Все что-нибудь слышали о термоядерной энергетике, но мало кто может вспомнить технические подробности. Более того, краткий опрос показывает: многие уверены, что сама возможность термоядерной энергетики – это миф. Приведу выдержки с одного из интернет-форумов, на котором вдруг завязалась дискуссия.

Пессимисты:

«Можно сравнить это с коммунизмом. Проблем в этой области больше, чем явных решений…»;

«Это одна из любимых тем для написания футуристических статей о светлом будущем…»

Оптимисты:

«Это будет, потому что все невероятнейшее оказывалось либо изначально невозможным, либо тем, прогресс чего был критическим фактором для развития техники…»;

«Термоядерная энергетика – это, ребята, наше неизбежное будущее, и никуда от него не деться…»

Определимся с терминами

– Что такое управляемый термоядерный синтез?

Елена Корешева : Управляемый термоядерный синтез (УТС) – это направление исследований, целью которого является промышленное использование энергии термоядерных реакций синтеза легких элементов.

Ученые всего мира начали эти исследования, когда термоядерный синтез в его неуправляемой стадии был продемонстрирован при взрыве под Семипалатинском первой в мире водородной бомбы. Проект такой бомбы был разработан в СССР в 1949 году Андреем Сахаровым и Виталием Гинзбургом – будущими Нобелевскими лауреатами из ФИАНа – Физического института им. П. Н. Лебедева Академии наук СССР, а 5 мая 1951 года было выпущено постановление Совета министров СССР о развертывании работ по термоядерной программе под руководством И. В. Курчатова.

В отличие от ядерной бомбы, при взрыве которой энергия выделяется в результате деления атомного ядра, в водородной бомбе происходит термоядерная реакция, основная энергия которой выделяется при горении тяжелого изотопа водорода – дейтерия.

Необходимые условия для запуска термоядерной реакции – высокая температура (~100 млн °C) и высокая плотность топлива – в водородной бомбе достигаются с помощью взрыва малогабаритного ядерного запала.

Чтобы реализовать такие же условия в лаборатории, то есть перейти от неуправляемого термоядерного синтеза к управляемому, ученые ФИАН академик Н. Г. Басов, лауреат Нобелевской премии 1964 года, и академик О. Н. Крохин предложили использовать излучение лазера. Именно тогда, в 1964 году, в Физическом институте им. П. Н. Лебедева, а затем и в других научных центрах нашей страны были начаты исследования по УТС в области с инерциальным удержанием плазмы. Это направление получило название инерциального термоядерного синтеза, или ИТС.

Классическая топливная мишень, применяемая в экспериментах по ИТС, представляет собой систему вложенных шаровых слоев, простейший вариант которой – внешняя полимерная оболочка и криогенный слой топлива, сформированный на ее внутренней поверхности. Основная идея ИТС – сжать пять миллиграммов сферической топливной мишени до плотностей, превышающих более чем в тысячу раз плотность твердого тела.

Сжатие осуществляется внешней оболочкой мишени, вещество которой, интенсивно испаряясь под воздействием сверхмощных лазерных лучей или пучков высокоэнергичных ионов, создает реактивную отдачу. Не испаренная часть оболочки как мощный поршень сжимает находящееся внутри мишени топливо, и в момент максимального сжатия сходящаяся ударная волна поднимает температуру в центре сжатого топлива настолько, что начинается термоядерное горение.

Предполагается, что в камеру реактора ИТС мишени будут инжектироваться с частотой 1-15 Гц, чтобы обеспечить их непрерывное облучение и, соответственно, непрерывную последовательность термоядерных микровзрывов, дающих энергию. Это напоминает работу двигателя внутреннего сгорания, только энергии мы в таком процессе можем получить на много порядков больше.

Другой подход в УТС связан с магнитным удержанием плазмы. Это направление получило название магнитного термоядерного синтеза (МТС). Исследования в этом направлении стартовали на десять лет раньше, в начале 1950-х годов. Институт им. И. В. Курчатова – пионер этих исследований в нашей стране.

– Какова конечная задача этих исследований?

Владимир Николаев : Конечная задача – использование термоядерных реакций при производстве электрической и тепловой энергии на современных высокотехнологичных, экологически чистых, использующих практически неисчерпаемые энергетические ресурсы объектах генерации – инерциальных термоядерных электростанциях. Этот новый тип электростанций должен со временем заменить привычные нам работающие на углеводородном топливе (газ, уголь, мазут) тепловые электростанции (ТЭС), а также атомные электростанции (АЭС). Когда же это случится? По словам академика Л. А. Арцимовича, одного из лидеров исследований УТС в нашей стране, термоядерная энергетика будет создана тогда, когда станет действительно необходимой человечеству. Такая необходимость с каждым годом становится все более острой, и вот по каким причинам:

1. Согласно прогнозам, сделанным в 2011 году Международным энергетическим агентством (МЭА), мировое годовое потребление электроэнергии в период между 2009 и 2035 годами возрастет более чем в 1,8 раза – с 17200 ТВт-ч в год до более чем 31700 ТВт-ч в год, при ежегодном темпе роста в 2,4 процента.

2. Применяемые человечеством меры, направленные на экономию энергии, применение различного рода энергосберегающих технологий на производстве и в быту, увы, не дают ощутимого результата.

3. Более 80 процентов потребляемой в мире энергии сейчас производится за счет сжигания ископаемых – нефти, угля и природного газа. Прогнозируемое через пятьдесят-сто лет истощение запасов этого ископаемого топлива, а также неравномерность расположения месторождений этих ископаемых, удаленность данных месторождений от электростанций, требующая дополнительных расходов на транспортировку энергетических ресурсов, необходимость в отдельных случаях нести дополнительные весьма существенные расходы на обогащение и на подготовку топлива к сжиганию.

4. Развитие возобновляемых источников энергии на основе солнечной энергии, энергии ветра, гидроэнергетики, биогаза (в настоящее время на эти источники приходится около 13-15 процентов потребляемой в мире энергии) ограничивается такими факторами, как зависимость от климатических особенностей места нахождения электростанции, зависимость от времени года и даже времени суток. Сюда следует также добавить относительно небольшие номинальные мощности ветроустановок и солнечных станций, необходимость отведения под ветропарки значительных территорий, нестабильность режимов работы ветро- и солнечных электростанций, создающую технические сложности встраивания данных объектов в режим работы электроэнергетической системы, и т. п.

– Каковы прогнозы на будущее?

Владимир Николаев : Основным кандидатом на лидирующие позиции в энергетике будущего является ядерная энергия – энергия атомных электростанций и энергия управляемого термоядерного синтеза. Если в настоящее время около 18 процентов потребляемой в России энергии – это энергия атомных электростанций, то управляемый термоядерный синтез еще не осуществлен в промышленных масштабах. Эффективное решение практического использования УТС позволит овладеть экологически чистым, безопасным и практически неисчерпаемым источником энергии.

А где же реальный опыт внедрения?

– Почему же УТС так долго ждет своего внедрения? Ведь первые работы в этом направлении были проведены Курчатовым еще в 1950-х?

Владимир Николаев : Долгое время вообще считалось, что проблема практического использования энергии термоядерного синтеза не требует срочных решений, так как еще в 80-х годах прошлого столетия источники ископаемого топлива казались неистощимыми, а проблемы экологии и изменения климата не стояли так остро, как сейчас.

Кроме того, освоение проблемы УТС изначально потребовало развития совершенно новых научных направлений – физики высокотемпературной плазмы, физики сверхвысоких плотностей энергии, физики аномальных давлений. Потребовалось развитие компьютерных технологий и разработка ряда математических моделей поведения вещества при запуске термоядерных реакций. Для проверки теоретических результатов потребовалось сделать технологический рывок в создании лазеров, ионных и электронных источников, топливных микромишеней, диагностического оборудования, а также создать масштабные лазерные и ионные установки.

И эти усилия не пропали даром. Совсем недавно, в сентябре 2013 года, в экспериментах США на мощной лазерной установке NIF впервые продемонстрирована так называемая «научная рентабельность» (scientific breakeven): энергия, выделившаяся в термоядерных реакциях, превзошла энергию, вложенную в сжатие и нагрев топлива в мишени по схеме ИТС. Это служит дополнительным стимулом в ускорении развития существующих в мире программ, нацеленных на демонстрацию возможности коммерческого использования термоядерного реактора.

По разным прогнозам, первый опытный образец термоядерного реактора будет запущен в период до 2040 года, как результат действия ряда международных проектов и государственных программ, в том числе это международный реактор ITER на основе МТС, а также национальные программы построения реакторов на основе ИТС в США, Европе и Японии. Таким образом, от запуска процессов неуправляемого термоядерного синтеза до запуска первой электростанции УТС пройдет семьдесят-восемьдесят лет.

Относительно длительности внедрения УТС хочу пояснить, что 80 лет отнюдь не является большим сроком. Например, от момента изобретения Алессандро Вольтой первого гальванического элемента в 1800 году до момента запуска первого опытного образца электростанции Томасом Эдисоном в 1882 году прошло восемьдесят два года. А если говорить об открытии и первых исследованиях Уильямом Гилбертом электрических и магнитных явлений (1600 год), то до практического применения данных явлений прошло более двух веков.

– Каковы научные и практические направления использования инерциального управляемого термоядерного синтеза?

Елена Корешева : Реактор ИТС − это экологически чистый источник энергии, который сможет конкурировать экономически с традиционными источниками на органическом топливе и АЭС. В частности, прогноз Ливерморской национальной лаборатории США предсказывает полный отказ энергетики США от современных АЭС и их полное замещение системами ИТС к 2090 году.

Технологии, разработанные при создании реактора ИТС, могут быть использованы в различных отраслях промышленности страны.

Но прежде всего необходимо создать механический макет реактора, или ММР, который позволит оптимизировать основные процессы, связанные с частотой и синхронностью доставки топливных мишеней в зону термоядерного горения. Запуск ММР и проведение на нем тестовых экспериментов являются необходимой стадией при разработке элементов коммерческого реактора.

Ну и, наконец, реактор ИТС это мощный источник нейтронов с нейтронным выходом до 1020 н/сек, а плотность потока нейтронов в нем достигает колоссальных величин и может превышать 1020 н/сек-см 2 в среднем и 1027 н/сек-см 2 в импульсе вблизи зоны реакции. Реактор ИТС как мощный источник нейтронов является уникальным инструментом исследования в таких направлениях, как фундаментальные исследования, энергетика, нано- и биотехнологии, медицина, геология, проблемы безопасности.

Что касается научных направлений использования ИТС, то они включают изучение физики, связанной с эволюцией сверхновых звезд и других астрофизических объектов, исследование поведения вещества в экстремальных условиях, получение трансурановых элементов и изотопов, не существующих в природе, исследование физики взаимодействия лазерного излучения с плазмой и многое другое.

– По вашему мнению, а есть ли вообще необходимость перехода на УТС как на альтернативный источник энергии?

Владимир Николаев : Существует несколько аспектов необходимости такого перехода. Прежде всего, это экологический аспект: общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий, как углеводородных, так и атомных.

Не стоит забывать и политический аспект этой проблемы, ведь освоение альтернативной энергетики позволит стране претендовать на мировое первенство и фактически диктовать цены на топливные ресурсы.

Далее отметим тот факт, что добывать топливные ресурсы становится все дороже, а их сжигание становится все менее целесообразным. Как говорил Д. И. Менделеев, «топить нефтью – это все равно, что топить ассигнациями». Поэтому переход на альтернативные технологии в энергетике позволит сохранить углеводородные ресурсы страны для их использования в химической и других отраслях промышленности.

И наконец, поскольку численность и плотность населения постоянно растут, становится все труднее найти районы строительства АЭС и ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды.

Таким образом, с точки зрения социальных, политических, экономических или экологических аспектов создания управляемого термоядерного синтеза вопросов как раз и не возникает.

Основная сложность заключается в том, что для достижения цели необходимо решить множество проблем, которые ранее не стояли перед наукой, а именно:

Понять и описать сложные физические процессы, происходящие в реагирующей топливной смеси,

Подобрать и испытать подходящие конструкционные материалы,

Разработать мощные лазеры и источники рентгеновского излучения,

Разработать импульсные системы питания, способные создавать мощные пучки частиц,

Разработать технологию массового производства топливных мишеней и систему их непрерывной подачи в камеру реактора синхронно с приходом туда импульсов лазерного излучения или пучков частиц и многое другое.

Поэтому на первый план выходит проблема создания Федеральной целевой государственной программы по развитию инерциального управляемого термоядерного синтеза в нашей стране, а также вопросы ее финансирования.

– А будет ли безопасным управляемый термоядерный синтез? Какие последствия для экологии, населения могут быть в результате нештатной ситуации?

Елена Корешева : Во-первых, возможность критической аварии на термоядерной электростанции исключена полностью в силу принципа ее работы. Горючее для термоядерного синтеза критической массы не имеет, и, в отличие от реакторов АЭС, в реакторе УТС процесс реакции можно остановить за доли секунды в случае возникновения каких-либо нештатных ситуаций.

Конструкционные материалы для термоядерной электростанции будут подбираться таким образом, что в них не будут образовываться долгоживущие изотопы из-за активации нейтронами. Это означает, что можно создать «чистый» реактор, не обремененный проблемой долговременного хранения радиоактивных отходов. По оценкам, после остановки отработавшей свой срок термоядерной электростанции ее можно будет утилизировать через двадцать-тридцать лет без применения специальных мер защиты.

Важно подчеркнуть, что энергия термоядерного синтеза является мощным и экологически чистым источником энергии, использующим, в конечном счете, в качестве топлива простую морскую воду. При данной схеме извлечения энергии не возникает ни парниковых эффектов, как при сжигании органического топлива, ни долгоживущих радиоактивных отходов, как при работе АЭС.

Термоядерный реактор намного безопаснее ядерного реактора, прежде всего в радиационном отношении. Как говорилось выше, возможность критической аварии на термоядерной электростанции исключена. Напротив, на АЭС существует возможность крупной радиационной аварии, что связано с самим принципом ее работы. Самый яркий пример – это аварии на Чернобыльской АЭС в 1986 году и на АЭС Фукусима-1 в 2011 году. Количество находящихся в реакторе УТС радиоактивных веществ невелико. Основной радиоактивный элемент здесь – тритий, который слабо радиоактивен, имеет период полураспада 12,3 года и легко утилизируется. Кроме того, в конструкции реактора УТС есть несколько естественных барьеров, препятствующих распространению радиоактивных веществ. Срок службы атомной электростанции, с учетом продления ее действия, составляет от тридцати пяти до пятидесяти лет, после чего станцию необходимо выводить из эксплуатации. В реакторе АЭС и вокруг реактора остается большое количество сильно радиоактивных материалов, причем ждать снижения радиоактивности надо многие десятилетия. Это приводит к выводу из хозяйственного оборота огромных территорий и материальных ценностей.

Отметим также, что с точки зрения возможности аварийной утечки трития будущие станции на основе ИТС, несомненно, имеют преимущество перед станциями на основе магнитного термоядерного синтеза. В станциях ИТС количество трития, одновременно находящегося в топливном цикле, исчисляется граммами, максимум десятками граммов, в магнитных же системах это количество должно составлять десятки килограммов.

– А уже есть установки, работающие на принципах инерциального термоядерного синтеза? И если есть, то насколько они эффективны?

Елена Корешева : С целью демонстрации энергии термоядерного синтеза, получаемой по схеме ИТС, во многих странах мира построены опытные лабораторные установки. Наиболее мощные среди них следующие:

В Лоуренсовской Ливерморской национальной лаборатории США с 2009 года действует лазерная установка NIF с энергией лазера 1,8 МДж, сосредоточенной в 192 пучках лазерного излучения;

Во Франции (Бордо) введена в действие мощная установка LMJ с энергией лазера 1,8 МДж в 240 пучках лазерного излучения;

В Евросоюзе создается мощная лазерная установка HiPER (High Power laser Energy Research) с энергией 0,3-0,5 МДж, функционирование которой требует производства и доставки топливных мишеней с высокой частотой >1 Гц;

В Лаборатории лазерной энергетики США действует лазерная установка OMEGA, энергия лазера – 30 кДж энергии сосредоточено в шестидесяти пучках лазерного излучения;

В Военно-морской лаборатории (NRL) США построен самый мощный в мире криптон-фторовый лазер NIKE с энергией от 3 до 5 кДж в пятидесяти шести пучках лазерного излучения;

В Японии в Лаборатории лазерной техники университета города Осаки действует многопучковая лазерная установка GEKKO-XII, энергия лазера – 15-30 кДж;

В Китае действует установка SG-III с энергией лазера 200 кДж в шестидесяти четырех пучках лазерного излучения;

В Российском федеральном ядерном центре – ВНИИ экспериментальной физики (РФЯЦ-ВНИИЭФ, Саров) действуют установки ИСКРА-5 (двенадцать пучков лазерного излучения) и ЛУЧ (четыре пучка лазерного излучения). Энергия лазера в этих установках составляет 12-15 кДж. Здесь же в 2012 году начато строительство новой установки УФЛ-2М с энергией лазера 2,8 МДж в 192 пучках. Планируется, что запуск этого, самого мощного в мире, лазера произойдет в 2020 году.

Целью работы перечисленных установок ИТС является демонстрация технической рентабельности ИТС, когда энергия, выделившаяся в термоядерных реакциях, превышает всю вложенную энергию. На сегодняшний день продемонстрирован так называемый scientific breakeven, то есть научная рентабельность ИТС: энергия, выделившаяся в термоядерных реакциях, впервые превзошла энергию, вложенную в сжатие и нагрев топлива.

– По вашей оценке, установки, использующие управляемый термоядерный синтез, могут быть экономически выгодными уже сегодня? Могут ли они составить реальную конкуренцию действующим станциям?

Владимир Николаев : Управляемый термоядерный синтез – это реальный конкурент таких испытанных источников энергии, как углеводородное топливо и атомные электростанции, поскольку запасы топлива для электростанции УТС практически неисчерпаемы. Количество тяжелой воды, содержащей дейтерий, в мировом океане составляет около ~1015 тонн. Литий, из которого нарабатывается второй компонент термоядерного топлива, тритий, уже сейчас производится в мире десятками тысяч тонн в год и стоит недорого. При этом 1 грамм дейтерия может дать энергии в 10 миллионов раз больше, чем 1 грамм угля, а 1 грамм смеси дейтерий-тритий даст столько же энергии, сколько 8 тонн нефти.

Кроме того, реакции синтеза являются более мощным источником энергии, чем реакции деления урана-235: при термоядерном синтезе дейтерия и трития выделяется в 4,2 раза больше энергии, чем при делении такой же массы ядер урана-235.

Утилизация отходов на АЭС – сложнейший и дорогой технологический процесс, в то время как термоядерный реактор практически безотходен и, соответственно, чист.

Отметим также немаловажный аспект эксплуатационных характеристик ИТЭС, таких, как адаптивность системы к изменению энергетических режимов. В отличие от АЭС, процесс снижения мощности в ИТЭС примитивно прост – достаточно снизить частоту подачи термоядерных топливных мишеней в камеру реактора. Отсюда еще одно важное достоинство ИТЭС в сравнении с традиционной АЭС: ИТЭС является более маневренной. Возможно, в будущем это позволит использовать мощные ИТЭС не только в «базовой» части графика нагрузки энергосистемы, наряду с мощными «базовыми» ГЭС и АЭС, но также рассматривать ИТЭС в качестве максимально маневренных «пиковых» электростанций, обеспечивающих устойчивую работу крупных энергосистем. Либо использовать ИТЭС в период суточных пиков нагрузки электросистемы, когда имеющихся в наличии мощностей других станций не хватает.

– Проводятся ли сегодня в России или других странах научные разработки по созданию конкурентной, экономически выгодной и безопасной инерциальной термоядерной энергетической станции?

Елена Корешева : В США, Европе и Японии уже существуют долгосрочные национальные программы построения к 2040 году электростанции, действующей на основе ИТС. Планируется, что выход на оптимальные технологии произойдет к 2015-2018 годам, а демонстрация работы пилотной установки в непрерывном режиме выработки электроэнергии – к 2020-2025 году. В Китае действует программа построения и запуска в 2020 году лазерной установки реакторного масштаба SG-IV с энергией лазера 1,5 МДж.

Напомним, что для обеспечения непрерывного режима генерации энергии подача топлива в центр камеры реактора ИТЭС и одновременная подача туда лазерного излучения должны осуществляться с частотой 1-10 Герц.

В Военно-морской лаборатории (NRL) США для отработки реакторных технологий создана установка ELEKTRA, действующая c частотой 5 Гц при энергии лазера 500-700 Джоулей. К 2020 году планируется увеличить энергию лазера в тысячу раз.

Мощная опытная установка ИТС с энергией 0,3-0,5 МДж, которая будет работать в частотном режиме, создается в рамках Европейского проекта HiPER. Цель этой программы: демонстрация возможности получения энергии термоядерного синтеза в частотном режиме, как это характерно для работы инерциальной термоядерной энергетической станции.

Отметим здесь также государственный проект Республики Южная Корея по созданию инновационного мощного частотного лазера в Корейском Прогрессивном физико-техническом институте KAIST.

В России, в Физическом институте им. П. Н. Лебедева, разработан и продемонстрирован уникальный метод FST, который является перспективным путем решения проблемы частотного формирования и доставки криогенных топливных мишеней в реактор ИТС. Здесь также создано лабораторное оборудование, которое моделирует весь процесс приготовления реакторной мишени − от ее заполнения топливом до осуществления частотной доставки в лазерный фокус. По заказу программы HiPER специалисты ФИАН разработали проект фабрики мишеней, работающей на основе метода FST и обеспечивающей непрерывное производство топливных мишеней и их частотную доставку в фокус экспериментальной камеры HiPER.

В США существует долгосрочная программа LIFE, нацеленная на построение к 2040 году первой электростанции ИТС. Программа LIFE будет развиваться на основе действующей в США мощной лазерной установки NIF с энергией лазера 1,8 МДж.

Отметим, что в последние годы исследования по взаимодействию очень интенсивного (1017-1018 Вт/см 2 и выше) лазерного излучения с веществом привели к открытию новых, ранее неизвестных физических эффектов. Это возродило надежды на осуществление простого и эффективного способа зажигания термоядерной реакции в несжатом топливе плазменными блоками (так называемый side-on ignition), который был предложен еще более тридцати лет назад, но не мог быть реализован при имевшемся тогда технологическом уровне. Для реализации данного подхода необходим лазер с пикосекундной длительностью импульса и мощностью 10-100 петаВатт. Сейчас исследования по этой тематике интенсивно ведутся во всем мире, лазеры мощностью 10 петаватт (ПВт) уже построены. Например, это лазерная установка VULCAN в лаборатории Резерфорда и Апплтона в Великобритании. Как показывают расчеты, при использовании такого лазера в ИТС вполне достижимы условия зажигания для безнейтронных реакций, таких, как протон-бор или протон-литий. В этом случае в принципе снимается проблема радиоактивности.

В рамках УТС альтернативной технологией по отношению к инерциальному термоядерному синтезу является магнитный термоядерный синтез. Данная технология развивается в мире параллельно с ИТС, например в рамках международной программы ITER. Строительство международного экспериментального термоядерного реактора ITER на основе системы типа ТОКАМАК осуществляется на юге Франции в исследовательском центре Кадараш. С российской стороны в проекте ITER заняты многие предприятия Рос­атома и других ведомств под общей координацией учрежденного Росатомом «Проектного центра ITER». Целью создания ITER является изучение условий, которые должны выполняться при работе энергетических термоядерных установок, а также создание на этой основе экономически выгодных электростанций, которые по размерам будут превосходить ITER по крайней мере на 30 процентов в каждом из измерений.

Перспективы в России есть

– А что может помешать успешному построению термоядерной электростанции в России?

Владимир Николаев : Как уже упоминалось, существует два направления развития УТС: c магнитным и инерциальным удержанием плазмы. Для успешного решения задачи построения термоядерной электростанции оба направления должны развиваться параллельно в рамках соответствующих федеральных программ, а также российских и международных проектов.

Россия уже участвует в международном проекте создания первого опытного образца реактора УТС – это проект ITER, относящийся к магнитному термоядерному синтезу.

Что касается электростанции на основе ИТС, то такой государственной программы в России пока нет. Отсутствие финансирования в данной области может привести к значительному отставанию России в мире и к потере существующих приоритетов.

Наоборот, при условии соответствующих финансовых вложений открываются реальные перспективы построения инерциальной термоядерной электростанции, или ИТЭС, на территории России.

– Есть ли перспективы построения инерциальной термоядерной энергетической станции в России при условии адекватных финансовых вложений?

Елена Корешева : Перспективы есть. Давайте разберемся в этом подробнее.

ИТЭС состоит из четырех принципиально необходимых частей:

1. Камера сгорания, или реакторная камера, где происходят термо­ядерные микровзрывы, и их энергия передается теплоносителю.

2. Драйвер – мощный лазер, или ускоритель ионов.

3. Фабрика мишеней – система подготовки и ввода топлива в реакторную камеру.

4. Тепло-электротехническое оборудование.

Топливом для такой станции будет служить дейтерий и тритий, а также литий, входящий в состав стенки реакторной камеры. Тритий в природе не существует, но в реакторе он образуется из лития при его взаимодействии с нейтронами термоядерных реакций. Количество тяжелой воды, содержащей дейтерий в Мировом океане, как уже здесь говорилось, составляет около ~1015 тонн. С практической точки зрения – это бесконечная величина! Извлечение дейтерия из воды – это хорошо отработанный и дешевый процесс. Литий – это доступный и достаточно дешевый элемент, содержащийся в земной коре. При использовании лития в ИТЭС его хватит на несколько сот лет. К тому же в более отдаленной перспективе, по мере развития технологии мощных драйверов (то есть лазеров, ионных пучков), предполагается осуществлять термоядерную реакцию на чистом дейтерии или на топливной смеси, содержащей лишь малое количество трития. Следовательно, стоимость топлива будет давать очень малый вклад, менее 1 процента, в стоимость вырабатываемой термоядерной электростанцией энергии.

Камера сгорания ИТЭС – это, грубо говоря, 10-метровая сфера, на внутренней стенке которой обеспечивается циркуляция жидкого, а в некоторых вариантах станций порошкообразного теплоносителя, например лития, который одновременно используется как для съема энергии термоядерного микровзрыва, так и для наработки трития. Кроме того, в камере предусмотрено необходимое количество входных окон для ввода мишеней и излучения драйвера. Конструкция напоминает корпуса мощных ядерных реакторов или некоторых промышленных установок химического синтеза, практический опыт создания которых имеется. Здесь еще предстоит решить много проблем, но фундаментальных ограничений нет. Некоторые наработки по материалам такой конструкции и отдельным узлам уже существуют, в частности, в проекте IТER.

Тепло-электротехническое оборудование – это достаточно хорошо отработанные технические устройства, которые уже давно используются на АЭС. Естественно, и на термоядерной станции эти системы будут иметь сопоставимую стоимость.

Что касается наиболее сложных систем ИТЭС – драйверов и фабрики мишеней, то в России существует хороший задел, необходимый для принятия государственной программы по ИТЭС и осуществления ряда проектов как в коллаборации с российскими институтами, так и в рамках международного сотрудничества. С этой точки зрения важным моментом являются те методы и технологии, которые уже развиты в российских исследовательских центрах.

В частности, Российский федеральный ядерный центр в Сарове обладает приоритетными наработками в области создания мощных лазеров, производства единичных топливных мишеней, диагностики лазерных систем и термоядерной плазмы, а также компьютерного моделирования процессов, происходящих в ИТС. В настоящее время в РФЯЦ-ВНИИЭФ реализуется программа УФЛ-2М построения самого мощного в мире лазера с энергией 2,8 МДж. В программе принимает участие и ряд других российских организаций, в том числе Физический институт им. П. Н. Лебедева. Успешное выполнение программы УФЛ-2М, начатой в 2012 году, – это еще один большой шаг России на пути освоения энергии термоядерного синтеза.

В Российском научном центре «Курчатовский институт» (Москва) совместно с Политехническим университетом Санкт-Петербурга были проведены исследования в области доставки криогенного топлива с помощью пневматического инжектора, которые уже сейчас используются в системах магнитного термоядерного синтеза, таких, как ТОКАМАК; исследованы различные системы защиты топливных мишеней в процессе их доставки в камеру реактора ИТС; исследована возможность широкого практического использования ИТС в качестве мощного источника нейтронов.

В Физическом институте им. П. Н. Лебедева РАН (Москва) имеются необходимые наработки в области создания фабрики реакторных мишеней. Здесь разработана уникальная технология частотного производства топливных мишеней и создан прототип фабрики мишеней, работающей с частотой 0,1 Гц. Здесь также созданы и исследованы различные системы доставки мишеней, включая гравитационный инжектор, электромагнитный инжектор, а также новые устройства транспортировки, работающие на основе квантовой левитации. Наконец, здесь развиты технологии высокоточного контроля качества мишени и ее диагностики в процессе доставки. Часть этих работ выполнена в коллаборации с ранее упомянутыми центрами ИТС в рамках десяти международных и российских проектов.

Однако необходимым условием реализации развитых в России методов и технологий является принятие долгосрочной Федеральной целевой программы по ИТС и ее финансирование.

– Каков, по вашему мнению, должен быть первый шаг к освоению термоядерной энергетики на основе ИТС?

Владимир Николаев : Первым шагом может стать проект «Разработка механического макета реактора и прототипа ФАБРИКИ МИШЕНЕЙ для частотного пополнения криогенным топливом энергетической станции, работающей на основе инерциального термоядерного синтеза», предложенного Центром энергоэффективности «ИНТЕР РАО ЕЭС» совместно с Физическим институтом им. П. Н. Лебедева и НИЦ Курчатовский институт. Результаты, полученные в проекте, позволят России не только завоевать стабильный приоритет в мире в области УТС, но и вплотную подойти к построению коммерческой электростанции на основе ИТС.

Уже сейчас ясно, что будущие ИТЭС должны строиться большой единичной мощности – как минимум, несколько гигаватт. При таком условии они будут вполне конкурентоспособны с современными АЭС. Кроме того, будущая термоядерная энергетика позволит снять острейшие проблемы ядерной энергетики – опасность радиационной аварии, захоронение высокоактивных отходов, удорожание и исчерпание топлива для АЭС и др. Заметим, что инерциальная термоядерная электростанция с тепловой мощностью 1 гигаватт (ГВт) с точки зрения радиационной опасности эквивалентна реактору деления мощностью всего 1 кВт!

– В каких регионах целесообразно размещать ИТЭС? Место инерциальной термоядерной энергетической станции в энергетической системе России?

Владимир Николаев : Как уже говорилось выше, в противоположность ТЭС (ГРЭС, ТЭЦ, КЭС) место размещения ИТЭС не зависит от местоположения источников топлива. Ее годовая потребность в подвозе топлива составляет, примерно, 1 тонну, причем это безопасные и легко транспортируемые материалы.

Атомные реакторы нельзя располагать вблизи густонаселенных районов в связи с опасностью аварии. Эти ограничения, характерные для АЭС, отсутствуют при выборе места расположения ИТЭС. ИТЭС может быть расположена вблизи крупных городов и промышленных центров. Это снимает проблему подключения станции к единой энергосистеме. Кроме того, для ИТЭС отсутствуют недостатки, связанные со сложностью строительства и эксплуатации АЭС, а также с трудностями, связанными с переработкой и захоронением ядерных отходов и демонтажем ядерных установок АЭС.

ИТЭС может размещаться в отдаленных, малонаселенных и труднодоступных районах и работать автономно, обеспечивая энергоемкие технологические процессы, такие, как, например, производство алюминия и цветных металлов в Восточной Сибири, Магаданской области и Чукотке, якутских алмазов и многого другого.

We say that we will put the sun into a box. The idea is pretty. The problem is we don"t know how to make the box.

Pierre-Gilles de Gennes
Французский нобелевский лауреат

Всем электронным устройствам и машинам нужна энергия и человечество потребляет её очень много. Но ископаемое топливо заканчивается, а альтернативная энергетика пока что недостаточно эффективна.
Есть способ получения энергии, идеально подходящий всем требованиям - Термоядерный синтез. Реакция термоядерного синтеза (превращение водорода в гелий и выделение энергии) постоянно происходит на солнце и этот процесс дает планете энергию в виде солнечных лучей. Нужно только имитировать его на Земле, в меньшем масштабе. Достаточно обеспечить высокое давление и очень высокую температуру (в 10 раз выше, чем на Солнце) и реакция синтеза будет запущена. Чтобы создать такие условия, нужно построить термоядерный реактор. Он будет использовать более распространенные на земле ресурсы, будет безопасным и более мощным чем обычные атомные станции. Уже больше 40 лет предпринимаются попытки его строительства и ведутся эксперименты. В последние годы на одном из прототипов даже удалось получить больше энергии чем было затрачено . Наиболее амбициозные проекты в этой сфере представлены ниже:

Государственные проекты

Наибольшее внимание общественности последнее время достаётся другой конструкции термоядерного реактора - стелларатору Wendelstein 7-X (стелларатор сложнее по внутреннему устройству чем ITER, который является токамаком). Потратив чуть более 1 млрд. долларов немецкие ученые за 9 лет соорудили к 2015 году уменьшенную, демонстрационную модель реактора. Если он будет показывать хорошие результаты будет построена более масштабная версия.

MegaJoule Laser во Франции будет самым мощным в мире лазером и будет пытаться продвинуть метод строительства термоядерного реактора, основанный на использовании лазеров. Ввод французской установки в строй ожидается в 2018 году.

NIF (National ignition facility) было построено в США за 12 лет и 4 млрд. долларов к 2012. Они рассчитывали протестировать технологию и после сразу строить реактор, но оказалось, что, как сообщает википедия - considerable work is required if the system is ever to reach ignition. В результате грандиозные планы были отменены и ученые занялись постепенным совершенствованием лазера. Последняя задача - поднять эффективность передачи энергии с 7% до 15%. Иначе финансирование от конгресса этого метода достижения синтеза может прекратится.

В конце 2015 года в Сарове началось строительство здания для самой мощной в мире лазерной установки. Она будет мощнее текущей американской и будущей французской и позволит провести эксперименты необходимые для строительства «лазерной» версии реактора. Завершение строительства в 2020 году.

Расположенный в США лазер - MagLIF fusion признается темной лошадкой среди методов достижения термоядерного синтеза. Недавно этод метод показал результаты лучше ожидаемых, но мощность всё ещё нужно увеличить в 1000 раз. Сейчас лазер проходит апгрейд, и к 2018 учёные надеются получить столько же энергии, сколько потратили. В случае успеха будет построена увеличенная версия.

В российском ИЯФ упорно проводили эксперименты над методом «открытых ловушек» от которого отказались США в 90е. В результате были получены показатели, считавшиеся невозможными для этого метода. Учёные ИЯФ полагают, что их установка сейчас находится на уровне немецкой Wendelstein 7-X (Q=0.1), но дешевле. Сейчас за 3 млрд. рублей они строят новую установку

Руководитель Курчатовского института постоянно напоминает о планах построить в России небольшой термоядерный реактор - Игнитор. По плану, он должен быть также эффективен как ITER, хоть и меньше. Строительство его должно было начаться ещё 3 года назад, но такая ситуация типична для крупных научных проектов.

Китайский токамак EAST начале 2016 года сумел получить температуру в 50 млн. градусов и продержать её 102 секунды. До начала постройки огромных реакторов и лазеров все новости про термоядерный синтез были такими. Можно было подумать, что это просто соревнование среди ученых - кто дольше удержит всё более высокую температуру. Чем выше температура плазмы и чем дольше её удается удерживать - тем мы ближе к началу реакции синтеза. Таких установок в мире десятки, ещё несколько () () строится так что скоро рекорд EAST будет побит. В сущности, эти небольшие реакторы, это просто тестирование оборудования перед отправкой в ITER.

Lockheed Martin объявил в 2015м о прорыве в термоядерной энергетики, который позволит им построить небольшой и мобильный термоядерный реактор за 10 лет. Учитывая, что даже очень большие и совсем не мобильные коммерческие реакторы ожидались не ранее 2040 года, заявление корпорации было встречено скептически. Но компания располагает большими ресурсами так что кто знает. Прототип ожидается в 2020 году.

Популярный в кремниевой долине стартап Helion Energy имеет свой уникальный план по достижению термоядерного синтеза. Компания привлекла больше 10 млн долларов и рассчитывает создать прототип к 2019.

Держащийся в тени стартап Tri Alpha Energy недавно добился впечатляющих результатов в продвижении своего метода термоядерного синтеза (теоретиками было разработано >100 теоретических способов добиться синтеза, токамак просто самый простой и популярный). Компания также привлекла более 100 млн долларов средств инвесторов.

Проект реактора от Канадского стартапа General Fusion ещё больше не похож на остальные, но разработчики в нем уверены и привлекли за 10 лет больше 100 млн. долларов, чтобы построить реактор к 2020 году.

Стартап из Соединенного королевства - First light имеет самый доступный для понимания сайт, образовался в 2014 году, и объявил о планах использовать последние научные данные для менее затратного получения термоядерного синтеза.

Ученые из MIT написали статью с описанием компактного термоядерного реактора. Они уповают на новые технологии, появившиеся уже после начала строительства гигантских токамаков и обещают осуществить проект за 10 лет. Пока неизвестно будет ли им дан зеленый свет на начало строительства. Даже в случае одобрения, статья в журнале, это ещё более ранняя стадия чем стартап

Термоядерный синтез - это, пожалуй, наименее подходящая для краудфандинга индустрия. Но именно с его помощью и также с финансированием НАСА, компания Lawrenceville Plasma Physics собирается построить прототип своего реактора. Из всех реализуемых проектов, этот больше всего похож на мошенничество, но кто знает, может, что-то полезное они привнесут в эту грандиозную работу.

ITER будет только прототипом для постройки полноценной установки DEMO - первого коммерческого термоядерного реактора. Его запуск сейчас запланирован на 2044 год и это ещё оптимистичный прогноз.

Но есть планы и на следующий этап. Гибридный термоядерный реактор будет получать энергию и от распада атома (как обычная атомная станция) и от синтеза. В такой конфигурации энергии может быть в 10 раз больше, но безопасность ниже. Китай рассчитывает построить прототип к 2030, но эксперты говорят, что это всё равно что пытаться собрать гибридные автомобили до изобретения двигателя внутреннего сгорания.

Итог

Нет недостатка в желающих принести в мир новый источник энергии. Наибольшие шансы есть у проекта ITER, учитывая его масштаб и финансирование, но другие методы, а также частные проекты не стоит сбрасывать со счетов. Ученые десятки лет трудились над запуском реакции синтеза без особых успехов. Но сейчас проектов по достижению термоядерной реакции больше чем когда-либо. Даже если каждый из них провалится, новые попытки будут предприняты. Вряд ли мы успокоимся, пока не зажжем миниатюрную версию Солнца, здесь, на Земле.

Теги: Добавить метки

Недавно в Московском физико-техническом институте состоялась российская презентация проекта ИТЭР, в рамках которого планируется создать термоядерный реактор, работающий по принципу токамака. Группа ученых из России рассказала о международном проекте и об участии российских физиков в создании этого объекта. «Лента.ру» посетила презентацию ИТЭР и поговорила с одним из участников проекта.

ИТЭР (ITER, International Thermonuclear Experimental Reactor - Международный термоядерный экспериментальный реактор) - проект термоядерного реактора, позволяющий продемонстрировать и исследовать термоядерные технологии для их дальнейшего использования в мирных и коммерческих целях. Создатели проекта считают, что управляемый термоядерный синтез может стать энергетикой будущего и служить альтернативой современным газу, нефти и углю. Исследователи отмечают безопасность, экологичность и доступность технологии ИТЭР по сравнению с обычной энергетикой. По сложности проект сравним с Большим адронным коллайдером; установка реактора включает в себя более десяти миллионов конструктивных элементов.

Об ИТЭР

Для тороидальных магнитов токамака необходимо 80 тысяч километров сверхпроводящих нитей; общий их вес достигает 400 тонн. Сам реактор будет весить около 23 тысяч тонн. Для сравнения - вес Эйфелевой башни в Париже равен всего 7,3 тысячи тонн. Объем плазмы в токамаке будет достигать 840 кубических метров, тогда как, например, в крупнейшем действующем в Великобритании реакторе такого типа - JET - объем равен ста кубическим метрам.

Высота токамака составит 73 метра, из которых 60 метров будут находиться над землей и 13 метров - под ней. Для сравнения, высота Спасской башни Московского Кремля равна 71 метру. Основная платформа реактора будет занимать площадь, равную 42 гектарам, что сопоставимо с площадью 60 футбольных полей. Температура в плазме токамака будет достигать 150 миллионов градусов Цельсия, что в десять раз выше температуры в центре Солнца.

В строительстве ИТЭР во второй половине 2010 годов планируется задействовать одновременно до пяти тысяч человек - в их число войдут как рабочие и инженеры, так и административный персонал. Многие компоненты ИТЭР будут доставляться от порта у Средиземного моря по специально сооруженной дороге длиной около 104 километров. В частности, по ней будет перевезен самый тяжелый фрагмент установки, масса которого составит более 900 тонн, а длина - около десяти метров. Более 2,5 миллионов кубометров земли вывезут с места строительства установки ИТЭР.

Общие затраты на проектные и строительные работы оцениваются в 13 миллиардов евро. Эти средства выделяются семью основными участниками проекта, представляющими интересы 35 стран. Для сравнения, совокупные расходы на строительство и обслуживание Большого адронного коллайдера почти в два раза меньше, а строительство и поддержание работоспособности Международной космической станции обходится почти в полтора раза дороже.

Токамак

Сегодня в мире существуют два перспективных проекта термоядерных реакторов: токамак (то роидальная ка мера с ма гнитными к атушками) и стелларатор. В обеих установках плазма удерживается магнитным полем, однако в токамаке она имеет форму тороидального шнура, по которому пропускается электрический ток, тогда как в стеллараторе магнитное поле наводится внешними катушками. В термоядерных реакторах происходят реакции синтеза тяжелых элементов из легких (гелия из изотопов водорода - дейтерия и трития), в отличие от обычных реакторов, где инициируются процессы распада тяжелых ядер на более легкие.

Фото: НИЦ «Курчатовский институт»/ nrcki.ru

Электрический ток в токамаке используется также и для начального разогрева плазмы до температуры около 30 миллионов градусов Цельсия; дальнейший разогрев производится специальными устройствами.

Теоретическая схема токамака была предложена в 1951 советскими физиками Андреем Сахаровым и Игорем Таммом , и в 1954 году в СССР была построена первая установка. Однако, ученым не удавалось продолжительное время поддерживать плазму в стационарном режиме, и к середине 1960 годов в мире сложилось убеждение, что управляемый термоядерный синтез на основе токамака невозможен.

Но уже через три года на установке Т-3 в Институте атомной энергии имени Курчатова под руководством Льва Арцимовича удалось нагреть плазму до температуры более пяти миллионов градусов Цельсия и ненадолго удержать ее; ученые из Великобритании, присутствовавшие на эксперименте, на своем оборудовании зафиксировали температуру около десяти миллионов градусов. После этого в мире начался настоящий бум токамаков, так что в мире было построено около 300 установок, самые крупные из которых находятся в Европе, Японии, США и России.

Изображение: Rfassbind/ wikipedia.org

Управление ИТЭР

На чем основана уверенность в том, что ИТЭР заработает через 5-10 лет? На каких практических и теоретических разработках?

С российской стороны заявленный график работ мы выполняем и не собираемся нарушать. К сожалению, мы видим некоторое запаздывание работ, выполняемых другими, в основном Европой; частично есть запаздывание у Америки и наблюдается тенденция к тому, что проект будет несколько задержан. Задержан, но не остановлен. Есть уверенность в том, что он заработает. Концепт самого проекта полностью теоретически и практически просчитан и надежен, поэтому я думаю, что он заработает. Даст ли он в полной мере заявленные результаты... поживем - увидим.

Проект скорее носит исследовательский характер?

Конечно. Заявленный результат не есть полученный результат. Если он будет получен в полной мере, я буду предельно счастлив.

Какие новые технологии появились, появляются или будут появляться в проекте ИТЭР?

Проект ИТЭР является не просто сверхсложным, но еще и сверхнапряженным проектом. Напряженным в плане энергонагрузки, условий эксплуатации определенных элементов, в том числе наших систем. Поэтому новые технологии просто обязаны рождаться в этом проекте.

А есть пример?

Космос. Например, наши алмазные детекторы. Мы обсуждали возможность применения наших алмазных детекторов на космических грузовиках, которые представляют собой ядерные машины, перевозящие некоторые объекты типа спутников или станций с орбиты на орбиту. Есть такой проект космического грузовика. Так как это аппарат с ядерным реактором на борту, то сложные условия эксплуатации требуют анализа и контроля, так что наши детекторы вполне могли бы это сделать. На данный момент тема создания такой диагностики пока не финансируется. Если она будет создана, то может быть применена, и тогда в нее не нужно будет вкладывать деньги на стадии разработки, а только на стадии освоения и внедрения.

Какова доля современных российских разработок нулевых и девяностых годов в сравнении с советскими и западными разработками?

Доля российского научного вклада в ИТЭР на фоне общемирового очень велика. Я не знаю ее точно, но она очень весома. Она явно не меньше российского процента финансового участия в проекте, потому что во многих других командах есть большое количество русских, которые уехали за границу работать в другие институты. В Японии и Америке, везде, мы с ними очень хорошо контактируем и работаем, кто-то из них представляет Европу, кто-то - Америку. Кроме того, там есть и свои научные школы. Поэтому, насчет того, сильнее мы или больше развиваем то, что делали раньше... Один из великих сказал, что «мы стоим на плечах титанов», поэтому та база, которая была наработана в советские времена, неоспоримо велика и без нее мы ничего бы не смогли. Но и в данный момент мы не стоим на месте, мы движемся.

А чем занимается именно ваша группа в ИТЭР?

У меня сектор в отделе. Отдел занимается разработкой нескольких диагностик, наш сектор занимается конкретно разработкой вертикальной нейтронной камеры, нейтронной диагностики ИТЭР и решает большой круг задач от проектирования до изготовления, а также проводит сопутствующие научно-исследовательские работы, связанные с разработкой, в частности, алмазных детекторов. Алмазный детектор - уникальный прибор, первоначально созданный именно в нашей лаборатории. Ранее использовавшийся на многих термоядерных установках, сейчас он применяется достаточно широко многими лабораториями от Америки до Японии; они, скажем так, пошли за нами следом, но мы продолжаем оставаться на высоте. Сейчас мы делаем алмазные детекторы и собираемся выйти на уровень их промышленного производства (мелкосерийного производства).

В каких отраслях промышленности могут использоваться эти детекторы?

В данном случае это термоядерные исследования, в дальнейшем мы предполагаем, что они будут востребованы в ядерной энергетике.

Что именно делают детекторы, что они измеряют?

Нейтроны. Более ценного продукта, чем нейтрон, не существует. Мы с вами также состоим из нейтронов.

Какие характеристики нейтронов они измеряют?

Спектральные. Во-первых, непосредственная задача, которая решается в ИТЭРе, это измерение энергетических спектров нейтронов. Кроме того, они мониторят количество и энергию нейтронов. Вторая, дополнительная задача, касается ядерной энергетики: у нас есть параллельные разработки, которые могут измерять и тепловые нейтроны, являющиеся основой ядерных реакторов. У нас эта задача второстепенная, но она также отрабатывается, то есть мы можем работать здесь и в тоже время делать наработки, которые могут быть вполне успешно применены в ядерной энергетике.

Какими методами вы пользуетесь в своих исследованиях: теоретическими, практическими, компьютерным моделированием?

Всеми: от сложной математики (методов математической физики) и математического моделирования до экспериментов. Все самые разные типы расчетов, которые мы проводим, подтверждаются и проверяются экспериментами, потому что у нас непосредственно экспериментальная лаборатория с несколькими работающими нейтронными генераторами, на которых мы проводим тестирование тех систем, которые сами же и разрабатываем.

У вас в лаборатории есть действующий реактор?

Не реактор, а нейтронный генератор. Нейтронный генератор, по сути, это минимодель тех термоядерных реакций, о которых идет речь. В нем идет все то же самое, только там процесс несколько иной. Он работает по принципу ускорителя - это пучок определенных ионов, ударяющий по мишени. То есть в случае плазмы мы имеем горячий объект, в котором каждый атом имеет большую энергию, а в нашем случае специально ускоренный ион ударяется по мишени, насыщенной подобными же ионами. Соответственно, происходит реакция. Скажем так, это один из способов, которым вы можете делать ту же самую термоядерную реакцию; единственное только, что доказано, что данный способ не обладает высоким КПД, то есть вы не получите положительный энерговыход, но саму реакцию вы получаете - мы непосредственно наблюдаем данную реакцию и частицы и все, что в ней идет.

Международный экспериментальный термоядерный реактор ITER без преувеличения можно назвать самым значительным исследовательским проектом современности. По масштабам строительства он легко заткнет за пояс Большой адронный коллайдер, а в случае успеха ознаменует для всего человечества гораздо больший шаг, чем полет на Луну. Ведь в потенциале управляемый термоядерный синтез — это практически неиссякаемый источник небывало дешевой и чистой энергии.

Этим летом нашлось сразу несколько веских причин освежить в памяти технические подробности проекта ITER. Во‑первых, грандиозное начинание, официальным стартом которого считается встреча Михаила Горбачева и Рональда Рейгана в далеком 1985 году, на наших глазах принимает материальное воплощение. Проектирование реактора нового поколения при участии России, США, Японии, Китая, Индии, Южной Кореи и Евросоюза заняло более 20 лет. Сегодня ITER — это уже не килограммы технической документации, а 42 га (1 км на 420 м) идеально ровной поверхности одной из крупнейших в мире рукотворных платформ, расположенной во французском городе Кадараш, в 60 км севернее Марселя. А также фундамент будущего 360 000-тонного реактора, состоящий из 150 000 кубометров бетона, 16 000 т арматуры и 493 колонн с резинометаллическим антисейсмическим покрытием. И, конечно же, тысячи сложнейших научных инструментов и исследовательских установок, разбросанных по университетам всего мира.


Март 2007. Первая фотография будущей платформы ITER с воздуха.

Производство ключевых компонентов реактора идет полным ходом. Весной Франция отрапортовала об изготовлении 70 каркасов для D-образных катушек тороидального поля, а в июне началась намотка первых катушек из сверхпроводящих кабелей, поступивших из России от Института кабельной промышленности в Подольске.

Вторая веская причина вспомнить об ITER именно сейчас — политическая. Реактор нового поколения — испытание не только для ученых, но и для дипломатов. Это настолько дорогостоящий и технически сложный проект, что ни одной стране мира не потянуть его в одиночку. От способности государств договариваться между собой как в научной, так и в финансовой сфере зависит, удастся ли довести дело до конца.


Март 2009. 42 га разровненной площадки ожидают начала строительства научного комплекса.

На 18 июня был запланирован Совет ITER в Санкт-Петербурге, однако Государственный департамент США в рамках санкций запретил американским ученым посещать Россию. Принимая во внимание тот факт, что сама идея токамака (тороидальной камеры с магнитными катушками, лежащей в основе ITER) принадлежит советскому физику Олегу Лаврентьеву, участники проекта отнеслись к данному решению как к курьезу и попросту перенесли совет в Кадараш на ту же дату. Эти события лишний раз напомнили всему миру о том, что Россия (наряду с Южной Кореей) наиболее ответственно относится к исполнению своих обязательств перед проектом ITER.


Февраль 2011. Более 500 отверстий просверлено в сейсмоизолирующей шахте, все подземные полости заполнены бетоном.

Ученые жгут

Словосочетание «термоядерный реактор» у многих людей вызывает настороженность. Ассоциативная цепочка понятна: термоядерная бомба страшнее просто ядерной, а значит, термоядерный реактор опаснее Чернобыля.

На самом деле ядерный синтез, на котором основывается принцип работы токамака, намного безопаснее и эффективнее ядерного деления, применяемого в современных АЭС. Синтез используется самой природой: Солнце представляет собой не что иное, как естественный термоядерный реактор.


Токамак ASDEX, построенный в 1991 году в немецком Институте Макса Планка, используется для испытания различных материалов первой стенки реактора, в частности вольфрама и бериллия. Объем плазмы в ASDEX — 13 м 3 , почти в 65 раз меньше, чем в ITER.

В реакции задействованы ядра дейтерия и трития — изотопов водорода. Ядро дейтерия состоит из протона и нейтрона, а ядро трития — из протона и двух нейтронов. В обычных условиях одинаково заряженные ядра отталкиваются друг от друга, однако при очень высоких температурах они могут сталкиваться.

При соударении в игру вступает сильное взаимодействие, которое отвечает за объединение протонов и нейтронов в ядра. Возникает ядро нового химического элемента — гелия. При этом образуется один свободный нейтрон и выделяется большое количество энергии. Энергия сильного взаимодействия в ядре гелия меньше, чем в ядрах исходных элементов. За счет этого результирующее ядро даже теряет в массе (согласно теории относительности энергия и масса эквивалентны). Вспомнив знаменитое уравнение E = mc 2 , где c — это скорость света, можно представить себе, какой колоссальный энергетический потенциал таит в себе ядерный синтез.


Август 2011. Начата заливка монолитной железобетонной сейсмоизолирующей плиты.

Чтобы преодолеть силу взаимного отталкивания, исходные ядра должны двигаться очень быстро, поэтому ключевую роль в ядерном синтезе играет температура. В центре Солнца процесс протекает при температуре 15 млн градусов Цельсия, но ему способствует колоссальная плотность вещества, обусловленная действием гравитации. Колоссальная масса светила делает его эффективным термоядерным реактором.

Создать такую плотность на Земле не представляется возможным. Нам остается лишь наращивать температуру. Чтобы изотопы водорода отдали землянам энергию своих ядер, необходима температура 150 млн градусов, то есть в десять раз выше, чем на Солнце.


Ни один твердый материал во Вселенной не может напрямую контактировать с такой температурой. Так что просто построить печку для приготовления гелия не получится. Решить проблему помогает та самая тороидальная камера с магнитными катушками, или токамак. Идея создания токамака осенила светлые головы ученых из разных стран в начале 1950-х, при этом первенство однозначно приписывается советскому физику Олегу Лаврентьеву и его именитым коллегам Андрею Сахарову и Игорю Тамму.

Вакуумная камера в форме тора (пустотелого «бублика») окружается сверхпроводящими электромагнитами, которые создают в ней тороидальное магнитное поле. Именно это поле удерживает раскаленную до десяти солнц плазму на некотором расстоянии от стенок камеры. Вместе с центральным электромагнитом (индуктором) токамак представляет собой трансформатор. Изменяя ток в индукторе, порождают течение тока в плазме — движение частиц, необходимое для синтеза.


Февраль 2012. Установлено 493 1,7-метровых колонны с сейсмоизолирующими подушками из резинометаллического сэндвича.

Токамак можно по праву считать образцом технологического изящества. Электрический ток, протекающий в плазме, создает полоидальное магнитное поле, опоясывающее плазменный шнур и поддерживающее его форму. Плазма существует при строго определенных условиях, и при их малейшем изменении реакция немедленно прекращается. В отличие от реактора АЭС, токамак не может «пойти вразнос» и неконтролируемо наращивать температуру.

В маловероятном случае разрушения токамака не происходит радиоактивного заражения. В отличие от АЭС, термоядерный реактор не производит радиоактивных отходов, а единственный продукт реакции синтеза — гелий — не является парниковым газом и полезен в хозяйстве. Наконец, токамак очень бережно расходует топливо: во время синтеза в вакуумной камере находится всего несколько сотен граммов вещества, а расчетный годовой запас горючего для промышленной электростанции составляет всего 250 кг.


Апрель 2014. Завершено строительство здания криостата, залиты стенки фундамента токамака 1,5-метровой толщины.

Зачем нам ITER?

Токамаки классической схемы, описанные выше, строились в США и Европе, России и Казахстане, Японии и Китае. С их помощью удалось доказать принципиальную возможность создания высокотемпературной плазмы. Однако постройка промышленного реактора, способного отдавать больше энергии, чем потреблять, — задача принципиально иного масштаба.

В классическом токамаке течение тока в плазме создается за счет изменения тока в индукторе, а этот процесс не может быть бесконечным. Таким образом, время существования плазмы ограничено, и реактор может работать только в импульсном режиме. На разжигание плазмы требуется колоссальная энергия — шутка ли, нагреть что-либо до температуры в 150 000 000 °C. А значит, необходимо добиться такого времени жизни плазмы, которое даст выработку энергии, окупающую розжиг.


Термоядерный реактор — это элегантная техническая концепция с минимумом негативных побочных эффектов. Течение тока в плазме само собой образует полоидальное магнитное поле, поддерживающее форму плазменного шнура, а образующиеся высокоэнергетические нейтроны в сочетании с литием вырабатывают драгоценный тритий.

К примеру, в 2009 году в ходе эксперимента на китайском токамаке EAST (части проекта ITER) удалось удержать плазму с температурой 10 7 К в течение 400 секунд и 10 8 К в течение 60 секунд.

Чтобы дольше удерживать плазму, необходимы дополнительные нагреватели нескольких видов. Все они будут испытаны на ITER. Первый способ — инжекция нейтральных атомов дейтерия — предполагает, что атомы будут поступать в плазму предварительно разогнанными до кинетической энергии в 1 МэВ с помощью дополнительного ускорителя.

Этот процесс изначально противоречив: ускорять можно только заряженные частицы (на них действует электромагнитное поле), а вводить в плазму — только нейтральные (в противном случае они повлияют на течение тока внутри плазменного шнура). Поэтому от атомов дейтерия предварительно отнимается электрон, и положительно заряженные ионы попадают в ускоритель. Затем частицы попадают в нейтрализатор, где восстанавливаются до нейтральных атомов, взаимодействуя с ионизированным газом, и вводятся в плазму. В настоящее время мегавольтный инжектор ITER разрабатывается в итальянской Падуе.


Второй метод нагрева имеет что-то общее с разогревом продуктов в микроволновке. Он предполагает воздействие на плазму электромагнитным излучением с частотой, соответствующей скорости движения частиц (циклотронной частотой). Для положительных ионов эта частота равняется 40−50 МГц, а для электронов — 170 ГГц. Для создания мощного излучения столь высокой частоты используется прибор под названием гиротрон. Девять из 24 гиротронов ITER производятся на предприятии Gycom в Нижнем Новгороде.

Классическая концепция токамака предполагает, что форма плазменного шнура поддерживается полоидальным магнитным полем, которое само собой образуется при течении тока в плазме. Для длительного удержания плазмы такой подход неприменим. В токамаке ITER предусмотрены специальные катушки полоидального поля, назначение которых — держать раскаленную плазму подальше от стенок реактора. Эти катушки относятся к самым массивным и сложным элементам конструкции.

Чтобы иметь возможность активно управлять формой плазмы, своевременно устраняя колебания по краям шнура, разработчики предусмотрели небольшие маломощные электромагнитные контуры, расположенные непосредственно в вакуумной камере, под обшивкой.


Топливная инфраструктура для термоядерного синтеза — это отдельная интересная тема. Дейтерий содержится практически в любой воде, и его запасы можно считать неограниченными. А вот мировые запасы трития исчисляются от силы десятками килограммов. 1 кг трития стоит порядка $30 млн. Для первых запусков ITER понадобится 3 кг трития. Для сравнения, около 2 кг трития в год необходимо для поддержания ядерного потенциала армии Соединенных Штатов.

Однако в перспективе реактор будет сам обеспечивать себя тритием. В процессе основной реакции синтеза образуются высокоэнергетические нейтроны, которые способны превращать ядра лития в тритий. Разработка и испытание первой стенки реактора, содержащей литий, — одна из важнейших целей ITER. В первых испытаниях будут использоваться бериллиево-медные обшивки, цель которых сводится к защите механизмов реактора от тепла. Согласно расчетам, даже если перевести всю энергетику планеты на токамаки, мировых запасов лития хватит на тысячу лет эксплуатации.


Подготовка 104-километрового «Пути ITER» обошлась Франции в 110 миллионов евро и четыре года работы. Дорога от порта Фос-Сюр-Мер до Кадараша была расширена и усилена, чтобы по ней можно было доставить на площадку самые тяжелые и габаритные детали токамака. На фото: транспортер с тестовым грузом массой 800 тонн.

С миру по токамаку

Для прецизионного управления термоядерным реактором необходимы точные диагностические инструменты. Одна из ключевых задач ITER — выбрать наиболее подходящие из пяти десятков инструментов, которые сегодня проходят испытания, и дать старт разработке новых.

Не менее девяти диагностических аппаратов будет разработано в России. Три — в московском Курчатовском институте, в их числе нейтронно-лучевой анализатор. Ускоритель посылает сквозь плазму сфокусированный поток нейтронов, который претерпевает спектральные изменения и улавливается приемной системой. Спектрометрия с частотой 250 измерений в секунду показывает температуру и плотность плазмы, силу электрического поля и скорость вращения частиц — параметры, необходимые для управления реактором с целью продолжительного удержания плазмы.


Три инструмента готовит Научно-исследовательский институт имени Иоффе, в том числе анализатор нейтральных частиц, который захватывает атомы из токамака и помогает контролировать концентрацию дейтерия и трития в реакторе. Оставшиеся аппараты будут сделаны в институте Тринити, где в настоящее время изготавливаются алмазные детекторы для вертикальной нейтронной камеры ITER. Во всех перечисленных институтах для испытаний используются собственные токамаки. А в тепловой камере НИИЭФА имени Ефремова проходят испытания фрагменты первой стенки и мишени дивертора будущего реактора ITER.

К сожалению, тот факт, что множество компонентов будущего мегареактора уже существует в металле, не обязательно означает, что реактор будет построен. За последнее десятилетие оценочная стоимость проекта выросла с 5 до 16 млрд евро, а плановый первый запуск перенесся с 2010 на 2020 год. Судьба ITER всецело зависит от реалий нашего настоящего, прежде всего экономических и политических. Между тем каждый ученый, занятый в проекте, искренне верит, что его успех способен до неузнаваемости изменить наше будущее.

Относится к «Термоядерная энергетика»

Термоядерный реактор Е.П. Велихов, С.В. Путвинский


ТЕРМОЯДЕРНАЯ ЭНЕРГЕТИКА.
СТАТУС И РОЛЬ В ДОЛГОСРОЧНОЙ ПЕРСПЕКТИВЕ.

Е.П. Велихов, С.В. Путвинский.
Доклад от 22.10.1999, выполненный в рамках Energy Center of the World Federation of Scientists

Аннотация

В настоящей статье приведен краткий обзор современного состояния термоядерных исследований и изложены перспективы термоядерной энергетики в энергетической системе 21 века. Обзор рассчитан на широкий круг читателей, знакомых с основами физики и инженерии.

По современным физическим представлением, существует всего несколько фундаментальных источников энерги и, которые, в принципе, могут быть освоены и использованы человечеством. Ядерные реакции синтеза - это один из таких источников энерги и. В реакциях синтеза энерги я производится за счет работы ядерных сил, совершаемых при слиянии ядер легких элементов и образовании более тяжелых ядер. Эти реакции широко распространены в природе - считается, что энерги я звезд и, в том числе, Солнца производится в результате цепочки ядерных реакций синтеза, превращающих четыре ядра атома водорода в ядро гелия. Можно сказать, что Солнце - это большой естественный термоядерный реактор, снабжающий энерги ей экологическую систему Земли.

В настоящее время, более 85% энерги и производимой человеком получается при сжигании органических топлив - угля, нефти и природного газа. Этот дешевый источник энерги и, освоенный человеком около 200 - 300 лет назад, привел к быстрому развитию человеческого общества, его благосостоянию и, как результат, к росту народонаселения Земли. Предполагается, что из-за роста народонаселения и более равномерного потребления энерги и по регионам, производство энерги и возрастет к 2050 г примерно в три раза по сравнению с нынешним уровнем и достигнет 10 21 Дж в год. Не вызывает сомнения, что в обозримом будущем прежний источник энерги и - органические топлива - придется заменить на другие виды производства энерги и. Это произойдет как по причине истощения природных ресурсов, так и по причине загрязнения окружающей среды, которое по оценкам специалистов должно наступить гораздо раньше, чем будут выработаны дешевые природные ресурсы (нынешний способ производства энерги и использует атмосферу в качестве помойки, выбрасывая ежедневно 17 млн. тонн углекислого и других газов, сопутствующих сжиганию топлив). Переход от органических топлив к широкомасштабной альтернативной энергетике ожидается в середине 21 века. Предполагается, что будущая энергетика будет более широко, чем нынешняя энергетическая система, использовать разнообразные и, в том числе, возобновляемые источники энерги и, такие как: солнечная энерги я, энерги я ветра, гидроэлектроэнерги я, выращивание и сжигание биомассы и ядерная энерги я. Доля каждого источника энерги и в общем производстве энерги и будет определяться структурой потребления энерги и и экономической эффективностью каждого из этих источников энерги и.

В нынешнем индустриальном обществе более половины энерги и используется в режиме постоянного потребления, не зависящего от времени суток и сезона. На эту постоянную базовую мощность накладываются суточные и сезонные колебания. Таким образом, энергетическая система должна состоять из базовой энергетики, которая снабжает общество энерги ей на постоянном или квазипостоянном уровне, и энергетических ресурсов, которые используются по мере надобности. Ожидается, что возобновляемые источники энерги и такие, как солнечная энерги я, сжигание биомассы и др., будут использоваться в основном в переменной составляющей потребления энерги и. Основной и единственный кандидат для базовой энергетики - это ядерная энерги я. В настоящее время, для получения энерги и освоены лишь ядерные реакции деления, которые используются на современных атомных электростанциях. Управляемый термоядерные синтез, пока, лишь потенциал ьный кандидат для базовой энергетики.

Какие же преимущества имеет термоядерный синтез по сравнению с ядерными реакциями деления, которые позволяют надеяться на широкомасштабное развитие термоядерной энергетики? Основное и принципиальное отличие заключается в отсутствии долгоживущих радиоактивных отходов, которые характерны для ядерных реакторов деления. И хотя в процессе работы термоядерного реактора первая стенка активируется нейтронами, выбор подходящих низкоактивируемых конструкционных материалов открывает принципиальную возможность создания термоядерного реактора, в котором наведенная активность первой стенки будет снижаться до полностью безопасного уровня за тридцать лет после остановки реактора. Это означает, что выработавший ресурс реактор нужно будет законсервировать всего на 30 лет, после чего материалы могут быть переработаны и использованы в новом реакторе синтеза. Эта ситуация принципиально отличается от реакторов деления, которые производят радиоактивные расходы, требующие переработки и хранения в течение десятков тысяч лет. Кроме низкой радиоактивности, термоядерная энергетика имеет огромные, практически неисчерпаемые запасы топлива и других необходимых материалов, достаточных для производства энерги и в течении многих сотен, если не тысяч лет.

Именно эти преимущества побудили основные ядерные страны начать в середине 50 годов широкомасштабные исследования по управляемому термоядерному синтезу. В Советском Союзе и США к этому времени уже были проведены первые успешные испытания водородных бомб, которые подтвердили принципиальную возможность использования энерги и ядерного синтеза в земных условиях. С самого начала стало ясно, что управляемый термоядерный синтез не имеет военного применения. В 1956 г исследования были рассекречены и с тех пор проводятся в рамках широкого международного сотрудничества. Водородная бомба была создана всего за несколько лет, и в то время казалось, что цель близка, и что первые крупные экспериментальные установки, построенные в конце 50 годов, получат термоядерную плазму. Однако, потребовалось более 40 лет исследований для того, чтобы создать условия, при которых выделение термоядерной мощности сравнимо с мощностью нагрева реагирующей смеси. В 1997 г самая крупная термоядерная установка - Европейский ТОКАМАК (JET) получила 16 МВт термоядерной мощности и вплотную подошла к этому порогу.

Что же явилось причиной такой задержки? Оказалось, что для достижения цели физикам и инженерам пришлось решить массу проблем, о которых и не догадывались в начале пути. В течении этих 40 лет была создана наука - физика плазмы, которая позволила понять и описать сложные физические процессы, происходящие в реагирующей смеси. Инженерам потребовалось решить не менее сложные проблемы, в том числе, научиться создавать глубокий вакуум в больших объемах, подобрать и испытать подходящие конструкционные материалы, разработать большие сверхпроводящие магниты, мощные лазеры и источники рентгеновского излучения, разработать импульсные системы питания, способные создавать мощные пучки частиц, разработать методы высокочастотного нагрева смеси и многое другое.

§4 посвящен обзору исследований в области магнитного управляемого синтеза, который включает в себя системы с магнитным удержанием и импульсные системы. Большая часть этого обзора посвящена наиболее продвинутым системам для магнитного удержания плазмы, установкам типа ТОКАМАК.

Объём настоящего обзора позволяет обсудить только наиболее существенные стороны исследований по управляемому термоядерному синтезу. Читателю, интересующемуся более глубоким изучением различных аспектов этой проблемы, можно рекомендовать обратиться к обзорной литературе. Существует обширная литература, посвященная управляемому термоядерному синтезу. В том числе, следует упомянуть как ставшие уже классическими книги , написанные основоположниками управляемых термоядерных исследований, так и совсем недавние издания, как, например, , в которых изложено современное состояние термоядерных исследований.

Хотя ядерных реакций синтеза, приводящих к выделению энерги и довольно много, для практических целей использования ядерной энерги и, интерес представляют только реакции приведенные в Таблице 1. Здесь и ниже мы используем стандартное обозначение изотопов водорода: р - протон с атомной массой 1, D - дейтрон, с атомной массой 2 и Т - тритий, изотоп с массой 3. Все ядра, участвующие в этих реакциях за исключением трития стабильны. Тритий - это радиоактивный изотоп водорода в периодом полураспада 12.3 лет. В результате β-распада он превращается в Не 3 , излучая низкоэнерги чный электрон. В отличие от ядерных реакций деления, реакции синтеза не производят долгоживущих радиоактивных осколков тяжелых ядер, что дает принципиальную возможность создать "чистый" реактор, не обремененный проблемой долговременного хранения радиоактивных отходов.

Таблица 1.
Ядерные реакции, представляющие интерес для управляемого термоядерного синтеза

Энергетический выход,
q, (МэВ)

D + T = He 4 + n

D + D = He 3 + n

D + He 3 = He 4 + p

p + B 11 = 3He 4

Li 6 + n = He 4 + T

Li 7 + n = He 4 + Т + n

Все реакции, приведенные в Таблице 1, кроме последней, происходят с выделением энерги и в виде кинетической энерги и продуктов реакций, q , которая указана в скобках в единицах миллионов электронвольт (МэВ),
(1 эВ = 1.6 ·10 –19 Дж = 11600 °К). Две последние реакции играют особую роль в управляемом термоядерном синтезе - они будут использоваться для производства трития, которого не существует в природе.

Ядерные реакции синтеза 1-5 обладают относительно большой скоростью реакций, которую принято характеризовать сечением реакции, σ . Сечения реакций из Таблицы 1 показаны на Рис.1, как функция энерги и сталкивающихся частиц в системе центра масс.

σ
Е,

Рис.1. Сечения некоторых термоядерных реакций из таблицы 1,
как функция энерги и частиц в системе центра масс.

Из-за наличия кулоновского отталкивания между ядрами, сечения реакций при низкой энерги и частиц ничтожно малы, и, поэтому, при обычной температуре смесь изотопов водорода и других легких атомов, практически, не реагирует. Для того, чтобы любая из этих реакций имела заметное сечение, сталкивающимся частицам нужно иметь большую кинетическую энерги ю. Тогда частицы смогут преодолеть кулоновский барьер, сблизиться на расстояние порядка ядерных и прореагировать. Например, максимальное сечение для реакции дейтерия с тритием достигается при энерги и частиц около 80 КэВ, а для того, чтобы DT смесь иметь большую скорость реакций, ее температура должна быть масштаба ста миллионов градусов, Т = 10 8 ° К.

Самый простой способ получения энерги и ядерного синтеза, который сразу приходит в голову, это использовать ускоритель ионов и бомбардировать, скажем, ионами трития, ускоренными до энерги и 100 КэВ, твердую или газовую мишень, содержащую ионы дейтерия. Однако, инжектируемые ионы слишком быстро замедляются, сталкиваясь с холодными электронами мишени, и не успевают произвести энерги ю достаточную для того, чтобы покрыть энергетические расходы на их ускорение, несмотря на огромную разницу в исходной (порядка 100 КэВ) и произведенной в реакции энерги и (порядка 10 МэВ). Другими словами, при таком “способе” производства энерги и коэффициент воспроизводства энерги и,
Q fus = Р синтез /Р затрат будет меньше 1.

Для того, чтобы увеличить Q fus , можно подогреть электроны мишени. Тогда быстрые ионы будут тормозиться медленнее и Q fus будет расти. Однако, положительный выход достигается только при очень высокой температуре мишени - порядка нескольких KэВ. При такой температуре инжекция быстрых ионов уже не принципиальна, в смеси существует достаточное количество энерги чных тепловых ионов, которые сами вступают в реакции. Другими словами, в смеси происходят термоядерные реакции или термоядерный синтез.

Скорость термоядерных реакций можно рассчитать, проинтегрировав сечение реакции, показанное на Рис.1, по равновесной максвелловской функции распределения частиц. В результате, можно получить скорость реакций, К(Т) , которая определяет число реакций, происходящих в единице объема, n 1 n 2 К(Т) , и, следовательно, объемную плотность выделения энерги и в реагирующей смеси,

P fus = q n 1 n 2 K(T) (1)

В последней формуле n 1 n 2 - объемные концентрации реагирующих компонент, Т - температура реагирующих частиц и q - энергетический выход реакции приведенный в Таблице 1.

При высокой температуре, характерной для реагирующей смеси, смесь находится в состоянии плазмы, т.е. состоит из свободных электронов и положительно заряженных ионов, которые взаимодействуют друг с другом за счет коллективных электромагнитных полей. Самосогласованные с движением частиц плазмы электромагнитные поля определяют динамику плазмы и, в частности, поддерживают ее квазинейтральность. С очень большой точностью, плотность зарядов ионов и электронов в плазме равны между собой, n e = Zn z , где Z - заряд иона (для изотопов водорода Z = 1). Ионная и электронная компоненты обмениваются энерги ей, за счет кулоновских столкновений и при параметрах плазмы, типичных для термоядерных приложений, их температуры примерно равны.

За высокую температуру смеси приходиться платить дополнительными энергетическими расходами. Во-первых, нужно учесть тормозное излучение, испускаемое электронами при столкновении с ионами :

Мощность тормозного излучения, также как и мощность термоядерных реакций в смеси, пропорциональна квадрату плотности плазмы и, поэтому, отношение P fus /P b зависит только от температуры плазмы. Тормозное излучение, в отличие от мощности термоядерных реакций, слабо зависит от температуры плазмы, что приводит к наличию нижнего предела по температуре плазмы, при которой мощность термоядерных реакций равна мощности тормозных потерь, P fus /P b = 1. При температуре ниже пороговой мощность тормозных потерь превосходит термоядерное выделение энерги и, и поэтому в холодной смеси положительный выход энерги и невозможен. Наименьшую предельную температуру имеет смесь дейтерия с тритием, но и в этом случае температура смеси должна превышать 3 KэВ (3.5 10 7 °К). Пороговые температуры для DD и DHe 3 -реакций примерно на порядок выше, чем для DT-реакции. Для реакции протона с бором тормозное излучение при любой температуре превышает выход реакции , и, поэтому, для использования этой реакции нужны специальные ловушки , в которых температура электронов ниже, чем температура ионов, или же плотность плазмы настолько велика, что излучение поглощается рабочей смесью.

Кроме высокой температуры смеси, для положительного выхода реакций нужно, чтобы горячая смесь просуществовала достаточно долго и реакции успели произойти. В любой термоядерной системе с конечными размерами существуют дополнительные к тормозному излучению каналы потери энерги и из плазмы (например, за счет теплопроводности, линейчатого излучения примесей и др.), мощность которых не должна превышать термоядерное энерговыделение. В общем случае, дополнительные потери энерги и можно охарактеризовать энергетическим временем жизни плазмы t E , определенным таким образом, что отношение 3nТ / t E дает мощность потерь из единицы плазменного объема. Очевидно, что для положительного выхода необходимо, чтобы термоядерная мощность превышала мощность дополнительных потерь, P fus > 3nТ / t E , что дает условие на минимальное произведение плотности на время жизни плазмы, nt E . Например, для DT-реакции необходимо, чтобы

nt E > 5 ·10 19 s/m 3 (3)

Это условие принято называть критерием Лоусона (cтрого говоря, в оригинальной работе критерий Лоусона был выведен для конкретной схемы термоядерного реактора и, в отличие от (3), включает в себя к.п.д. преобразования тепловой энерги и в электрическую). В том виде, в каком он записан выше, критерий, практически, не зависит от термоядерной системы и является обобщенным необходимым условием положительного выхода. Критерий Лоусона для других реакций на один-два порядка выше, чем для DT-реакции, выше и пороговая температура. Близость устройства к достижению положительного выхода принято изображать на плоскости Т - nt E , которая показана на Рис.2.


nt E

Рис.2. Область с положительным выходом ядерной реакции на плоскости T - nt E .
Показаны достижения различных экспериментальных установок по удержанию термоядерной плазмы.

Видно, что DT-реакции более легко осуществимы - они требуют существенно меньшей температуры плазмы, чем DD-реакции и накладывают менее жесткие условия на ее удержание. Современная термоядерная программа нацелена на осуществление управляемого DT синтеза.

Таким образом, управляемые термоядерные реакции, в принципе, возможны и основная задача термоядерных исследований - это разработка практического устройства, которое могло бы конкурировать экономически с другими источниками энерги и.

Все изобретенные за 50 лет устройства можно разделить на два больших класса: 1) стационарные или квазистационарные системы, основанные на магнитном удержании горячей плазмы; 2) импульсные системы. В первом случае, плотность плазмы невелика и критерий Лоусона достигается за счет хорошего удержания энерги и в системе, т.е. большого энергетического времени жизни плазмы. Поэтому, системы с магнитным удержанием имеют характерный размер плазмы порядка нескольких метров и относительно низкую плотность плазмы, n ~ 10 20 м -3 (это примерно в 10 5 раз ниже, чем плотность атомов при нормальном давлении и комнатной температуре).

В импульсных системах критерий Лоусона достигается за счет сжатия термоядерных мишеней лазерным или рентгеновским излучением и создания смеси с очень высокой плотностью. Время жизни в импульсных системах мало и определяется свободным разлетом мишени. Основная физическая задача, в этом направлении управляемого термоядерного синтеза, заключается в снижении полной энерги и взрыва до уровня, который позволит сделать практический термоядерный реактор.

Оба типа систем, уже, вплотную подошли к созданию экспериментальных машин с положительным выходом энерги и Q fus > 1, в которых будут проверены основные элементы будущих термоядерных реакторов. Однако, прежде, чем перейти к обсуждению термоядерных устройств, мы рассмотрим топливный цикл будущего термоядерного реактора, который в большой степени не зависит от конкретного устройства системы.

Большой радиус,
R (m)

Малый радиус,
а (m)

Ток в плазме,
I p (МА)

Особенности машины

DT плазма, дивертор

Дивертор, пучки энерги чных нейтральных атомов

Сверхпроводящая магнитная система (Nb 3 Sn)

Сверхпроводящая магнитная система (NbTi)

1) ТОКАМАК Т-15 пока работал только в режиме с омическим нагревом плазмы и, поэтому, параметры плазмы, полученные на этой установке, достаточно низкие. В будущем, предусматривается ввести 10 МВт нейтральной инжекции и 10 МВт электронно-циклотронного нагрева.

2) Приведенное Q fus пересчитано с параметров DD-плазмы, полученных в установке, на DT-плазму.

И хотя экспериментальная программа на этих ТОКАМАКах еще не закончена, это поколение машин, практически, выполнило поставленные перед ним задачи. ТОКАМАКи JET и TFTR впервые получили большую термоядерную мощность DT-реакций в плазме, 11 МВт в TFTR и 16 МВт в JET. На Рис.6 показаны временные зависимости термоядерной мощности в DT экспериментах.

Рис.6. Зависимость термоядерной мощности от времени в рекордных дейтериево-тритиевых разрядах на токамаках JET и TFTR.

Это поколение ТОКАМАКов достигло пороговой величины Q fus = 1 и получило nt E всего в несколько раз ниже, чем то, которое требуется для полномасштабного ТОКАМАКа-реактора. В ТОКАМАКах научились поддерживать стационарный плазменный ток с помощью ВЧ полей и нейтральных пучков. Была изучена физика нагрева плазмы быстрыми частицами и, в том числе, термоядерными альфа-частицами, изучена работа дивертора и разработаны режимы его работы с низкими тепловыми нагрузками. Результаты этих исследований позволили создать физические основы, необходимые для следующего шага - первого ТОКАМАКа-реактора, который будет работать в режиме горения.

Какие же физические ограничения на параметры плазмы имеются в ТОКАМАКах?

Максимальное давление плазмы в ТОКАМАКе или максимальная величина β определяется устойчивостью плазмы и приближенно описывается соотношением Тройона ,

где β выражено в %, I p – ток, протекающий в плазме и β N - безразмерная константа, называемая коэффициентом Тройона. Параметры в (5) имеют размерность МА, Тл, м. Максимальные значения коэффициента Тройона β N = 3÷5, достигнутые в экспериментах, хорошо согласуются с теор етическими предсказаниями, базирующимися на расчетах устойчивости плазмы. Рис.7 показывает предельные значения β , полученные в различных ТОКАМАКах.

Рис.7. Сравнение предельных значений β , достигнутых в экспериментах со скейлингом Тройона .

При превышении предельного значения β , в плазме ТОКАМАКа развиваются крупномасштабные винтовые возмущения, плазма быстро охлаждается и гибнет на стенке. Это явление называется срывом плазмы.

Как видно из Рис.7 для ТОКАМАКа характерны довольно низкие значения β на уровне нескольких процентов. Существует принципиальная возможность увеличить значение β за счет уменьшения аспектного отношения плазмы до предельно низких значений R/a = 1.3÷1.5. Теор ия предсказывает, что в таких машинах β может достигать нескольких десятков процентов. Первый ТОКАМАК с ультра низким аспектным отношением, START , построенный несколько лет назад в Англии, уже получил значения β = 30%. С другой стороны эти системы технически более напряженны и требуют специальных технических решений для тороидальной катушки, дивертора и нейтронной защиты. В настоящее время строятся несколько более крупных, чем START, экспериментальных ТОКАМАКов с низким аспектным отношением и плазменным током выше 1 МА. Ожидается, что в течении следующих 5 лет эксперименты дадут достаточно данных для того, чтобы понять будет ли достигнуто ожидаемое улучшение плазменных параметров и сможет ли оно компенсировать технические трудности, ожидаемые в этом направлении.

Многолетние исследования удержания плазмы в ТОКАМАКах показали, что процессы переноса энерги и и частиц поперек магнитного поля определяются сложными турбулентными процессами в плазме. И хотя плазменные неустойчивости, ответственные за аномальные потери плазмы, уже обозначены, теор етическое понимание нелинейных процессов еще недостаточно для того, чтобы, основываясь на первых принципах, описать время жизни плазмы. Поэтому, для экстрапол яции времен жизни плазмы, полученных в современных установках, к масштабам ТОКАМАКа-реактора, в настоящее время, используются эмпирическ ие закономерности - скейлинги. Один из таких скейлингов (ITER-97(y)), полученный с помощью статистической обработки экспериментальной базы данных с различных ТОКАМАКов, предсказывает, что время жизни растет с ростом размера плазмы, R, плазменного тока I р, вытянутости сечения плазмы k = b/а = 4 и падает с ростом мощности нагрева плазмы, Р:

t E ~ R 2 k 0.9 I р 0.9 / P 0.66

Зависимость энергетического времени жизни от остальных плазменных параметров довольно слабая. Рис.8 показывает, что время жизни измеренное, практически, во всех экспериментальных ТОКАМАКах хорошо описывается этим скейлингом.

Рис.8. Зависимость экспериментально наблюдаемого энергетического времени жизни от предсказанного скейлингом ITER-97(y).
Среднестатистическое отклонение экспериментальных точек от скейлинга 15%.
Разные метки соответствуют различным ТОКАМАКам и проектируемому ТОКАМАКу-реактору ИТЭР .

Этот скейлинг предсказывает, что ТОКАМАК, в котором будет происходить самоподдерживающееся термоядерное горение, должен иметь большой радиус 7-8 м и плазменный ток на уровне 20 МА. В таком ТОКАМАКе энергетическое время жизни будет превышать 5 секунд, а мощность термоядерных реакций будет на уровне 1-1.5 ГВт.

В 1998 г был закончен инженерный проект ТОКАМАКа-реактора ИТЭР . Работы проводились совместными усилиями четырех сторон: Европы, России, США и Японии с целью создания первого экспериментального ТОКАМАКа-реактора, рассчитанного на достижение термоядерного горения смеси дейтерия с тритием. Основные физические и инженерные параметры установки приведены в Таблице 3, а его сечение показано на Рис.9.

Рис.9. Общий вид проектируемого ТОКАМАКа-реактора ИТЭР .

ИТЭР будет обладать, уже, всеми основными чертами ТОКАМАКа-реактора. Он будет иметь полностью сверхпроводящую магнитную систему, охлаждаемый бланкет и защиту от нейтронного излучения, систему дистанционного обслуживания установки. Предполагается, что на первой стенке будут получены потоки нейтронов с плотностью мощности 1 МВт/м 2 и полным флюенсом 0.3 МВт× лет/м 2 , что позволит провести ядерно-технологические испытания материалов и модулей бланкета, способных воспроизводить тритий.

Таблица 3.
Основные параметры первого экспериментального термоядерного ТОКАМАКа-реактора, ИТЭР .

Параметр

Значение

Большой / малый радиусы тора (A / a )

8.14 м / 2.80 м

Конфигурация плазмы

С одним тороидальным дивертором

Плазменный объем

Ток в плазме

Тороидальное магнитное поле

5.68 Тл (на радиусе R = 8.14 м)

β

Полная мощность термоядерных реакций

Нейтронный поток на первой стенке

Длительность горения

Мощность дополнительного нагрева плазмы

ИТЭР планируется построить в 2010-2011 г. Экспериментальная программа, которая будет продолжаться на этом экспериментальном реакторе около двадцати лет, позволит получить плазменно-физические и ядерно-технологические данные, необходимые для строительства в 2030-2035 г первого демонстрационного реактора-ТОКАМАКа, который уже будет производить электроэнерги ю. Основная задача ИТЭРа будет заключаться в демонстрации практичности реактора-ТОКАМАКа для производства электроэнерги и.

Наряду с ТОКАМАКами, которые в настоящее время являются наиболее продвинутой системой для осуществления управляемого термоядерного синтеза, существуют другие магнитные ловушки, успешно конкурирующие с ТОКАМАКом.

Большой радиус, R (м)

Малый радиус, а (м)

Мощность нагрева плазмы, (МВт)

Магнитное поле, Тл

Комментарии

L H D (Япония)

Сверхпроводящая магнитная система, винтовой дивертор

WVII-X (Германия)

Сверхпроводящая магнитная система, модульные катушки, оптимизированная магнитная конфигурация

Кроме ТОКАМАКов и СТЕЛЛАРАТОРов эксперименты, хотя и в меньшем масштабе, продолжаются на некоторых других системах с замкнутыми магнитными конфигурациями. Среди них следует отметить пинчи с обращенным полем , СФЕРОМАКи и компактные торы . Пинчи с обращенным полем имеют относительно низкое значение тороидального магнитного поля. В СФЕРОМАКе или в компактных торах тороидальная магнитная система вовсе отсутствует. Соответственно, все эти системы обещают возможность создания плазмы с высоким значением параметра β и, следовательно, в перспективе могут оказаться привлекательными для создания компактных термоядерных реакторов или же реакторов, использующих альтернативные реакции, такие как DHe 3 или рВ, в которых низкое поле требуется для снижения магнитно-тормозного излучения. Нынешние параметры плазмы, достигнутые в этих ловушках, пока, существенно ниже, чем те, которые получены в ТОКАМАКах и СТЕЛЛАРАТОРах.

Название установки

Тип лазера

Энерги я в импульсе (кДж)

Длина волны

1.05 / 0.53 / 0.35

NIF (строится в США)

ИСКРА 5 (Россия)

ДЕЛЬФИН (Россия)

PHEBUS (Франция)

GЕККО ХП (Япония)

1.05 / 0.53 / 0.35

Исследование взаимодействия лазерного излучения с веществом показало, что лазерное излучение хорошо поглощается испаряющимся веществом оболочки мишени вплоть до требуемых плотностей мощности 2÷4 · 10 14 Вт/см 2 . Коэффициент поглощения может достигать 40÷80 % и растет с уменьшением длинны волны излучения . Как указывалось выше, большого термоядерного выхода можно добиться, если при сжатии основная масса топлива остается холодной. Для этого нужно, чтобы сжатие было адиабатическим, т.е. нужно избегать предварительного разогрева мишени, которое может происходить за счет генерации лазерным излучением энерги чных электронов, ударных волн или жесткого рентгеновского излучения. Многочисленные исследования показали, что эти нежелательные эффекты можно снизить за счет профилирования импульса излучения, оптимизации таблеток и уменьшения длины волны излучения. На Рис.16, заимствованном из работы , показаны границы области на плоскости плотность мощности - длина волны лазеров, пригодных для обжатия мишеней.

Рис.16. Область на плоскости параметров, в которой лазеры способны осуществлять обжатия термоядерных мишеней (заштрихована).

Первая лазерная установка (NIF) с параметрами лазера, достаточными для получения зажигания мишеней, будет построена в США в 2002 г. Установка позволит изучить физику обжатия мишеней, которые будут иметь термоядерный выход на уровне 1-20 МДж и, соответственно, позволит получить высокие значения Q>1.

Хотя лазеры позволяют проводить лабораторные исследования по обжатию и зажиганию мишеней, их недостатком является низкий к.п.д., который, пока, в лучшем случае, достигает 1-2%. При таких низких к.п.д., термоядерный выход мишени должен превышать 10 3 , что является очень сложной задачей. Кроме того, лазеры на стекле имеют низкую повторяемость импульса. Для того, чтобы лазеры могли служить драйвером реактора термоядерной электростанции их стоимость должна быть снижена примерно на два порядка величины . Поэтому, параллельно с развитием лазерной технологии, исследователи обратились к разработке более эффективных драйверов - ионных пучков.

Ионные пучки

В настоящее время рассматривается два типа ионных пучков: пучки легких ионов, типа Li, с энерги ей в несколько десятков МэВ и пучки тяжелых ионов, типа Рb, с энерги ей до 10 ГэВ. Если говорить о реакторных приложениях, то в обоих случаях нужно подвести к мишени радиусом несколько миллиметров энерги ю в несколько МДж за время порядка 10 нс. Необходимо не только сфокусировать пучок, но и суметь провести его в камере реактора на расстояние порядка нескольких метров от выхода ускорителя до мишени, что для пучков частиц является совсем не простой задачей.

Пучки легких ионов с энерги ей несколько десятков МэВ можно создавать с относительно большим к.п.д. с помощью импульсного напряжения, приложенного к диоду. Современная импульсная техника позволяет получать мощности, требуемые для обжатия мишеней, и поэтому, пучки легких ионов являются наиболее дешевым кандидатом для драйвера. Эксперименты с легкими ионами проводились в течение многих лет на установке PBFA-11 в Сандиевской национальной лаборатории в США. Установка позволяет создавать короткие (15 нс) импульсы 30 МэВ-ных ионов Li с пиковым током 3.5 МА и полной энерги ей около 1 МДж. Кожух из материала с большим Z с мишенью внутри помещался в центре сферически симметричного диода, позволяющего получать большое количество радиально направленных ионных пучков. Энерги я ионов поглощалась в кожухе холраума и пористом наполнителе между мишенью и кожухом и преобразовывалось в мягкое рентгеновское излучение, сжимающее мишень .

Предполагалось получить плотность мощности свыше 5 · 10 13 Вт/см 2 , необходимую для обжатия и поджига мишеней. Однако, достигнутые плотности мощности были, примерно, на порядок величины меньше, чем ожидалось . В реакторе, использующем легкие ионы в качестве драйвера, требуются колоссальные потоки быстрых частиц с высокой плотностью частиц вблизи мишени. Фокусировка таких пучков на миллиметровые мишени представляет собой задачу огромной сложности. Кроме того, легкие ионы будут заметно тормозиться в остаточном газе в камере сгорания.

Переход к тяжелым ионам и большим энерги ям частиц позволяет существенно смягчить эти проблемы и, в частности, уменьшить плотности тока частиц и, таким образом, облегчить проблему фокусировки частиц. Однако, для получения требуемых 10 ГэВ-ных частиц требуются огромные ускорители с накопителями частиц и прочей сложной ускорительной техникой. Положим, что полная энерги я пучка 3 МДж, время импульса 10 нс и область, на которую должен быть сфокусирован пучок, представляет собой окружность с радиусом 3 мм. Сравнительные параметры гипотетических драйверов для обжатия мишени приведены в Таблице 6.

Таблица 6.
Сравнительные характеристики драйверов на легких и тяжелых ионах.

*) – в области мишени

Пучки тяжелых ионов, также, как и легкие ионы, требуют использования холраума, в котором энерги я ионов преобразуется в рентгеновское излучение, равномерно облучающее саму мишень. Конструкция холраума для пучка тяжелых ионов лишь немного отличается от холраума для лазерного излучения. Отличие заключается в том, что пучки на требуют отверстий, через которое лазерные лучи проникают внутрь холраума. Поэтому, в случае пучков, используются специальные поглотители частиц, которые преобразуют их энерги ю в рентгеновское излучение. Один из возможных вариантов показан на Рис.14b. Оказывается, что эффективность преобразования уменьшается с ростом энерги и ионов и ростом размера области, на которой происходит фокусировка пучка . Поэтому, увеличение энерги и частиц свыше 10 ГэВ нецелесообразно.

В настоящее время, как в Европе, так и в США принято решение сосредоточить основные усилия на развитием драйверов, основанных на пучках тяжелых ионов . Предполагается, что эти драйверы будут разработаны к 2010-2020 гг и, в случае успеха, заменят лазеры в установках следующего за NIF поколения. Пока ускорителей, требуемых для инерционного синтеза, не существует. Основная трудность их создания связана с необходимостью увеличивать плотности потоков частиц до такого уровня, при котором пространственная плотность заряда ионов уже существенно влияет на динамику и фокусировку частиц. Для того, чтобы уменьшить эффект пространственного заряда, предполагается создавать большое количество параллельных пучков, которые будут соединяться в камере реактора и направляться на мишень . Характерный размер линейного ускорителя - несколько километров .

Каким же образом предполагается провести ионные пучки на расстояние несколько метров в камере реактора и сфокусировать их на области размером несколько миллиметров? Одна из возможных схем заключается в самофокусировке пучков, которая может происходить в газе низкого давления. Пучок будет вызывать ионизацию газа и компенсирующий встречный электрический ток, протекающий по плазме. Азимутальное магнитное поле, которое создается результирующим током (разницей тока пучка и обратного тока плазмы), будет приводить к радиальному сжатию пучка и его фокусировке. Численное моделирование показывает, что, в принципе, такая схема возможна, если давление газа будет поддерживаться в нужном диапазоне 1-100 Торр .

И хотя пучки тяжелых ионов открывают перспективу создания эффективного драйвера для термоядерного реактора, они имеют перед собой колоссальные технические трудности, которые еще предстоит преодолеть, прежде, чем цель будет достигнута. Для термоядерных приложений нужен ускоритель, который будет создавать пучок 10 ГэВ-ных ионов с пиковым током в несколько десятков КА и со средней мощностью около 15 МВт. Объем магнитной системы такого ускорителя сравним с объемом магнитной системы ТОКАМАКа-реактора и, поэтому, можно ожидать, что их стоимости будут одного порядка.

Камера импульсного реактора

В отличие от магнитного термоядерного реактора, где требуется высокий вакуум и чистота плазмы, к камере импульсного реактора такие требования не предъявляются. Основные технологические трудности создания импульсных реакторов лежат в области драйверной техники, создании прецизионных мишеней и систем позволяющих подавать и контролировать положение мишени в камере. Сама камера импульсного реактора имеет относительно простую конструкцию. Большинство проектов предполагает использовать жидкую стенку создаваемую открытым теплоносителем. Например, проект реактора HYLIFE-11 использует расплавленную соль Li 2 BeF 4 , жидкая завеса из которой окружает область, куда поступают мишени. Жидкая стенка будет поглощать нейтронное излучение и смывать остатки мишеней. Она же демпфирует давление микровзрывов и равномерно передает ее на основную стенку камеры. Характерный внешний диаметр камеры около 8 м, ее высота - около 20 м.

Полный расход жидкого теплоносителя по оценкам будет составлять около 50 м 3 /с, что вполне достижимо. Предполагается, что кроме основного, стационарного потока, в камере будет сделана импульсная жидкая заслонка, которая будет открываться синхронизировано с подачей мишени с частотой около 5 Гц для пропускания пучка тяжелых ионов.

Требуемая точность подачи мишени составляет доли миллиметров. Очевидно, что пассивная подача мишени на расстояние в несколько метров с такой точностью в камере, в которой будет происходить турбулентные потоки газа, вызванные взрывами предшествующих мишеней, представляет собой практически невыполнимую задачу. Поэтому, в реакторе потребуется система управления, позволяющая отслеживать положение мишени и производить динамическую фокусировку пучка. В принципе, такая задача выполнима, но может существенно усложнить управление реактором.