Основные параметры состояния термодинамических систем

Термодинамической системой называется совокупность различныхтел, способных энергетически взаимодействовать между собой и окру-жающей средой. При этом количество вещества может быть постоянным или переменным, а тела могут находиться в различных агрегатных состоя-ниях (газообразном, жидком или твердом).

Под окружающей средой понимается совокупность всех остальных тел, не вошедших в термодинамическую систему.

Термодинамическая система называется изолированной , если она не взаимодействует с окружающей средой, закрытой - если это взаимодейст-вие происходит только в форме обмена энергией, и открытой - если она обменивается с окружающей средой как энергией, так и веществом. Измене-ние состояния термодинамической системы в результате обмена энергией с окружающей средой называется термодинамическим процессом .

Основными параметрами, которыми характеризуются процессы вза-имного превращения работы и теплоты, являются температура Т , давление р и объем V .

Температура является мерой интенсивности движения молекул ве-щества. Чем больше кинетическая энергия движения молекул, тем выше температура. Температура, соответствующая состоянию полного покоя молекул газа, принята за абсолютный нуль. Эта точка является началом от-


счета температуры по абсолютной шкале Кельвина (обозначение - Т , К). В технике обычно используется стоградусная шкала температур Цельсия (обозначение - t , °С), в которой за 0 °С принята точка плавления льда, а за 100 градусов - постоянная точка кипения воды при нормальном атмо-сферном давлении.

Пересчет температуры из стоградусной шкалы в абсолютную произ-водится по формуле

Т = t +273,15К, (2.2)

при этом по размеру градус Цельсия равен кельвину: 1 °С = 1 К, т. е.

Температура определяет направление перехода теплоты, выступает как мера нагретости тел. Две системы, находящиеся между собой в тепло-вом равновесии, имеют одинаковые температуры.

Давление газа. Согласно кинетической теории,газ,находящийся взакрытом сосуде, оказывает на его стенки давление, которое является ре-зультатом силового воздействия молекул газа, находящихся в беспорядоч-ном движении. Давление определяется как сила, действующая на единицу поверхности, и измеряется в паскалях (Па = Н/м 2).

Сумма барометрического (атмосферного) и избыточного давления, оказываемого газом на стенки сосуда, составляет абсолютное давление:

где V - объем, занимаемый газом, м 3 ; М - масса газа в объеме V , кг. Количество вещества, содержащееся в единице объема, называют

плотностью газа ρ , кг/м 3 . Она является обратной величиной по отношению к удельному объему.

Состояние термодинамической системы, характеризуемое постоян-ным во времени и во всей массе системы значением параметров, называет-ся равновесным . В системе, находящейся в термодинамическом равнове-сии, отсутствует всякий поток тепла и вещества как внутри системы, так и между системой и окружающей средой. Равновесное состояние газа можно выразить уравнением f (р , V , T) = 0.


Идеальным газом называется газ,состоящий из молекул,размерамикоторых можно пренебречь и которые не взаимодействуют между собой (отсутствует потенциальная энергия взаимодействия). Введение понятия идеального газа в термодинамике позволяет получить более простые ана-литические зависимости между параметрами состояния. Опыт показывает, что с известным приближением эти зависимости могут быть применены для изучения свойств реальных газов.

Термодинамика – это наука, изучающая общие закономерности протекания процессов, сопровождающихся выделением, поглощением и превращением энергии. Химическая термодинамика изучает взаимные превращения химической энергии и других ее форм – тепловой, световой, электрической и т.д., устанавливает количественные законы этих переходов, а также позволяет предсказать устойчивость веществ при заданных условиях и их способность вступать в те или иные химические реакции. Объект термодинамического рассмотрения называют термодинамической системой или просто системой.

Система – любой объект природы, состоящий из большого числа молекул (структурных единиц) и отделённый от других объектов природы реальной или воображаемой граничной поверхностью (границей раздела).

Состояние системы – совокупность свойств системы, позволяющих определить систему с точки зрения термодинамики.

Типы термодинамических систем :

I. По характеру обмена веществом и энергией с окружающей средой :

1. Изолированная система – не обменивается со средой ни веществом, ни энергией (Δm = 0; ΔE = 0) - термос.

2. Закрытая система – не обменивается со средой веществом, но может обмениваться энергией (закрытая колба с реагентами).

3. Открытая система – может обмениваться со средой, как веществом, так и энергией (человеческое тело).

II. По агрегатному состоянию :

1. Гомогенная – отсутствие резких изменений физических и химических свойств при переходе от одних областей системы к другим (состоят из одной фазы).

2. Гетерогенная – две или более гомогенные системы в одной (состоит из двух или нескольких фаз).

Фаза – это часть системы, однородная во всех точках по составу и свойствам и отделенная от других частей системы поверхностью раздела. Примером гомогенной системы может служить водный раствор. Но если раствор насыщен и на дне сосуда есть кристаллы солей, то рассматриваемая система – гетерогенна (есть граница раздела фаз). Другим примером гомогенной системы может служить простая вода, но вода с плавающим в ней льдом – система гетерогенная.

Фазовый переход - превращения фаз (таяние льда, кипение воды).

Термодинамический процесс - переход термодинамической системы из одного состояния в другое, который всегда связан с нарушением равновесия системы.

Классификация термодинамических процессов :

7. Изотермический - постоянная температура – T = const

8. Изобарный - постоянное давление – p = const

9. Изохорный - постоянный объем – V = const

Стандартное состояние - это состояние системы, условно выбранное в качестве стандарта для сравнения.

Для газовой фазы - это состояние химически чистого вещества в газовой фазе под стандартным давлением 100 кПа (до 1982 года - 1 стандартная атмосфера, 101 325 Па, 760 мм ртутного столба), подразумевая наличие свойств идеального газа.

Для беспримесной фазы , смеси или растворителя в жидком или твёрдом агрегатном состоянии - это состояние химически чистого вещества в жидкой или твёрдой фазе под стандартным давлением.

Для раствора - это состояние растворённого вещества со стандартной моляльностью 1 моль/кг, под стандартным давлением или стандартной концентрации, исходя из условий, что раствор неограниченно разбавлен.

Для химически чистого вещества - это вещество в чётко определённом агрегатном состоянии под чётко определённым, но произвольным, стандартным давлением.

В определение стандартного состояния не входит стандартная температура , хотя часто говорят о стандартной температуре, которая равна 25°C (298,15 К).

2.2. Основные понятия термодинамики: внутренняя энергия, работа, теплота

Внутренняя энергия U - общий запас энергии, включая движение молекул, колебания связей, движение электронов, ядер и др., т.е. все виды энергии кроме кинетической и потенциальной энергии системы в целом.

Нельзя определить величину внутренней энергии какой-либо системы, но можно определить изменение внутренней энергии ΔU, происходящее в том или ином процессе при переходе системы из одного состояния (с энергией U 1) в другое (с энергией U 2):

ΔU зависит от вида и количества рассматриваемого вещества и условий его существования.

Суммарная внутренняя энергия продуктов реакции отличается от суммарной внутренней энергии исходных веществ, т.к. в ходе реакции происходит перестройка электронных оболочек атомов взаимодействующих молекул.

Введение . Предмет теплотехники. Основные понятия и определения. Термодинамическая система. Параметры состояния. Температура. Давление. Удельный объем. Уравнение состояния. Уравнение Ван-дер-Ваальса .

Соотношение между единицами:

1 бар = 10 5 Па

1 кг/см 2 (атмосфера) = 9.8067 10 4 Па

1мм рт. ст (миллиметр ртутного столба) = 133 Па

1 мм вод. ст. (миллиметр водного столба) = 9.8067 Па

Плотность - отношение массы вещества к объему занимаемому эти веществом .

Удельный объем - величина обратная плотности, т.е. отношения объема занятого веществом к его массе .

Определение: Если в термодинамической системе меняется хотя бы один из параметров любого входящего в систему тела, то в системе происходит термодинамический процесс .

Основные термодинамические параметры состояния Р, V, Т однородного тела зависят один от другого и взаимно связаны уравнением состояния:

F (P, V, Т )

Для идеального газа уравнение состояния записывается в виде:

P - давление

v - удельный объем

T - температура

R - газовая постоянная (у каждого газа свое значение)

Если известно уравнение состояния, то для определения состояния простейших систем достаточно знать две независимые переменные из 3-х

Р = f1 (v, т); v = f2 (Р, Т); Т = f3 (v, Р).

Термодинамические процессы часто изображаются на графиках состояния, где по осям отложены параметры состояния. Точки, на плоскости такого графика, соответствуют определенному состоянию системы, линии на графике соответствуют термодинамическим процессам, переводящим систему из одного состояния в другое.

Рассмотрим термодинамическую систему, состоящую из одного тела какого-либо газа в сосуде с поршнем, причем сосуд и поршень в данном случае является внешней средой.

Пусть, для примера, происходит нагрев газа в сосуде, возможны два случая :

1) Если поршень зафиксирован, и объем не меняется, то произойдет повышение давления в сосуде. Такой процесс называется изохорным (v = const), идущий при постоянном объеме;

Рис. 1.1. Изохорные процессы в P - T координатах: v 1 >v 2 >v 3

2) Если поршень свободен, то нагреваемый газ будет расширяться, при постоянном давлении такой процесс называется изобарическим (P = const), идущим при постоянном давлении.

Рис. 1.2 Изобарные процессы в v - T координатах: P 1 >P 2 >P 3

Если, перемещая поршень, изменять объем газа в сосуде то, температура газа тоже будет изменяться, однако можно охлаждая сосуд при сжатии газа и нагревая при расширении можно достичь того, что температура будет постоянной при изменениях объема и давления, такой процесс называется изотермическим (Т = const).

Рис. 1.3 Изотермические процессы в P - v координатах: Т 1 >T 2 >T 3

Процесс, при котором отсутствует теплообмен между системой и окружающей средой, называется адиабатным , при этом количество теплоты в системе остается постоянными (Q = const). В реальной жизни адиабатных процессов не существует поскольку полностью изолировать систему от окружающей среды не возможно. Однако, часто происходят процессы, при которых теплообменном с окружающей средой очень мал, например, быстрое сжатие газа в сосуде поршнем, когда тепло не успевает отводиться за счет нагрева поршня и сосуда.

Рис. 1.4 Примерный график адиабатного процесса в P - v координатах.

Определение: Круговой процесс (Цикл) - это совокупность процессов, возвращающих систему в первоначальное состояние . Число отдельных процессов может быть любым в цикле.

Понятие кругового процесса является для нас ключевым в термодинамике, поскольку работа АЭС основана на пароводяном цикле, другими словами мы можем рассматривать испарение воды а активной зоне (АЗ), вращение паром ротора турбины, конденсацию пара и поступление воды в АЗ как некий замкнутый термодинамический процесс или цикл.

Определение: Рабочие тело - определенное количество вещества, которое, участвуя в термодинамическом цикле, совершает полезную работу . Рабочим телом в реакторной установке РБМК является вода, которая после испарения в активной зоне в виде пара совершает работу в турбине, вращая ротор.

Определение: Передача энергии в термодинамическом процессе от одного тела к другому, связанная с изменением объема рабочего тела, с перемещением его во внешнем пространстве или с изменением его положения называется работой процесса .

Термодинамическая система

Техническая термодинамика (т/д) рассматривает закономерности взаимного превращения теплоты в работу. Она устанавливает взаимосвязь между тепловыми, механическими и химическими процессами, которые совершаются в тепловых и холодильных машинах, изучает процессы, происходящие в газах и парах, а также свойства этих тел при различных физических условиях.

Термодинамика базируется на двух основных законах (началах) термодинамики:

I закон термодинамики - закон превращения и сохранения энергии;

II закон термодинамики - устанавливает условия протекания и направленность макроскопических процессов в системах, состоящих из большого количества частиц.

Техническая т/д, применяя основные законы к процессам превращения теплоты в механическую работу и обратно, дает возможность разрабатывать теории тепловых двигателей, исследовать процессы, протекающие в них и т.п.

Объектом исследования является термодинамическая система, которой могут быть группа тел, тело или часть тела. То что находится вне системы называется окружающей средой . Т/д система это совокупность макроскопических тел, обменивающиеся энергией друг с другом и окружающей средой. Например: т/д система - газ, находящейся в цилиндре с поршнем, а окружающая среда - цилиндр, поршень, воздух, стены помещения.

Изолированная система - т/д система не взаимодействующая с окружающей средой.

Адиабатная (теплоизолированная) система - система имеет адиабатную оболочку, которая исключает обмен теплотой (теплообмен) с окружающей средой.

Однородная система - система, имеющая во всех своих частях одинаковый состав и физические свойства.

Гомогенная система - однородная система по составу и физическому строению, внутри которой нет поверхностей раздела (лед, вода, газы).

Гетерогенная система - система, состоящая из нескольких гомогенных частей (фаз) с различными физическими свойствами, отделенных одна от другой видимыми поверхностями раздела (лед и вода, вода и пар).
В тепловых машинах (двигателях) механическая работа совершается с помощью рабочих тел - газ, пар.

Свойства каждой системы характе-ризуются рядом величин, которые при-нято называть термодинамиче-скими параметрами. Рассмот-рим некоторые из них, используя при этом известные из курса физики молекулярно-кинетические представления об идеальном газе как о совокупности моле-кул, которые имеют исчезающе малые размеры, находятся в беспорядочном тепловом движении и взаимодействуют друг с другом лишь при соударениях.

Давление обусловлено взаимо-действием молекул рабочего тела с по-верхностью и численно равно силе, дей-ствующей на единицу площади повер-хности тела по нормали к последней. В соответствии с молекулярно-кинетической теорией давление газа определяется соотношением

Где n — число молекул в единице объема;

т — масса молекулы; с 2 — средняя квадратическая скорость поступательного движения молекул.

В Международной системе единиц (СИ) давление выражается в паскалях (1 Па = 1 Н/м 2). Поскольку эта единица мала, удобнее использовать 1 кПа = 1000 Па и 1 МПа = 10 6 Па.

Давление измеряется при помощи манометров, барометров и вакуумметров.

Жидкостные и пружинные манометры измеряют избыточное давление, пред-ставляющее собой разность между полным или абсолютным давлением р изме-ряемой среды и атмосферным давлением

p атм, т.е.

Приборы для измерения давлений ниже атмосферного называются вакуум-метрами; их показания дают значение разрежения (или вакуума):

т. е. избыток атмосферного давления над абсолютным.

Следует отметить, что параметром состояния является абсолютное давление. Именно оно входит в термодинамические уравнения.

Температурой называется физическая величина , характеризующая степень нагретости тела. Понятие о температуре вытекает из следующего утвер-ждения: если две системы находятся в тепловом контакте, то в случае неравенства их температур они будут обмениваться теплотой друг с другом, если же их температуры равны, то теплообмена не будет.

С точки зрения молекулярно-кинетических представлений температура есть мера интенсивности теплового движения молекул. Е е численное значение связано с величиной средней кинетической энергии молекул вещества:

где k — постоянная Больцмана, равная 1,380662.10? 23 Дж/К. Температура T, определенная таким образом, называется абсолютной .

В системе СИ единицей температуры является кельвин (К); на практике широко применяется градус Цельсия (°С). Соотношение между абсолютной Т и стоградусной I температурами имеет вид

В промышленных и лабораторных условиях температуру измеряют с помощью жидкостных термометров, пирометров, термопар и других приборов.

Удельный объем v это объем единицы массы вещества. Если однородное тело массой М занимает объем v, то по определению

v = V/М.

В системе СИ единица удельного объема 1 м 3 /кг. Между удельным объемом вещества и его плотность существует очевидное соотношение:

Для сравнения величин, характеризующих системы в одинаковых состояниях вводится понятие «нормальные физические условия»:

p = 760 мм рт.ст. = 101,325 кПа; T = 273,15 K.

В разных отраслях техники и разных странах вводят свои, несколько отличные от приведенных «нормальные условия», например, «технические» (p = 735,6 мм рт.ст. = 98 кПа, t = 15?C) или нормальные условия для оценки производительности компрессоров (p = 101,325 кПа, t = 20?С) и т. д.

Если все термодинамические параметры постоянны во времени и одинаковы во всех точках системы, то такое состояние системы называется равно-весным .

Если между различными точками в системе существуют разности темпера-тур, давлений и других параметров, то она является неравновесной . В такой системе под действием градиентов параметров возникают потоки теплоты, вещества и другие, стремящиеся вернуть ее в состояние равновесия. Опыт показывает, что изолированная система с течением времени всегда приходит в со-стояние равновесия и никогда самопроизвольно выйти из него не может. В классической термодинамике рассматриваются только равновесные системы.

Уравнение состояния. Для равновесной термодинамической системы существует функциональная связь между параметрами состояния, которая называется уравнением состояния . Опыт показывает, что удельный объем, температура и давление простейших систем, которыми являются газы, пары или жидкости, связаны термическим уравнением состояние вида:

Уравнению состояния можно придать другую форму:

Эти уравнения показывают, что из трех основных параметров, определяющих состояние системы, независимыми являются два любых.

Для решения задач методами термодинамики совершенно необходимо знать уравнение состояния. Однако оно не может быть получено в рамках термодинамики и должно быть найдено либо экспериментально, либо методами статистической физики. Конкретный вид уравнения состояния зависит от индивидуальных свойств вещества.

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

Совокупность макроскопич. тел, к-рые могут взаимодействовать между собой и с др. телами (внеш. средой) - обмениваться с ними энергией и в-вом. Т. с. состоит из столь большого числа структурных ч-ц (атомов, молекул), что её состояние можно характеризовать макроскопич. параметрами: плотностью, давлением, концентрацией в-в, образующих Т. с., и т. д.

РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКОЕ), если параметры системы с течением времени не меняются и в системе нет к.-л. стационарных потоков (теплоты, в-ва и др.). Для равновесных Т. с. вводится понятие температуры как параметра , имеющего одинаковое значение для всех макроскопич. частей системы. Число независимых параметров состояния равно числу степеней свободы Т. с., остальные параметры могут быть выражены через независимые с помощью уравнения состояния. Св-ва равновесных Т. с. изучает равновесных процессов (термостатика); св-ва неравновесных систем - .

В термодинамике рассматривают: закрытые Т. с., не обменивающиеся в-вом с др. системами, обменивающиеся в-вом и энергией с др. системами; адиабатные Т. с., в к-рых отсутствует с др. системами; изолированные Т. с., не обменивающиеся с др. системами ни энергией, ни в-вом. Если система не изолирована, то её состояние может изменяться; изменение состояния Т. с. наз. термодинамическим процессом. Т. с. может быть физически однородной (гомогенной системой) и неоднородной (гетерогенной системой), состоящей из неск. однородных частей с разными физ. св-вами. В результате фазовых и хим. превращений (см. ФАЗОВЫЙ ПЕРЕХОД) гомогенная Т. с. может стать гетерогенной и наоборот.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

Совокупность макроскопич. тел, к-рые могут взаимодействовать между собой и с др. телами (внеш. средой) - обмениваться с ними энергией и веществом. Т. с. состоит из столь большого числа структурных частиц (атомов, молекул), что её со-стойние можно характеризовать макроскопич. параметрами: плотностью, давлением, концентрацией веществ, образующих Т. с., и т. д.

Т. с. находится в равновесии (см. Равновесие термодинамическое), если параметры системы с течением времени не меняются и в системе нет к.-л. стационарных потоков (теплоты, вещества и др.). Для равновесных Т. с. вводится понятие температуры как параметра состояния, имеющего одинаковое значение для всех макроскопич. частей системы. Число независимых параметров состояния равно числу степеней свободы Т. с., остальные параметры могут быть выражены через независимые с помощью уравнения состояния. Свойства равновесных Т. с. изучает термодинамика равновесных процессов (термостатика), свойства не-равновесных систем - термодинамика неравновесных процессов.

В термодинамике рассматривают: з а к р ы т ы е Т. с., не обменивающиеся веществом с др. системами; открытые системы, обменивающиеся веществом и энергией с др. системами; а д и а б а т н ы е Т. с., в к-рых отсутствует теплообмен с др. системами; и з о л и р о в а н н ы е Т. гомогенной системой)и неоднородной ( гетерогенной системой), состоящей из нескольких однородных частей с разными физ. свойствами. В результате фазовых и хим. превращений (см. Фазовый переход )гомогенная Т. с. может стать гетерогенной и наоборот.

Лит.: Эпштейн П. С., Курс термодинамики, пер. с англ., М.- Л., 1948; Леонтович М. А., Введение в термодинамику, 2 изд., М.-Л., 1951; Самойлович А, Г., Термодинамика и , 2 изд., М., 1955.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА" в других словарях:

    Макроскопическое тело, выделенное из окружающей среды при помощи перегородок или оболочек (они могут быть также и мысленными, условными) и характеризующееся макроскопическими параметрами: объемом, температурой, давлением и др. Для этого… … Большой Энциклопедический словарь

    термодинамическая система - термодинамическая система; система Совокупность тел, могущих энергетически взаимодействовать между собой и с другими телами и обмениваться с ними веществом … Политехнический терминологический толковый словарь

    ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА - совокупность физ. тел, которые могут обмениваться между собой и с др. телами (внешней средой) энергией и веществом. Т. с. является любая система, состоящая из очень большого числа молекул, атомов, электронов и др. частиц, имеющих множество… … Большая политехническая энциклопедия

    термодинамическая система - Тело (совокупность тел), способное (способных) обмениваться с другими телами (между собой) энергией и (или) веществом. [Сборник рекомендуемых терминов. Выпуск 103. Термодинамика. Академия наук СССР. Комитет научно технической терминологии. 1984 г … Справочник технического переводчика

    термодинамическая система - – произвольно выбранная часть пространства, содержащая одно или несколько веществ и отделенная от внешней среды реальной или условной оболочкой. Общая химия: учебник / А. В. Жолнин … Химические термины

    термодинамическая система - макроскопическое тело, отделенное от окружающей среды реальными или воображаемыми границами, которое можно охарактеризовать термодинамическими параметрами: объемом, температурой, давлением и др. Различают изолированные,… … Энциклопедический словарь по металлургии

    Макроскопическое тело, выделенное из окружающей среды при помощи перегородок или оболочек (они могут быть также и мысленными, условными), которое можно характеризовать макроскопическими параметрами: объёмом, температурой, давлением и др. Для… … Энциклопедический словарь

    Термодинамика … Википедия

    термодинамическая система - termodinaminė sistema statusas T sritis chemija apibrėžtis Kūnas (kūnų visuma), kurį nuo aplinkos skiria reali ar įsivaizduojama riba. atitikmenys: angl. thermodynamic system rus. термодинамическая система … Chemijos terminų aiškinamasis žodynas

    термодинамическая система - termodinaminė sistema statusas T sritis fizika atitikmenys: angl. thermodynamic system vok. thermodynamisches System, n rus. термодинамическая система, f pranc. système thermodynamique, m … Fizikos terminų žodynas

Термодинамическая система – совокупность макроскопических тел, которые могут взаимо-действовать между собой и с другими телами (внешней средой) – обмениваться с ними энергией и веществом. Обмен энергией и веществом может происходить как внутри самой системы между ее частями, так и между системой и внешней средой. В зависимости от возможных способов изоляции системы от внешней среды различают несколько видов термодинамических систем.

Открытой системой называется термодинамическая система, которая может обмениваться веществом и энергией с внешней средой. Типичными примерами таких систем могут служить все живые организмы, а также жидкость, масса которой непрерывно уменьшается вследствие испарения или кипения.

Термодинамическая система называется закрытой , если она не может обмениваться с внешней средой ни энергией, ни веществом. Замкнутой системой будем называть термодина-мическую систему, изолированную в механическом отношении, т.е. не способную к обмену энергией с внешней средой путем совершения работы. Примером такой системы может служить газ, заключенный в сосуд постоянного объема. Термодинамическая система называется адиабатной , если она не может обмениваться с другими системами энергией путем теплообмена.

Термодинамическими параметрами (параметрами состояния) называются физические величины, служащие для характеристики состояния термодинамической системы.

Примерами термодинамических параметров являются давление, объем, температура, концентрация. Различают два типа термодинамических параметров: экстенсивные и интенсивные . Первые пропорциональны количеству вещества в данной термодинамической системе, вторые не зависят от количества вещества в системе. Простейшим экстенсивным параметром является объем V системы. Величину v , равную отношению объема системы к ее массе, называют удельным объе-мом системы. Простейшими интенсивными параметрами являются давление р и температура Т .

Давлением называется физическая величина

где dFn – модуль нормальной силы, действующей на малый участок поверхности тела пло-
щадью dS .

Если давление и удельный объем имеют ясный и простой физический смысл, то гораздо более сложным и менее наглядным является понятие температуры. Заметим прежде всего, что понятие температуры, строго говоря, имеет смысл только для равновесных состояний системы.

Равновесное состояние термодинамической системы – состояние системы, при котором все параметры имеют определенные значения и в котором система может оставаться сколько угодно долго. Температура во всех частях термодинамической системы, находящейся в равно-весном состоянии, одинакова.

При теплообмене между двумя телами с различной температурой происходит передача теплоты от тела с большей температурой к телу с меньшей температурой. Этот процесс прекра-щается, когда температуры обоих тел выравниваются.

Температура системы, находящейся в равновесном состоянии, служит мерой интенсивности теплового движения атомов, молекул и других частиц, образующих систему. В системе частиц, описываемых законами классической статистической физики и находящихся в равновесном состоянии, средняя кинетическая энергия теплового движения частиц прямо пропорциональна термодинамической температуре системы. Поэтому иногда говорят, что температура характе-ризует степень нагретости тела.

При измерении температуры, которое можно производить только косвенным путем, исполь-зуется зависимость от температуры целого ряда физических свойств тела, поддающихся прямому или косвенному измерению. Например, при изменении температуры тела изменяются его длина и объем, плотность, упругие свойства, электрическое сопротивление и т.д. Изменение любого из этих свойств является основой для измерений температуры. Для этого необходимо, чтобы для одного (выбранного) тела, называемого термометрическим телом, была известна функциональная зависимость данного свойства от температуры. Для практических измерений температуры применяются температурные шкалы, установленные с помощью термометрических тел. В Международной стоградусной температурной шкале температура выражается в градусах Цельсия (°С) [А. Цельсий (1701–1744) – шведский ученый] и обозначается t , причем принимается, что при нормальном давлении 1,01325 × 10 5 Па температуры плавления льда и кипения воды равны, соответственно, 0 и 100 °С. В термодинамической температурной шкале температура выражается в Кельвинах (К) [У. Томсон, лорд Кельвин (1821–1907) – английский физик], обозначается Т и называется термодинамической температурой. Связь между термодинамической температурой Т и температурой по стоградусной шкале имеет вид T = t + 273,15.

Температура T = 0 К (по стоградусной шкале t = –273,15 °С) называется абсолютным нулем температуры, или нулем по термодинамической шкале температур.

Параметры состояния системы разделяются на внешние и внутренние. Внешними парамет-рами системы называются физические величины, зависящие от положения в пространстве и различных свойств (например электрических зарядов) тел, которые являются внешними по отношению к данной системе. Например, для газа таким параметром является объем V сосуда,
в котором находится газ, ибо объем зависит от расположения внешних тел – стенок сосуда. Атмосферное давление является внешним параметром для жидкости в открытом сосуде. Внутренними параметрами системы называются физические величины, зависящие как от положения внешних по отношению к системе тел, так и от координат и скоростей частиц, образующих данную систему. Например, внутренними параметрами газа являются его давление и энергия, которые зависят от координат и скоростей движущихся молекул и от плотности газа.

Под термодинамическим процессом понимают всякое изменение состояния рассматривае-мой термодинамической системы, характеризующееся изменением ее термодинамических параметров. Термодинамический процесс называется равновесным , если в этом процессе система проходит непрерывный ряд бесконечно близких термодинамически равновесных состояний. Реальные процессы изменения состояния системы всегда происходят с конечной скоростью и поэтому не могут быть равновесными. Очевидно, однако, что реальный процесс изменения состояния системы будет тем ближе к равновесному, чем медленнее он совершается, поэтому такие процессы называют квазистатическими .

Примерами простейших термодинамических процессов могут служить следующие процессы:

а) изотермический процесс, при котором температура системы не изменяется (T = const);

б) изохорный процесс, происходящий при постоянном объеме системы (V = const);

в) изобарный процесс, происходящий при постоянном давлении в системе (p = const);

г) адиабатный процесс, происходящий без теплообмена между системой и внешней средой.