x}{\sqrt {x^{2}+y^{2}}}}&0\\0&0&1\end{pmatrix}}\cdot {\begin{pmatrix}dx\\dy\\dz\end{pmatrix}}.}

Декартовы и сферические

x = ρ sin ⁡ θ cos ⁡ φ , {\displaystyle {x}=\rho \,\sin \theta \,\cos \varphi ,\quad } y = ρ sin ⁡ θ sin ⁡ φ , {\displaystyle {y}=\rho \,\sin \theta \,\sin \varphi ,\quad } z = ρ cos ⁡ θ ; {\displaystyle {z}=\rho \,\cos \theta ;\quad } ρ = x 2 + y 2 + z 2 , {\displaystyle {\rho }={\sqrt {x^{2}+y^{2}+z^{2}}},} θ = arccos ⁡ z ρ = arctg ⁡ x 2 + y 2 z , {\displaystyle {\theta }=\arccos {\frac {z}{\rho }}=\operatorname {arctg} {\frac {\sqrt {x^{2}+y^{2}}}{z}},} φ = arctg ⁡ y x + π u 0 (− x) sgn ⁡ y . {\displaystyle {\varphi }=\operatorname {arctg} {\frac {y}{x}}+\pi \,u_{0}(-x)\,\operatorname {sgn} y.} (d x d y d z) = (sin ⁡ θ cos ⁡ φ ρ cos ⁡ θ cos ⁡ φ − ρ sin ⁡ θ sin ⁡ φ sin ⁡ θ sin ⁡ φ ρ cos ⁡ θ sin ⁡ φ ρ sin ⁡ θ cos ⁡ φ cos ⁡ θ − ρ sin ⁡ θ 0) ⋅ (d ρ d θ d φ) , {\displaystyle {\begin{pmatrix}dx\\dy\\dz\end{pmatrix}}={\begin{pmatrix}\sin \theta \cos \varphi &\rho \cos \theta \cos \varphi &-\rho \sin \theta \sin \varphi \\\sin \theta \sin \varphi &\rho \cos \theta \sin \varphi &\rho \sin \theta \cos \varphi \\\cos \theta &-\rho \sin \theta &0\end{pmatrix}}\cdot {\begin{pmatrix}d\rho \\d\theta \\d\varphi \end{pmatrix}},} (d ρ d θ d φ) = (x / ρ y / ρ z / ρ x z ρ 2 x 2 + y 2 y z ρ 2 x 2 + y 2 − (x 2 + y 2) ρ 2 x 2 + y 2 − y x 2 + y 2 x x 2 + y 2 0) ⋅ (d x d y d z) . {\displaystyle {\begin{pmatrix}d\rho \\d\theta \\d\varphi \end{pmatrix}}={\begin{pmatrix}x/\rho &y/\rho &z/\rho \\{\frac {xz}{\rho ^{2}{\sqrt {x^{2}+y^{2}}}}}&{\frac {yz}{\rho ^{2}{\sqrt {x^{2}+y^{2}}}}}&{\frac {-(x^{2}+y^{2})}{\rho ^{2}{\sqrt {x^{2}+y^{2}}}}}\\{\frac {-y}{x^{2}+y^{2}}}&{\frac {x}{x^{2}+y^{2}}}&0\end{pmatrix}}\cdot {\begin{pmatrix}dx\\dy\\dz\end{pmatrix}}.}

Цилиндрические и сферические

r = ρ sin ⁡ θ , {\displaystyle {r}=\rho \,\sin \theta ,} φ = φ , {\displaystyle {\varphi }=\varphi ,\quad } z = ρ cos ⁡ θ ; {\displaystyle {z}=\rho \,\cos \theta ;} ρ = r 2 + z 2 , {\displaystyle {\rho }={\sqrt {r^{2}+z^{2}}},} θ = arctg ⁡ z r + π u 0 (− r) sgn ⁡ z , {\displaystyle {\theta }=\operatorname {arctg} {\frac {z}{r}}+\pi \,u_{0}(-r)\,\operatorname {sgn} z,} φ = φ . {\displaystyle {\varphi }=\varphi .\quad } (d r d φ d h) = (sin ⁡ θ ρ cos ⁡ θ 0 0 0 1 cos ⁡ θ − ρ sin ⁡ θ 0) ⋅ (d ρ d θ d φ) , {\displaystyle {\begin{pmatrix}dr\\d\varphi \\dh\end{pmatrix}}={\begin{pmatrix}\sin \theta &\rho \cos \theta &0\\0&0&1\\\cos \theta &-\rho \sin \theta &0\end{pmatrix}}\cdot {\begin{pmatrix}d\rho \\d\theta \\d\varphi \end{pmatrix}},} (d ρ d θ d φ) = (r r 2 + z 2 0 z r 2 + z 2 − z r 2 + z 2 0 r r 2 + z 2 0 1 0) ⋅ (d r d φ d z) . {\displaystyle {\begin{pmatrix}d\rho \\d\theta \\d\varphi \end{pmatrix}}={\begin{pmatrix}{\frac {r}{\sqrt {r^{2}+z^{2}}}}&0&{\frac {z}{\sqrt {r^{2}+z^{2}}}}\\{\frac {-z}{r^{2}+z^{2}}}&0&{\frac {r}{r^{2}+z^{2}}}\\0&1&0\end{pmatrix}}\cdot {\begin{pmatrix}dr\\d\varphi \\dz\end{pmatrix}}.}

Для определения положения точки в пространстве мы будем использовать декартовы прямоугольные координаты (рис.2).

Декартова прямоугольная система координат в пространстве образуется тремя взаимно перпендикулярными осями координат OX, OY, OZ. Оси координат пересекаются в точке O, которая называется началом координат, на каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно (не обязательно) одинаковы для всех осей. Ось OX называется осью абсцисс (или просто абсциссой), ось OY - осью ординат (ординатой), ось OZ - осью аппликат (апп ликатой).

Положение точки A в пространстве определяется тремя координатами x, y и z. Координата x равна длине отрезка OB, координата y — длине отрезка OC, координата z — длине отрезка OD в выбранных единицах измерения. Отрезки OB, OC и OD определяются плоскостями, проведёнными из точки параллельно плоскостям YOZ, XOZ и XOY соответственно.

Координата x называется абсциссой точки A, координата y — ординатой точки A, координата z — аппликатой точки A.

Символически это записывают так:

или привязывают запись координат к конкретной точке с помощью индекса:

x A , y A , z A ,

Каждая ось рассматривается как числовая прямая, т. е. имеет положительное направление, а точкам, лежащим на отрицательном луче, приписываются отрицательные значения координаты (расстояние берется со знаком минус). То есть, если бы, например, точка B лежала не как на рисунке — на луче OX, а на его продолжении в обратную сторону от точки O (на отрицательной части оси OX), то абсцисса x точки A была бы отрицательной (минус расстоянию OB). Аналогично и для двух других осей.

Координатные оси OX, OY, OZ, изображенные на рис. 2, образуют правую систему координат. Это означает, что если смотреть на плоскость YOZ вдоль положительного направления оси OX, то движение оси OY в сторону оси OZ будет проходить по часовой стрелке. Эту ситуацию можно описать при помощи правила буравчика : если буравчик (винт с правой резьбой) вращать по направлению от оси OY к оси OZ, то он будет двигаться вдоль положительного направления оси OX.

Векторы единичной длины, направленные вдоль координатных осей, называются координатными ортами. Их обозначают обычно как (рис. 3). Встречается так же обозначение Орты составляют базис координатной системы.

В случае правой системы координат действительны следующие формулы с векторными произведениями ортов:

Рассмотрим трехмерное пространство.

Определение 8.1. Подаффинной системой ко­ор­динат в трехмерном пространстве будем понимать геометрический образ, состоящий из фиксированной точки О и аффинного базиса .

Аффинную систему координат будем обозначать . Точка О называется началом координат , а векторы - координатными векторами .

Аналогично под прямоугольной декартовой системой координат будем понимать геометрический образ, состоящий из фиксированной точки О - начала координат и прямоугольного декартового базиса .

Направленные прямые, проходящие через начало координат и па­рал­лельные координатным векторам, называются координатными ося­ми . Оси, параллельные векторам (или векторам ), называются соответственно осями абсцисс , ор­ди­нат и аппликат и обозначаются Ox , Oy , Oz . Плоскости, опре­де­ляемые осями Ох и Оy , Ox и Oz , Oy и Oz , называются координатными плоскостями и обозначаются соответственно через Oxy , Oxz , Oyz . Систему кординат (или ) обозначают также Oxyz .

В дальнейшем все рассуждения будем вести в прямоугольной декартовой системе координат.

Пусть - прямоугольная декартова система координат. Рассмотрим произвольную точку А трехмерного пространства.

Определение 8.2. Направленный отрезок называется радиус-вектором точки А .

Заметим, что между точками пространства и их радиус-векторами существует взаимно однозначное соответствие.

Определение 8.3. Координатами (прямоугольными декартовыми координатами) точки А трехмерного пространства называется тройка чисел (x , y , z ), где x , y , z - координаты радиус-вектора в ортонормированном базисе , т.е.

Аналогично названию координатных осей первую координату называют абсциссой , вторую - ординатой и третью - аппликатой точки .



Для построения точки А в прямоугольной декартовой системе координат воспользуемся формулой (8.1). Отложим от точки O векторы , , . Построим прямоугольный параллелепипед так, что его три измерения равны , тогда вектор совпадает с диагональю параллелепипеда. В справедливости вышесказанного несложно убедиться, поочередно складывая векторы , а затем векторы по правилу параллелограмма. Конец вектора и есть искомая точка (см. рис. 9).


Решение . Из рисунка 10 видно, что . С учетом (8.1), имеем: , . Используя следствие 7.1, получим:

Таким образом, для того чтобы найти координаты вектора с известными координатами его начала и конца, нужно от координат конца вычесть координаты начала .

Задача 2 (о делении отрезка в данном соотношении ) . Рассмотрим отрезок , причем и . Пусть данный отрезок точкой M делится в соотношении . Найдем координаты точки М .

Решение . Из рисунка 11 видно, что справедливо векторное равенство

.

Предположим, что точка M имеет координаты . Находя по формуле (8.2) координаты векторов и учитывая теорему 7.1, получим равенства:

Выражая из первого равенства x , из второго - y , а из третьего - z , находим координаты точки М :

В случае, если , т. е. , получаем формулу координат середины отрезка

Замечание. На плоскости (в двумерном пространстве) можно так же задать прямоугольную систему координат Oxy . С помощью введенной системы координат любую точку или ее радиус-вектор можно представить парой чисел (x , y ). Все соотношения, полученные нами ранее для координат векторов и точек трехмерного пространства, будут справедливы и на плоскости с той лишь разницей, что из них нужно всюду убрать третью координату z . Аналогичные рассуждения можно повторить и для произвольной прямой (одномерного пространства).

Проекция вектора на ось

Определение 9.1. Осью называется прямая с лежащим на ней единичным вектором (ортом), задающим положительное направление на прямой.

На рисунке ось будем изображать в виде направленной прямой.

Пусть в пространстве задана ось l и точка А , не принадлежащая оси.

Определение 9.2. Основание перпендикуляра, опущенного из точки А на прямую l , точка , называется проекцией (ортогональной проекцией) точки на ось.

В случае, если точка А принадлежит оси l , то проекция точки на ось совпадает с самой точкой А .

Пусть задан некоторый вектор . Находя проекции начала и конца вектора на ось l , получимвектор , где - соответственно проекции точек А , В на ось l .

Определение 9.3. Проекцией вектора на ось l будем называть положи­тельное число, равное , если вектор и ось l направлены одинаково (см. рис. 12) и отрицательное число , если вектор и ось l направлены противопо­лож­но (см. рис. 13).

Следствие 9.2. Проекции равных векторов на одну и ту же ось равны между собой.

M
Q
R
O
Рис.15
z
O
y
x

Точка О называется началом координат. Первая ось называется осью Ох , или осью абсцисс, вторая – осью Оу , или осью ординат, третья – осью Оz , или осью аппликат. Плоскость, проходящая через две оси из трех Ох , Оу , Оz , называется координатой плоскостью; координатных плоскостей 3. Они обозначаются так: yOz , zOx и xOy .

Пусть М – произвольная точка пространства. Обозначим через Р проекцию точки М на ось Ох параллельно плоскости yOz , а через х – координату точки Р на оси Ох . Через Q обозначим проекцию точки М на ось Оу параллельно плоскости zOx , а через у – координату точки Q на оси Оу . Через R обозначим проекцию точки М на ось Оz параллельно плоскости xOy , а через z – координату точки R на оси Оz (См. рис. 15).

Три числа x , y , z взятые в этом порядке, называются общими декартовыми (или аффинными) координатами точки М . Первая координата называется абсциссой точки М , вторая у – ординатой точки М , и третья z – аппликатой точки М . Точка М с координатами x , y , z обозначается М (x , y , z ).

Абсцисса точки М равна нулю тогда и только тогда, когда точка М лежит на плоскости yOz . Аналогично про ординату и аппликату.

Отсюда следуют, что точка М (x , y , z ) лежит на оси Ох тогда и только тогда, когда у =z =0, аналогично про оси Оу , Оz . Для начала координат х =у =z =0.

Точки , называются единичными точками осей координат. Точка называется единичной точкой системы координат .

Параллелепипед с вершиной в начале координат О и с ребрами, называется масштабным параллелепипедом. Отрезки, являются масштабными отрезками соответственно осей Ох, Оу, Оz. Векторы

называется масштабными векторами сответственно осей Ох , Оу , Оz .

При помощи общей декартовой системы координат устанавливается взаимно однозначное соответствие между множеством всех точек пространства и множеством всех упорядоченных троек действительных чисел. Здесь для построения точки М , имеющей координатами заданные числа х , у , z , поступают так: если то строят на осях Ох , Оу , Оz точки P , Q , R , имеющие на этих осях координаты, соответственно равные х , у , z и проводят через точки P , Q , R плоскости, соответственно параллельные координатным плоскостям уОz , zOx , xOy ; точка М – есть точка пересечения этих плоскостей.



Декартовой прямоугольной системой координат в пространстве называется упорядоченная тройка попарно перпендикулярных осей координат с общим началом координат О на каждой из них и с одним и тем же масштабным отрезком для каждой оси (см.рис.).

Декартовы прямоугольные координаты точки М определяются аналогично. Это ортогональные проекции точки М на оси Ох , Оу , Оz .

Отметим, что часто масштабные векторы осей Ох , Оу , Оz в декартовой прямоугольной системе координат обозначаются.

В предыдущих главах были рассмотрены приемы построения чертежей в плоскости XY. Положение любой точки в этой системе координат характеризуются двумя значениями – абсциссой и ординатой. Для выполнения построений в трехмерном пространстве к этим координатам добавляется третья величина, определяющая объем того или иного изделия. Речь идет о координате Z, придающей плоским объектам объем. Умение правильно задавать координаты трехмерных объектов способствует корректному моделированию пространственных деталей. Для этих целей AutoCAD располагает тремя типами систем отсчета: трехмерные декартовые, цилиндрические и сферические координаты.

ДЕКАРТОВЫЕ КООРДИНАТЫ

Для обозначения положения точки в трехмерном пространстве при помощи декартовых координат необходимо к значениям ее координат на плоскости XY добавить третье значение – координату Z. Так, например, на рис. 10.4 изображена точка, у которой координаты в плоскости XY равны 13.19, а по оси Z – 11 единиц.

При вводе координат в этой системе в первую очередь задается координата X, затем через запятую Y и только потом Z. Например: 13,19,11. Если числовое значение координаты дробное, то разделять целую и дробную части необходимо точкой. Кроме того, пробелы между числами и запятыми не допускаются.

Примечание. Если при вводе координат в трехмерном пространстве пропущено значение Z, AutoCAD автоматически присвоит ему значение по умолчанию, записанное в системной переменной ELEVATION и называемое возвышением.

При создании трехмерных объектов используются понятия возвышения (уровня плоскости XY) и высоты. Возвышение определяется Z-координатой плоскости XY, на которой объект построен. Понятно, что если возвышение равно нулю (значение по умолчанию), то уровень объекта (его плоскость) совпадает с плоскостью XY. При положительном возвышении объект находится выше плоскости XY, а при отрицательном – ниже. Что касается высоты трехмерных объектов, то она определяет расстояние, на которое объект смещен относительно возвышения.

Обычно к редактированию параметров возвышения и высоты прибегают в случае, когда необходимо построить несколько точек, у которых координата Z имеет одно и то же значение. Упрощение построений вызвано тем, что при этом достаточно будет вводить для каждой такой точки только два значения, определяющих ее положение в плоскости XY.

Как уже было отмечено, текущее значение возвышения хранится под именем системной переменной ELEVATION, а высоты – переменной THICKNEES. Для того чтобы изменить значение обоих параметров, присваиваемое вновь созданным объектам, нужно выполнить команду Elev и ответить на следующие вопросы:

Command: Elev
Specify new default elevation <0.0000>: <Ввод нового значения возвышения>
Specify new default thickness <0.0000>: <Ввод нового значения высоты>

Также следует отметить, что значение высоты объекта можно менять из палитры Properties (Свойства).

ЦИЛИНДРИЧЕСКИЕ КООРДИНАТЫ

Положение точки в цилиндрических координатах также определяется тремя величинами, однако одно из них – угловое.

Как известно, круговой цилиндр образуется путем вращения образующей 2-3 (рис. 10.5а) по окружности, описывая угол 360°. Именно этот принцип положен в концепцию цилиндрических координат. Определяя положение точки, необходимо задать вначале радиус цилиндра (0-1), затем угол вращения образующей (1-2) и, наконец, высоту цилиндра (2-3). Так, например, точка, изображенная на рис. 10.36, была построена относительно текущей ПСК после ввода в командную строку 23<55,12. Значок «<» указывает на то, что после него вводится числовое значение угла поворота образующей, запятая перед этим значком не ставится, а после величины угла – должна вводиться обязательно. Таким образом, в цилиндрической системе координат положение точки определяется в следующем порядке: радиус – угол – образующая.

Следует обратить внимание на правило знаков. Что касается линейных координат, то тут все просто – направление осей определяет положительные значения отсчета. При этом положительное направление оси Z можно контролировать правилом правой руки. Это правило заключается в следующем. Если большой палец правой руки совместить с осью X, а указательный – с осью Y, то остальные пальцы в изогнутом положении укажут положительное направление оси Z (рис. 10.56).

Для определения положительного направления вращения относительно любой оси нужно следовать следующему правилу. Если установить наблюдателя со стороны положительного направления оси, то положительное направление отсчета углов будет совпадать с движением против часовой стрелки (рис. 10.4). Таким образом, чтобы ввести направление угла по часовой стрелке, значение угла следует вводить со знаком минус.

СФЕРИЧЕСКИЕ КООРДИНАТЫ

Положение точки в сферических координатах определяется также тремя величинами, из которых одно линейное, а два остальных – угловые.

Как известно, сферическая поверхность представляет собой геометрическое место точек пространства, равноудаленных от одной точки – центра шара. Поэтому, чтобы определить положение точки, расположенной на поверхности сферы (рис. 10.7а), достаточно указать радиус окружности, вращением которой образуется шар (0-1), затем угол, образованный вращением окружности вокруг оси Z (1-2), и наконец, угол, образованный вращением окружности относительно оси X (2-3). Так, например, точка, изображенная на рис. 10.76, была построена относительно текущей ПСК после ввода в командную строку 25<55<27. Значок «<» указывает на то, что после него вводится числовое значение угла поворота образующей. Таким образом, в сферической системе координат положение точки определяется в следующем порядке:

ФИЛЬТРЫ ТОЧЕК

Координатные фильтры точек – это еще один способ ввода координат в трехмерном пространстве, отличительной чертой которого является зависимость от координат ранее введенных объектов. Другими словами, чтобы назначить координаты этим способом, нужно привязаться к узлам уже существующих объектов для автоматического извлечения из них заказанной вами координаты.

Примечание. Задание координат в трехмерном пространстве способом фильтрации точек может быть эффективно только при использовании режимов объектной привязки.