Термодинамика - наука, которая изучает тепловые явления, происходящие в телах, не связывая их с молекулярным строением вещества.

В термодинамике считается, что все тепловые процессы в телах характеризуются только лишь макроскопическими параметрами - давлением, объёмом и температурой. А так как их невозможно применить к отдельно взятым молекулам или атомам, то, в отличие от молекулярно-кинетической теории, в термодинамике молекулярное строение вещества в тепловых процессах не учитывается.

Все понятия термодинамики сформулированы как обобщение фактов, наблюдаемых в ходе экспериментов. Из-за этого её называют феноменологической (описательной) теорией тепла.

Термодинамические системы

Термодинамика описывает тепловые процессы, происходящие в макроскопических системах. Такие системы состоят из огромного количества частиц - молекул и атомов, и называются термодинамическими.

Термодинамической системой можно считать любой объект, который можно увидеть невооружённым глазом или с помощью микроскопов, телескопов и других оптических приборов. Главное, чтобы размеры системы в пространстве и время её существования позволяли провести измерения её параметров - температуры, давления, массы, химического состава элементов и др., с помощью приборов, не реагирующих на воздействие отдельных молекул (манометров, термометров и др.).

Для химиков термодинамическкой системой является смесь химических веществ, взаимодействующих между собой в процессе химической реакции. Астрофизики назовут такой системой небесное тело. Смесь горючего с воздухом в автомобильном двигателе, земной шар, наше тело, пишущая ручка, тетрадь, станок и др. - это также термодинамические системы.

Каждая термодинамическая система отделена от окружающей среды границами. Они могут быть реальными - стеклянные стенки пробирки с химическим веществом, корпус цилиндра в двигателе и т.п. А могут быть и условными, когда, например, изучают образование облака в атмосфере.

Если такая система не обменивается с внешней средой ни энергией, ни веществом, то её называют изолированной или замкнутой .

Если же система обменивается с внешней средой энергией, но не обменивается веществом, то она называется закрытой .

Открытая система обменивается с внешней средой и энергией, и веществом.

Термодинамическое равновесие

Это понятие также введено в термодинамику, как обобщение результатов экспериментов.

Термодинамическим равновесием называют такое состояние системы, при котором все её макроскопические величины - температура, давление, объём и энтропия - не изменяются во времени, если система является изолированной. В такое состояние может самопроизвольно перейти любая замкнутая термодинамическая система, если остаются постоянными все внешние параметры.

Самый простой пример системы в состоянии термодинамического равновесия - термос с горячим чаем. Температура в нём одинакова в любой точке жидкости. Хотя термос можно назвать изолированной системой лишь приблизительно.

Любая замкнутая термодинамическая система самопроизвольно стремится перейти в термодинамическое равновесие, если не меняются внешние параметры.

Термодинамический процесс

Если меняется хотя бы один из макроскопических параметров, то говорят, что в системе происходит термодинамический процесс . Такой процесс может возникнуть, если изменяются внешние параметры или система начинает получать или передавать энергию. В результате она переходит в другое состояние.

Вспомним пример с чаем в термосе. Если мы опустим в чай кусочек льда и закроем термос, то сразу же появится разница в температурах в разных частях жидкости. Жидкость в термосе будет стремиться к выравниванию температур. Из областей с более высокой температурой тепло будет передаваться туда, где температура ниже. То есть, будет происходить термодинамический процесс. В конце концов, температура чая в термосе снова станет одинаковой. Но она уже будет отличаться от первоначальной температуры. Состояние системы изменилось, так как изменилась её температура.

Термодинамический процесс происходит, когда ночью остывает песок, нагретый на пляже в жаркий день. К утру его температура понижается. Но как только взойдёт солнце, процесс нагревания начнётся снова.

Внутренняя энергия

Одно из главных понятий термодинамики - внутренняя энергия .

Все макроскопические тела обладают внутренней энергией, которая является суммой кинетических и потенциальных энергий всех частиц (атомов и молекул), из которых состоит тело. Эти частицы взаимодействуют только между собой и не взаимодействуют с частицами окружающей среды. Внутренняя энергия зависит от кинетической и потенциальной энергии частиц и не зависит от положения самого тела.

U = E k +E p

Внутренняя энергия изменяется с изменением температуры. Молекулярно-кинетическая теория объясняет это изменением скорости движения частиц вещества. Если температура тела растёт, то растёт и скорость движения частиц, расстояние между ними становится больше. Следовательно, увеличивается их кинетическая и потенциальная энергия. При понижении температуры происходит обратный процесс.

Для термодинамики важнее не величина внутренней энергии, а её изменение. А изменить внутреннюю энергию можно с помощью процесса теплопередачи или совершая механическую работу.

Изменение внутренней энергии механической работой

Бенджамин Румфорд

Внутреннюю энергию тела можно изменить, совершив над ней механическую работу. Если работа совершается над телом, то механическая энергия превращается во внутреннюю энергию. А если работу совершает тело, то его внутренняя энергия превращается в механическую.

Почти до конца XIX века считалось, что существует невесомое вещество - теплород, которое передаёт тепло от тела к телу. Чем больше теплорода втекает в тело, тем теплее оно будет, и наоборот.

Однако в 1798 г. англо-американский учёный граф Бенджамин Румфорд стал сомневаться в теории теплорода. Причиной тому были нагревания стволов пушек при сверлении. Он предположил, что причиной нагревания является механическая работа, которая совершается во время трения сверла о ствол.

И Румфорд провёл эксперимент. Чтобы увеличить силу трение, взяли тупое сверло, а сам ствол поместили в бочку с водой. К концу третьего часа сверления вода в бочке закипела. Это означало, что ствол получил тепло при совершении механической работы над ним.

Теплопередача

Теплопередачей называют физический процесс передачи тепловой энергии (теплоты) от одного тела к другому либо при непосредственном контакте, либо через разделяющую перегородку. Как правило, теплота передаётся от более тёплого тела к более холодному. Это процесс заканчивается, когда система приходит в состояние термодинамического равновесия.

Энергия, которую получает или отдаёт тело при теплопередаче, называется количеством теплоты .

По способу передачи теплоты теплообмен можно разделить на 3 вида: теплопроводность, конвенция, тепловое излучение.

Теплопроводность

Если между телами или частями тел существует температурная разница, то между ними будет происходить процесс теплопередачи. Теплопроводностью называют процесс переноса внутренней энергии от более нагретого тела (или его части) к менее нагретому телу (или его части).

К примеру, нагрев на огне один конец стального прута, через некоторое время мы почувствуем, что и другой его конец также становится тёплым.

Стеклянную палочку, один конец которой раскалён, мы легко держим за другой конец, не обжигаясь. Но если мы попробуем проделать такой же эксперимент с железным прутом, у нас ничего не получится.

Разные вещества по-разному проводят тепло. Каждое из них имеет свой коэффициент теплопроводности , или удельной проводимости , численно равный количеству теплоты, которая проходит через образец толщиной 1 м, площадью 1 м 2 за 1 секунду. За единицу температуры принимают 1 К.

Лучше всего проводят тепло металлы. Это их свойство мы используем в быту, готовя пищу в металлических кастрюлях или на сковородках. А вот их ручки не должны нагреваться. Поэтому их делают из материалов с плохой теплопроводностью.

Теплопроводность жидкостей меньше. А газы обладают слабой теплопроводностью.

Мех животных также плохо проводит тепло. Благодаря этому они не перегреваются в жаркую погоду и не замерзают в холодную.

Конвенция

При конвенции теплота передаётся струями и потоками газа или жидкости. В твёрдых телах конвенции нет.

Как возникает конвенция в жидкости? Когда мы ставим на огонь чайник с водой, нижний слой жидкости нагревается, его плотность уменьшается, он движется вверх. Его место занимает более холодный слой воды. Через какое-то время он тоже нагреется и тоже поменяется местами с более холодным слоем. И т.д.

Подобный процесс происходит и в газах. Не случайно батареи отопления размещают в нижней части комнаты. Ведь нагретый воздух всегда поднимается в верхнюю часть комнаты. А нижний, холодный, наоборот, опускается. Затем он нагревается также и вновь поднимается, а верхний слой за это время остывает и опускается.

Конвенция бывает естественная и принудительная.

Естественная конвенция постоянно происходит в атмосфере. В результате этого происходят постоянные перемещения тёплых воздушных масс вверх, а холодных - вниз. В результате возникает ветер, облака и другие природные явления.

Когда естественной конвенции недостаточно, применяю принудительную конвенцию. Например, потоки тёплого воздуха перемещают в комнате с помощью лопастей вентилятора.

Тепловое излучение

Солнце нагревает Землю. При этом не происходит ни теплопередачи, ни конвенции. Так почему же тела получают тепло?

Дело в том, что Солнце является источником теплового излучения.

Тепловое излучение - это электромагнитное излучение, возникающее за счёт внутренней энергии тела. Все окружающие нас тела излучают тепловую энергию. Это может быть видимое световое излучение настольной лампы, или источники невидимых ультрафиолетовых, инфракрасных или гамма-лучей.

Но тела не только излучают тепло. Они его также и поглощают. Одни в большей степени, другие в меньшей. Причём тёмные тела и нагреваются, и охлаждаются быстрее, чем светлые. В жаркую погоду мы стараемся надеть светлую одежду, потому что она поглощает меньше тепла, чем одежда тёмных тонов. Автомобиль тёмного цвета нагревается на солнце гораздо быстрее, чем стоящий с ним рядом автомобиль, имеющий светлую окраску.

Это свойство веществ по-разному поглощать и излучать тепло используется при создании систем ночного видения, систем самонаведения ракет на цель и др.

Cтраница 1


Термодинамическая система, как и любая другая физическая система, обладает некоторым запасом энергии, который обычно называют внутренней энергией системы.  

Термодинамическая система называется изолированной, если она не может обмениваться с внешней средой ни энергией, ни веществом. Примером такой системы может служить газ, заключенный в сосуд постоянного объема. Термодинамическая система называется адиабатной, если она не может обмениваться с другими системами энергией путем теплообмена.  

Термодинамическая система - это совокупность тел, которые в той или иной степени могут обмениваться между собой и окружающей средой энергией и веществом.  

Термодинамические системы подразделяются на закрытые, не обменивающиеся веществом с другими системами, и открытые, обменивающиеся веществом и энергией с другими системами. В тех случаях, когда система не обменивается энергией и веществом с другими системами, она называется изолированной, а когда не происходит теплообмена, система называется адиабатной.  

Термодинамические системы могут состоять из смесей чистых веществ. Смесь (раствор) называется гомогенной, когда химический состав и физические свойства в любых малых частицах одинаковы или изменяются непрерывно от одной точки системы к другой. Плотность, давление и температура гомогенной смеси в любой точке идентичны. Примером гомогенной системы может служить некоторый объем воды, химический состав которой одинаков, а физические свойства меняются от одной точки к другой.  

Термодинамическая система с определенным количественным соотношением компонентов называется единичной физико-химической системой.  

Термодинамические системы (макроскопические тела) наряду с механической энергией Е обладают еще и внутренней энергией U, зависящей от температуры, объема, давления и других термодинамических параметров.  

Термодинамическая система называется неизолированной, или незамкнутой, если она может получать или отдавать тепло в окружающую среду и производить работу, а внешняя среда - совершать работу над системой. Система является изолированной, или замкнутой, если она не имеет обмена теплом с окружающей средой, а изменение давления внутри системы не влияет на окружающую среду и последняя не может произвести работу над системой.  

Термодинамические системы состоят из статистически большого числа частиц.  

Термодинамическая система при определенных внешних условиях (или изолированная система) приходит в состояние, которое характеризуется постоянством ее параметров во времени и отсутствием в системе потоков вещества и теплоты. Такое состояние системы называется равновесным или состоянием равновесия. Самопроизвольно из этого состояния система выйти не может. Состояние системы, в которой отсутствует равновесие, называется неравновесным. Процесс постепенного перехода системы из неравновесного состояния, вызванного внешними воздействиями, в состояние равновесия называется релаксацией, а промежуток времени возвращения системы в равновесное состояние - временем релаксации.  

Термодинамическая система в этом случае совершает работу расширения за счет уменьшения внутренней энергии системы.  


Термодинамическая система является объектом изучения в термодинамике и представляет собой совокупность тел, энергетически взаимодействующих между собой и окружающей средой и обменивающихся с ней веществом.  

Термодинамическая система, предоставленная самой себе при неизменных внешних условиях, приходит в состояние равновесия, характеризуемое постоянством всех параметров и отсутствием макроскопических движений. Такое состояние системы называется состоянием термодинамического равновесия.  

Термодинамическая система характеризуется конечным числом независимых переменных - макроскопических величин, называемых термодинамическими параметрами. Одним из независимых макроскопических параметров термодинамической системы, отличающим ее от механической, является температура как мера интенсивности теплового движения. Температура тела может изменяться вследствие теплообмена с окружающей средой и действия источников тепла и в результате самого процесса деформирования. Связь деформации с температурой устанавливается с помощью термодинамики.  

Рассмотрим особенности термодинамических систем. Под ними принято понимать физические макроскопические формы, состоящие из значительного количества частиц, которые не предполагают использования для описания макроскопических показателей каждой отдельной частицы.

Нет ограничений в природе материальных частиц, которые являются составными компонентами таких систем. Они могут быть представлены в виде молекул, атомов, ионов, электронов, фотонов.

Особенности

Проанализируем отличительные характеристики термодинамических систем. В качестве примера можно привести любой предмет, который можно наблюдать без использования телескопов, микроскопов. Чтобы дать полноценное описание такой системе, подбирают макроскопические детали, благодаря которым можно определить объем, давление, температуру, электрическую поляризацию, величину магнитной индукции, химический состав, массу компонентов.

Для любых термодинамических систем существуют условные либо реальные границы, которые отделяют их от окружающей среды. Вместо нее часто используют понятие термостата, характеризующегося такой высокой величиной теплоемкости, что в случае теплообмена с анализируемой системой температурный показатель сохраняет неизменное значение.

Классификация систем

Рассмотрим, что представляет собой классификация термодинамических систем. В зависимости от характера взаимодействия ее с окружающей средой, принято выделять:

  • изолированные виды, которые не обмениваются ни веществом, ни энергией с внешней средой;
  • адиабатически изолированные, не совершающие обмена с внешней средой веществом, но вступающие в обмен работой или энергией;
  • у закрытых термодинамических систем нет обмена веществом, допускается только изменение величины энергии;
  • открытые системы характеризуются полной передачей энергии, вещества;
  • частично открытые могут иметь полупроницаемые перегородки, поэтому не в полной мере принимать участие в материальном обмене.

В зависимости от описания, параметры термодинамической системы, могут подразделяться на сложные и простые варианты.

Особенности простых систем

Простыми системами называют равновесные состояния, определить физическое состояние которых можно удельным объемом, температурой, давлением. Примеры термодинамических систем подобного типа - изотропные тела, имеющие равные характеристики в разных направлениях и точках. Так, жидкости, газообразные вещества, твердые тела, которые находятся в состоянии термодинамического равновесия, не подвергаются воздействию электромагнитных и гравитационных сил, поверхностному натяжению, химическим превращениям. Анализ простых тел признан в термодинамике важным и актуальным с практической и теоретической точки зрения.

Внутренняя энергия термодинамической системы такого вида связана с окружающим миром. При описании используют число частиц, массу вещества каждого отдельного компонента.

Сложные системы

К сложным относят термодинамические системы, которые не попадают под простые виды. Например, ими являются магнетики, диэлектрики, твердые упругие тела, сверхпроводники, поверхности раздела фаз, тепловое излучение, электрохимические системы. В качестве параметров, используемых для их описания, отметим упругость пружины или стержня, поверхность фазового раздела, тепловое излучение.

Физической системой называют такую совокупность, в которой нет химического взаимодействия между веществами в пределах показателей температуры, давления, выбранных для исследования. А химическими системами называют те варианты, которые подразумевают взаимодействие между ее отдельными компонентами.

Внутренняя энергия термодинамической системы зависит от наличия изоляции ее с окружающим миром. Например, в качестве варианта адиабатической оболочки, можно представить сосуд Дьюара. Гомогенный характер проявляется у системы, в которой все компоненты имеют сходные свойства. Примерами их служат газовые, твердые, жидкие растворы. Типичным примером газовой гомогенной фазы является атмосфера Земли.

Особенности термодинамики

Данный раздел науки занимается изучением основных закономерностей протекания процессов, которые связаны с выделением, поглощением энергии. В химической термодинамике предполагается изучение взаимных превращений составных частей системы, установление закономерностей перехода одного вида энергии в другой при заданных условиях (давлении, температуре, объеме).

Система, являющаяся объектом термодинамического исследования, может быть представлена в виде любого объекта природы, включающего в себя большое число молекул, которые отделены границей раздела с другими реальными объектами. Под состоянием системы подразумевают совокупность ее свойств, которые позволяют определять ее с позиций термодинамики.

Заключение

В любой системе наблюдается переход одного вида энергии в другой, устанавливается термодинамическое равновесие. Раздел физики, которые занимается детальным изучением превращений, изменений, сохранений энергии, имеет особое значение. Например, в химической кинетике можно не просто описать состояние системы, но и рассчитать условия, способствующие ее смещению в нужном направлении.

Закон Гесса, связывающий энтальпию, энтропию рассматриваемого превращения, дает возможность выявлять возможность самопроизвольного протекания реакции, рассчитывать количество теплоты, выделяемого (поглощаемого) термодинамической системой.

Термохимия, базирующаяся на основах термодинамики, имеет практическое значение. Благодаря данному разделу химии, на производстве проводят предварительные расчеты эффективности топлива и целесообразности внедрения определенных технологий в реальное производство. Сведения, получаемые из термодинамики, дают возможность применять явления упругости, термоэлектричества, вязкости, намагничивания для промышленного производства различных материалов.

Термодинамика – это наука, изучающая общие закономерности протекания процессов, сопровождающихся выделением, поглощением и превращением энергии. Химическая термодинамика изучает взаимные превращения химической энергии и других ее форм – тепловой, световой, электрической и т.д., устанавливает количественные законы этих переходов, а также позволяет предсказать устойчивость веществ при заданных условиях и их способность вступать в те или иные химические реакции. Объект термодинамического рассмотрения называют термодинамической системой или просто системой.

Система – любой объект природы, состоящий из большого числа молекул (структурных единиц) и отделённый от других объектов природы реальной или воображаемой граничной поверхностью (границей раздела).

Состояние системы – совокупность свойств системы, позволяющих определить систему с точки зрения термодинамики.

Типы термодинамических систем :

I. По характеру обмена веществом и энергией с окружающей средой :

1. Изолированная система – не обменивается со средой ни веществом, ни энергией (Δm = 0; ΔE = 0) - термос.

2. Закрытая система – не обменивается со средой веществом, но может обмениваться энергией (закрытая колба с реагентами).

3. Открытая система – может обмениваться со средой, как веществом, так и энергией (человеческое тело).

II. По агрегатному состоянию :

1. Гомогенная – отсутствие резких изменений физических и химических свойств при переходе от одних областей системы к другим (состоят из одной фазы).

2. Гетерогенная – две или более гомогенные системы в одной (состоит из двух или нескольких фаз).

Фаза – это часть системы, однородная во всех точках по составу и свойствам и отделенная от других частей системы поверхностью раздела. Примером гомогенной системы может служить водный раствор. Но если раствор насыщен и на дне сосуда есть кристаллы солей, то рассматриваемая система – гетерогенна (есть граница раздела фаз). Другим примером гомогенной системы может служить простая вода, но вода с плавающим в ней льдом – система гетерогенная.

Фазовый переход - превращения фаз (таяние льда, кипение воды).

Термодинамический процесс - переход термодинамической системы из одного состояния в другое, который всегда связан с нарушением равновесия системы.

Классификация термодинамических процессов :

7. Изотермический - постоянная температура – T = const

8. Изобарный - постоянное давление – p = const

9. Изохорный - постоянный объем – V = const

Стандартное состояние - это состояние системы, условно выбранное в качестве стандарта для сравнения.

Для газовой фазы - это состояние химически чистого вещества в газовой фазе под стандартным давлением 100 кПа (до 1982 года - 1 стандартная атмосфера, 101 325 Па, 760 мм ртутного столба), подразумевая наличие свойств идеального газа.

Для беспримесной фазы , смеси или растворителя в жидком или твёрдом агрегатном состоянии - это состояние химически чистого вещества в жидкой или твёрдой фазе под стандартным давлением.

Для раствора - это состояние растворённого вещества со стандартной моляльностью 1 моль/кг, под стандартным давлением или стандартной концентрации, исходя из условий, что раствор неограниченно разбавлен.

Для химически чистого вещества - это вещество в чётко определённом агрегатном состоянии под чётко определённым, но произвольным, стандартным давлением.

В определение стандартного состояния не входит стандартная температура , хотя часто говорят о стандартной температуре, которая равна 25°C (298,15 К).

2.2. Основные понятия термодинамики: внутренняя энергия, работа, теплота

Внутренняя энергия U - общий запас энергии, включая движение молекул, колебания связей, движение электронов, ядер и др., т.е. все виды энергии кроме кинетической и потенциальной энергии системы в целом.

Нельзя определить величину внутренней энергии какой-либо системы, но можно определить изменение внутренней энергии ΔU, происходящее в том или ином процессе при переходе системы из одного состояния (с энергией U 1) в другое (с энергией U 2):

ΔU зависит от вида и количества рассматриваемого вещества и условий его существования.

Суммарная внутренняя энергия продуктов реакции отличается от суммарной внутренней энергии исходных веществ, т.к. в ходе реакции происходит перестройка электронных оболочек атомов взаимодействующих молекул.

Термодинамическая система – это часть материального мира, отделенная от окружающей среды реальными или воображаемыми границами и являющаяся объектом исследования термодинамики. Окружающая среда значительно больше по объему, и поэтому изменения в ней незначительны по сравнению с изменением состояния системы. В отличие от механических систем, которые состоят из одного или нескольких тел, термодинамическая система содержит очень большое число частиц, что порождает совершенно новые свойства и требует иных подходов к описанию состояния и поведения таких систем. Термодинамическая система представляет собой макроскопический объект .

Классификация термодинамических систем

1. По составу

Термодинамическая система состоит из компонентов. Компонент - это вещество, которое может быть выделено из системы и существовать вне ее, т.е. компоненты – это независимые вещества.

Однокомпонентные.

Двухкомпонентные, или бинарные.

Трехкомпонентные – тройные.

Многокомпонентные.

2. По фазовому составу – гомогенные и гетерогенные

Гомогенные системы имеют одинаковые макроскопические свойства в любой точке системы, прежде всего температуру, давление, концентрацию, а также многие другие, например, показатель преломления, диэлектрическую проницаемость, кристаллическую структуру и др. Гомогенные системы состоят из одной фазы.

Фаза – это однородная часть системы, отделенная от других фаз поверхностью раздела и характеризующаяся своим уравнением состояния. Фаза и агрегатное состояние – перекрывающиеся, но не идентичные понятия. Агрегатных состояний только 4, фаз может быть гораздо больше.

Гетерогенные системы состоят минимум из двух фаз.

3. По типам связей с окружающей средой (по возможностям обмена с окружающей средой).

Изолированная система не обменивается с окружающей ни энергией, ни веществом. Это идеализированная система, которую, в принципе нельзя экспериментально изучать.

Закрытая система может обмениваться с окружающей средой энергией, но не обменивается веществом.



Открытая система обменивается и энергией, и веществом

Состояние ТДС

Состояние ТДС – это совокупность всех ее измеримых макроскопических свойств, имеющих, следовательно, количественное выражение. Макроскопический характер свойств означает, что их можно приписать только к системе в целом, а не отдельным частицам, которые составляют ТДС (Т, р, V, c, U, n k). Количественные характеристики состояния связаны между собой. Поэтому существует минимальный набор характеристик системы, называемых параметрами , задание которых позволяет полностью описать свойства системы. Количество этих параметров зависит от типа системы. В простейшем случае для закрытой гомогенной газовой системы в состоянии равновесия достаточно задать только 2 параметра. Для открытой системы кроме этих 2 характеристик системы требуется задать число молей каждого компонента.

Термодинамические переменные подразделяются:

- внешние , которые определяются свойствами и координатами системы в окружающей среде и зависят от контактов системы с окружением, например, масса и количество компонентов, напряженность электрического поля, число таких переменных ограничено;

- внутренние, которые характеризуют свойства системы, например, плотность, внутренняя энергия, число таких параметров неограниченно;

- экстенсивные, которые прямо пропорциональны массе системы или числу частиц, например, объем, энергия, энтропия, теплоемкость;

-интенсивные, которые не зависят от массы системы, например, температура, давление.

Параметры ТДС связаны между собой соотношением, которое носит название уравнение состояние системы. Общий вид его f (p,V, T) = 0. Одна из важнейших задач ФХ – найти уравнение состояния любой системы. Пока точное уравнение состояния известно лишь для идеальных газов (уравнение Клапейрона - Менделеева).

pV = nRT, (1.1)

где R – универсальная газовая постоянная = 8.314 Дж/(моль.К) .

[p] = Па, 1атм = 1,013*10 5 Па = 760 мм рт.ст.,

[V] = м 3 , [T] = К, [n] = моль, N = 6.02*1023 моль-1. Реальные газы лишь приближенно описываются данным уравнением, и чем выше давление и ниже температура, тем больше отклонение от данного уравнения состояния.

Различают равновесное и неравновесное состояния ТДС.

Классическая термодинамика обычно ограничивается рассмотрением равновесных состояний ТДС. Равновесие - это такое состояние, к которому самопроизвольно приходит ТДС, и в котором она может существовать бесконечно долго в отсутствие внешних воздействий. Для определения равновесного состояния всегда требуется меньшее количество параметров, чем для неравновесных систем.

Равновесное состояние подразделяют на:

- устойчивое (стабильное) состояние, при котором всякое бесконечно малое воздействие вызывает только бесконечно малое изменение состояния, а при устранении этого воздействия система возвращается в исходное состояние;

- метастабильное состояние, при котором некоторые конечные воздействия вызывают конечные изменения состояния, которые не исчезают при устранения этих воздействий.

Изменение состояния ТДС связанное с изменением хотя бы одной из ее термодинамических переменных, называют термодинамическим процессом . Особенностью описания термодинамических процессов является то, что они характеризуются не скоростями изменения свойств, а величинами изменений. Процесс в термодинамике – это последовательность состояний системы, ведущая от начального набора термодинамических параметров к - конечному. Различают следующие термодинамические процессы:

- самопроизвольные , для осуществления которых не надо затрачивать энергию;

- несамопроизвольные , происходящие только при затрате энергии;

- необратимые (или неравновесные) – когда в результате процесса невозможно возвратить систему к первоначальному состоянию.

-обратимые – это идеализированные процессы, которые проходят в прямом и обратном направлении через одни и те же промежуточные состояния, и после завершения цикла ни в системе, ни в окружающей среде не наблюдается никаких изменений.

Функции состояния – это характеристики системы, которые зависят только от параметров состояния, но не зависят от способа его достижения.

Функции состояния характеризуются следующими свойствами:

Бесконечно малое изменение функции f является полным дифференциалом df;

Изменение функции при переходе из состояния 1 в состояние 2 определяется только этими состояниями ∫ df = f 2 – f 1

В результате любого циклического процесса функция состояния не изменяется, т.е. равна нулю.

Теплота и работа – способы обмена энергией между ТДС и окружающей средой. Теплота и работа характеристики процесса, они не являются функциями состояния.

Работа - форма обмена энергией на макроскопическом уровне, когда происходят направленное перемещение объекта. Работа считается положительной, если ее совершает система против внешних сил.

Теплота – форма обмена энергией на микроскопическом уровне, т.е. в форме изменения хаотического движения молекул. Принято считать положительной теплоту, полученную системой, и работу, совершенную над ней, т.е. действует “эгоистический принцип”.

Наиболее часто используемыми единицами измерения энергии и работы, в частности, в термодинамике являются джоуль (Дж) в системе СИ и внесистемная единица – калория (1 кал = 4,18 Дж).

В зависимости от характера объекта различают разные виды работы:

1. Механическая - перемещение тела

dА мех = - F ех dl. (2.1)

Работа – скалярное произведение 2-х векторов силы и перемещения, т.е.

|dА мех | = F dl cos α. Если направление внешней силы противоположно перемещению, совершаемому внутренними силами, то cos α < 0.

2. Работа расширения (чаще всего рассматривается расширение газа)

dА = - р dV (1.7)

Однако нужно иметь в виду, что это выражение справедливо только для обратимого протекания процесса.

3. Электрическая – перемещение электрических зарядов

dА эл = -jdq, (2.2)

где j - электрический потенциал.

4. Поверхностная – изменение площади поверхности,

dА поверхн. = -sdS, (2.3)

где s - поверхностное натяжение.

5. Общее выражение для работы

dА = - Ydx, (2.4)

Y – обобщенная сила, dx - обобщенная координата, таким образом работа может рассматриваться как произведение интенсивного фактора на изменение экстенсивного.

6. Все виды работы, кроме работы расширения, называются полезной работой (dА’ ). dА = рdV + dА’ (2.5)

7. По аналогии можно ввести понятие химической работы, когда направленно перемещается k -ое химическое вещество, n k – экстенсивное свойство, при этом интенсивный параметр m k называется химическим потенциалом k -ого вещества

dА хим = -Sm k dn k . (2.6)