Кипением называется парообразование, характеризующееся воз­никновением новых свободных поверхностей раздела жидкой и паро­вой фаз внутри жидкости, нагретой выше температуры насыщения.

Характерной особенностью процесса кипения является образова­ние пузырьков пара. Различают кипение жидкости поверх­ностное и объемное .

Поверхностное кипение возникает тогда, когда температура жидкости выше температуры насыщения при данном давлении, а температура поверхности теплообмена выше темпе­ратуры кипящей жидкости. Образование пузырьков пара происходит непосредственно на поверхности теплообмена.

Объемное кипение может происходить при значительном перегреве жидкости от­носительно температуры насыщения при данном давлении. Пузыри пара возникают во всем объеме.

Наиболее распространено поверхностное кипение.

Как показывают наблюдения, пузырьки пара зарождаются только на обогреваемой поверхности в перегретом пограничном слое жидко­сти и только в отдельных точках этой поверхности, называемых цент­рами парообразования , которымияв­ляются неровности самой стенки, частицы накипи и выделяющиеся из жидкости пузырьки газа. Количество образующихся пузырьков пара будет тем больше, чем больше центров парообразования, чем больше перегрет пограничный слой, чем больше температурный напор или чем больше тепловая нагрузка поверхности нагрева.

При достижении определенных размеров пузырьки пара отрыва­ются от поверхности и всплывают вверх, а на их месте возникают новые пузырьки. Величина пузырьков пара в значительной степени зависит от смачивающей способности жидкости. Если жид­кость хорошо смачивает поверхность теплообмена, то пузырек пара легко отрывается. Если кипящая жидкость не смачивает поверхность, то пузырек пара имеет толстую ножку, и отрывается только часть пузырька, а ножка остается на по­верхности.

Рост пузырьков до от­рыва от обогреваемой поверхности и движение ихпосле отрыва вызывают ин­тенсивную циркуляцию и перемешивание жидкости в пограничном слое, вследствие чего резко возрастает интенсивность теплоотдачи от поверхности к жидкости. Такой режим называется пу­зырьковым кипением .

С возрастанием температурного напора или с увеличением плотно­сти теплового потока число центров парообразования непрерывно уве­личивается и, наконец, их становится так много, что отдельные пузырь­ки пара сливаются в сплошной паровой слой, который периодически в некоторых местах разрывается, и образовавшийся пар прорывается в объем кипящей жидкости. Такой режим кипения называется пле­ночным. Сплошной паровой слой ввиду малой теплопроводности пара пред­ставляет большое термическое сопротивление. Теп­лоотдача от стенки к жидкости резко падает, а температурный напор значительно возрастает. Коэффициент теплоотдачи при этом сни­жается и если количество передаваемой теплоты q остается неизмен­ным, то, как следует из уравнения q =a(t с t ж) ,при постоянной температуре жидкости должно произойти значительное увеличение температуры стенки t c . Увеличение температуры поверхности может привести к пережогу стенки и к аварии аппарата.



Как показывают исследования, при кипении жидкости в большом объеме в условиях свободного движения коэффициент теплоотдачи зависит от физических свойств жидкости, температурного напора и давления. На рисунке показан график изменения коэффициента теплоотдачи воды при кипении и зависимость плотности теплового потока от Dt . При малых температурных напорах значение коэф­фициента теплоотдачи определяется условиями свободной конвекции однофазной жидкости (участок АВ ). При увеличении Dt коэффициент теп­лоотдачи быстро возрастает и проис­ходит интенсивное пузырьковое ки­пение. В точке К наступает изменение режима кипения. Пузырьковое кипе­ние переходит в пленочное и при дальнейшем повышении Dt коэффи­циент теплоотдачи резко падает. Этот переход сопровождается таким интенсивным образованием пузырьков, что они не успевают отрываться и обра­зуют сплошную паровую пленку, ко­торая изолирует жидкость от стенки, а кипение переходит в пленочное. Величины Dt ,aи q ,соответствующие моменту перехода пузырько­вого режима кипения в пленочный, называются критическими.

Для расчета коэффициента теплоотдачи при пузырьковом кипении воды (при давлении р = 0,02-8 МПа) рекомендуются простые расчетные формулы:

a = 3,15р 0,15 q 0,7 ; a = 46Dt 2,33 р 0,5 ,

где Dt = t с – t ж – температурный напор; р – давление пара, бар; q – плотность теплового потока, Вт/м 2 .

Различают теплоотдачу при кипении жидкости в условиях свободной конвекции и теплоотдачу при кипении в условиях вынужденного движения жидкости в трубах. При кипении большого объема жидкости на горизон-тальной поверхности в условиях свободной конвекции большая часть жидкости по высоте имеет температуру, которая только на 0,4¸0,8 о С превышает температуру насыщения (кипения) Т S . Жидкость перегревается относительно температуры насыщения в тонком слое вблизи стенки. Перегрев возможен потому, что здесь нет постоянной поверхности раздела жидкости и пара. Процесс парообразования может происходить только после возникновения паровых пузырьков. Такие пузырьки возникают в центрах парообразования. Центрами парообразования могут служить шероховатости поверхности нагрева, а также пузырьки воздуха или газа, выделяющегося из жидкости или твердой стенки при нагреве. Вероятность возникновения паровых пузырьков увеличивается с ростом степени перегрева жидкости. Поэтому паровые пузырь-ки должны возникать, прежде всего, на поверхности нагрева или вблизи от нее. При значительном перегреве паровые пузырьки могут возникать и внутри жидкости. Пар имеет меньшую теплопроводность, чем жидкость, поэтому вблизи пузырька перегрев жидкости, на поверхности нагрева, увеличивается. Размеры пузырька быстро растут, и под действием подъемной силы он отрывается от стенки и поднимается к свободной поверхности жидкости.

Диаметр парового пузырька в момент отрыва от твердой поверхности зависит от разности плотностей жидкости и насыщенного пара при температуре кипения , от коэффициента поверхностного натяжения жидкости s и от краевого угла q, характеризующего смачиваемость поверхности жидкостью. Этот диаметр определяют по формуле

(6.1)

где g – ускорение свободного падения.

Паровые пузырьки, проходя через жидкость, перемешивают ее, что интенсифицирует теплообмен. Поэтому частота отрыва пузырьков и число действующих центров парообразования определяют интенсивность теплообмена при кипении. Исследование процесса кипения воды показывает, что около 95 % пара образуется во время движения пузырей и только 5 % – во время пребывания их на поверхности нагрева.

Величина температурного напора DТ=Т С -Т Ж @ Т C -T S определяет механизм парообразования и интенсивность теплообмена. Впервые зависимость плотности теплового потока от температурного напора при кипении воды опытным путем получил японский ученый Нукияма. Эта зависимость (кривая Нукиямы), а также зависимость коэффициента теплоотдачи от того же напора изображены на рис. 6.1.

Как видно на рис. 6.1, в зоне А при небольших температурных напорах количество отделяющихся от поверхности нагрева пузырьков невелико, и они не способны еще существенно перемешать жид-кость. В этих условиях теплоот-дача определяется только свобод-ной конвекцией жидкости, и коэффициент теплоотдачи слабо увеличивается с ростом DТ, такой режим называют конвективным. Для воды при давлении 1 бар (760 мм рт. ст.) конвективный режим наблюдается до DТ@5 0 С, а плотность теплового потока достигает около 6000 вт/м 2 . В зоне В при увеличении температурного напора растет число действующих центров парообразования несколько увеличивается частота отрыва пузырьков. Они интенсивно перемешивают жидкость и наступает режим развитого пузырькового кипения, при котором коэффициент теплоотдачи и плотность теплового потока резко возрастают. Режим, отвечающий максимальной плотности теплового потока, называют первым критическим. Этому режиму, например, для воды, кипящей при атмосферном давлении, отвечает критический температурный напор равен DТ КР1 =25 0 С, критический коэффициент теплоотдачи a КР1 =5,8×10 4 вт/м 2 ×град и критическая плотность теплового потока q КР1 =1,45 ×10 6 вт/м 2 , т. е. при этих условиях плотность теплового потока больше, чем в начале развитого пузырькового кипения в 250 раз. Зона С может быть реализована в опытах только при граничных условиях первого рода, когда на поверхности задается температура или температурный напор DТ. Например, при нагреве поверхности газовой горелкой с регулируемой температурой пламени. В этом случае число центров парообразования становится большим, паровые пузырьки объединяются в пленку, которая покрывает отдельные участки поверхности теплообмена, отделяя на этих участках поверхность от жидкости слоем пара, что приводит к уменьшению плотности теплового потока. Пленки пара непрерывно разрушаются и уходят от поверхности нагрева в виде больших пузырей.. При увеличении температурного напора DТ поверхность этих пленок увеличивается, коэффициент теплоотдачи и плотность теплового потока уменьшаются вследствие тепловой изоляции поверхности нагрева от жидкости пленкой малотеплопроводного пара. Такое кипение называют переходным. Наконец, при некотором температурном напоре DТ КР2 отдельные пленки пара объединяются, покрывая всю поверхность теплообмена пленкой пара. При этом плотность теплового потока достигает своего минимального значения, которое называют второй критической нагрузкой q КР2 . При этом коэффициент теплоотдачи в 20–30 раз меньше его максимального значения. Когда пленка пара покрывает всю поверхность нагрева (зона D), условия теплообмена стабилизируются и при увеличении температурного напора DТ коэффициент теплоотдачи остается почти неизменным. Плотность теплового потока при этом увеличивается пропорционально DТ. Такое кипение называют пленочным.

При задании на поверхности теплообмена плотности теплового потока (т.е. граничных условий второго рода), например, электрообогрев поверхности, тепловыделяющие элементы кипящих ядерных реакторов зону С переходного кипения реализовать не удается. Увеличение плотности потока тепла больше, чем первая критическая плотность теплового потока q КР1 , приводит к скачкообразному переходу кипения в область пленочного режима. При этом резко возрастает DТ и, следовательно, температура стенки, что, возможно, ее разрушение. Поэтому в эксплуатации подобных установок желательно реализовать температурные напоры несколько меньше критических, но близкие к ним, для получения высокой интенсивности теплообмена. Для увеличения зоны температурных напоров вблизи критической тепловой нагрузки и, следовательно, уменьшения опасности «срыва» в пленочный режим кипения, что особенно опасно в случае ядерных кипящих реакторов, предложено поверхность теплообмена оребрять . Это увеличивает плотность теплового потока в основании ребра в 7– 8раз, по сравнению с q кр1 , и увеличивает зону температурных напоров DТ кр ~ в 10 раз.

Для расчета коэффициента теплоотдачи при пузырьковом кипении жидкостей на не оребренных поверхностях используют уравнение подобия С.С. Кутателадзе и В.М. Боришанского

(6.2)

Ими же получена формула для первой критической тепловой нагрузки

(6.3)

где q – плотность теплового потока;

p – давление;

r – теплота парообразования.

За определяющую температуру в этих уравнениях принята температура кипения жидкости.

Для конкретных жидкостей расчетные формулы существенно упрощаются. Например, для воды при абсолютном давлении p=1,01¸27,5 бар

(6.4)

Для этилового спирта при абсолютном давлении p=1,01¸7,85 бар

(6.5)

В этих формулах плотность теплового потока измеряется q – вт/м 2 , а давление p – бар. Эти формулы справедливы только для жидкостей, смачивающих твердые поверхности. При больших давлениях интенсивность теплообмена повышается, так как увеличивается число центров парообразования и частота отрыва пузырьков. Форма и размеры поверхности практически не влияют на коэффициент теплоотдачи при кипении. Высота слоя жидкости также не влияет на интенсивность теплоотдачи, если она больше 20¸30 мм. Материал и состояние поверхности теплообмена влияют на теплоотдачу только в начальный период ее работы. По истечении некоторого времени работы поверхность приобретает «собственную» шероховатость, которая зависит от природы жидкости.

Первая критическая плотность теплового потока зависит от шероховатости и ориентации поверхности нагрева. Шероховатость повышает плотность теплового потока, а для вертикальной стенки критическая нагрузка больше, чем для горизонтальной.

Теплоотдача при кипении в условиях вынужденного движения жидкости в трубах имеет ряд особенностей, обусловленных изменением температуры стенки и жидкости вдоль трубы. Температура кипения жидкости по длине трубы уменьшается благодаря уменьшению давления из-за гидравлического сопротивления.

По условиям теплообмена трубу по длине условно можно подразделить на три участка. Во входном участке температура стенки трубы меньше температуры насыщения. Протекая через этот участок, жидкость подогревается, и теплообмен не сопровождается кипением. Это обычная теплоотдача при вынужденной конвекции жидкости. На втором участке трубы температура стенки превышает температуру насыщения. Но ядро потока жидкости не достигло еще этой температуры. Пузырьки пара, отделяющиеся от поверхности теплообмена, частично или полностью конденсируются в центральной части потока. Это участок кипения недогретой жидкости. К началу третьего участка центральная часть потока достигает температуры насыщения. На этом участке имеет место развитое пузырьковое кипение. Паросодержание на этом участке может достигать большой величины. По трубе здесь движется двухфазный поток. Увеличение паросодержания сопровождается ростом скорости потока и градиента давления вдоль трубы. При кипении воды влияние паросодержания на коэффициент теплоотдачи можно учесть по формуле

(6.6)

где Di – разность энтальпий на входе и выходе из трубы.

Зависимость коэффициента теплоотдачи при кипении от скорости потока жидкости определяется величиной тепловой нагрузки. Коэффициент теплоотдачи при небольшой тепловой нагрузке целиком определяется условиями движения жидкости и практически не зависит от величины плотности теплового потока. При очень больших плотностях теплового потока влиянием условий движения жидкости на теплоотдачу можно пренебречь, так как коэффициент теплоотдачи целиком определяется процессом кипения. Однако существует область режимов, где влияния движения жидкости и процесса кипения на теплообмен сопоставимы, и коэффициент теплоотдачи зависит от обоих факторов. Опытные данные по теплоотдаче кипящих жидкостей, движущихся по трубам, при паросодержании, не превышающим 70 %, Д. А. Лабунцов обработал в виде зависимости

(6.7)

где a – коэффициент теплоотдачи кипящей жидкости с учетом ее вынужденного движения;

a w – коэффициент теплоотдачи однофазной не кипящей жидкости при ее скорости w;

a q – коэффициент теплоотдачи при развитом пузырьковом кипении.

Оказалось, что при a q / a w < 0,5 процесс кипения не влияет на теплообмен, и поэтому можно принять a = a w . При a q / a w > 2 интенсивность теплообмена определяется только кипением, и поэтому в расчетах полагают a = a q . Для области, где коэффициент теплоотдачи зависит от скорости потока жидкости и тепловой нагрузки (a q /a w = 0,5¸2) рекомендуется следующая интерполяционная формула

(6.8)

При кипении коэффициент теплоотдачи зависит от содержания растворенных в жидкости газов. Пузырьки газа служат центрами парообразования и поэтому интенсифицируют теплообмен. Рассмотренные выше уравнения относятся к дегазированной жидкости. При содержании газа 0,06¸0,3 см 3 / л коэффициент теплоотдачи увеличивается на 20¸60 % по сравнению с кипением дегазированной жидкости. Критическая плотность теплового потока q КР1 также зависит от скорости потока жидкости, причем эта зависимость имеет место даже в случаях, при которых коэффициент теплоотдачи от скорости не зависит. Вынужденное движение жидкости вдоль поверхности нагрева затрудняет образование паровой пленки. Поэтому с увеличением скорости течения жидкости критическая тепловая нагрузка возрастает. При кипении недогретой жидкости критическая плотность теплового потока больше, чем при кипении жидкости, имеющей температуру насыщения. В этом случае поступление недогретой жидкости из ядра потока в пристеночный слой способствует разрушению паровой пленки. Влияние недогрева жидкости до температуры насыщения на критическую плотность теплового потока q КР1 можно оценить по эмпирической формуле

(6.9)

где – критическая плотность теплового потока при кипении недогретой жидкости;

J = T S – Т Ж;

Т Ж – средняя температура жидкости;

с – теплоемкость жидкости.

На величину критической плотность теплового потока q КР1 влияет пульсация скорости потока жидкости. За счет этих пульсаций скорости, как показывают опыты, критическая плотность теплового потока может уменьшиться в два раза.


Похожая информация.


Теплообмен при кипении жидкости широко применяется в судовой энергетики - это и производство пара в основных и вспомогательных котлах, ядерных реакторах, испарителях морской воды, в испарителях и воздухоохладителях холодильных установок.

Различают кипение на твердой поверхности теплообмена, через которую идёт поток тепла и кипение в объеме, когда тепловой поток индуцируется непосредственно в объем жидкости.

На практике гораздо более распространен вид кипения жидкости, контактирующей с теплообменной поверхностью.

Кипение - это процесс интенсивного образования пара при условии постоянного подвода тепла. Кипение возникает при небольшом перегреве жидкости, когда температура жидкости выше температуры насыщения при данном давлении. Величина необходимого перегрева зависит от физических свойств жидкости, ее чистоты, давления, а также от состояния поверхности, через которую в жидкость идет поток тепла. Чем чище жидкость, тем больше ее необходимо перегреть до возникновения кипения. Это объясняется трудностью самопроизвольного образования начальных зародышевых пузырьков пара из-за необходимости преодоления энергии взаимного притяжения молекул в жидкости.

Если в жидкости присутствует растворенный газ (например, воздух) или мелкие взвешенные частицы, процесс кипения начинается практически сразу же после достижения жидкостью температуры насыщения. Газовые пузырьки, а также находящиеся в жидкости твёрдые частицы служат готовыми начальными зародышами паровой фазы.

Величина необходимого перегрева также снижается, если теплообменная поверхность (стенки и дно сосуда, стенки трубы), через которую в жидкость поступает тепловой поток, имеет микрошероховатости. При подводе потока тепла через такую поверхность наблюдается образование пузырьков в отдельных точках поверхности. Эти точки называются ЦЕНТРАМИ ПАРООБРАЗОВАНИЯ. Процесс кипения при этом начинается в слоях жидкости, контактирующих с поверхностью теплообмена и имеющих одинаковую с ней температуру. Образование пузырьков пара происходит в перегретом пограничном слое жидкости и только в центрах парообразования. Паровые пузырьки растут, отрываются от поверхности и всплывают.

Но не все пузырьки обладают способностью к дальнейшему росту, а только те, радиус которых превышает значение критического радиуса парового зародыша Rmin. Величина Rmin зависит от температуры поверхности и резко уменьшается при росте температуры стенки. Поэтому увеличение тепловой нагрузки, вызывающее возрастание температуры поверхности, приводит к росту числа действующих центров парообразования, и процесс кипения становится более интенсивным.

Всё тепло, поступающее в жидкость, расходуется на образование пара:

где r - теплота парообразования, Дж/кг.

G"" - количество пара, образовавшегося при кипении, кг/с.

Характер развития и отрыва пузырьков от теплообменной поверхности в большой мере зависит от того, смачивает жидкость поверхность или не смачивает. Если кипящая жидкость смачивает поверхность нагрева, то паровые пузырьки имеют тонкую ножку и от поверхности отрываются легко. Если жидкость не смачивает поверхность, то паровые пузырьки имеют широкую ножку и отрываются только верхняя часть пузырька

Рис. 14.1. Форма паровых пузырьков на смачиваемой (а)
и несмачиваемой (б) поверхностях

Рост пузырьков до отрыва и движение их после отрыва вызывают интенсивную циркуляцию и перемешивание жидкости в пограничном слое из-за чего резко возрастает теплоотдача от поверхности нагрева к жидкости. Такой режим кипения называется пузырьковым. При пузырьковом кипении площадь соприкосновения ножки пузырька с поверхностью теплообмена мала и поэтому тепловой поток практически без ограничений передаётся жидкости и расходуется на парообразование и на небольшое повышение температуры в объеме жидкости (например, для воды при атмосферном давлении перегрев в объеме обычно составляет 0,2…0,4 °C). Для практики пузырьковое кипение представляет наибольший интерес.

Отвод тепла в режиме пузырькового кипения является одним из наиболее совершенных методов охлаждения поверхности нагрева. Он находит широкое применение в атомных реакторах, при охлаждении реактивных двигателей, когда теплообменная поверхность работает с высокой плотностью теплового потока.

В режиме пузырькового кипения идет производство пара в парогенераторах и происходит эксплуатация основных и вспомогательных котлов.

Интенсивность пузырькового кипения зависит от величины удельной тепловой нагрузки q, Вт/м 2 , подводимой к поверхности теплообмена. Однако тепловой поток невозможно увеличивать беспредельно. С возрастанием величины теплового потока число действующих центров парообразования непрерывно увеличивается, и их становится так много, что отдельные пузырьки могут слиться в паровой слой, который периодически разрывается, а образовавшийся пар прорывается в объем кипящей жидкости. Такой режим кипения называется плёночным. Возникновение плёнки, вместо отдельных пузырьков называется первым кризисом кипения. Для воды при атмосферном давлении кризис кипения наступает при плотности теплового потока q = 1,2·10 6 Вт/м 2 , этому тепловому потоку соответствует критическое значение температурного напора Dtкр = 25…35° C.

Причина возникновения кризиса кипения заключается в следующем. Слияние пузырьков, не успевших оторваться от теплообменной поверхности, образование плёнки пара изменяют условия теплообмена между жидкостью и стенкой. Стенка, к которой подводится тепловой поток, перестаёт омываться жидкостью, так как отделена от жидкости плёнкой пара, и поэтому поступающий к стенке тепловой поток только малую часть свою передается пару из-за низкой теплопроводности пара, остальная часть теплового потока расходуется на разогрев стенки. Температура стенки за доли секунды возрастает на сотни градусов. И если стенка выполнена из тугоплавкого материала, кризис заканчивается новым стационарным состоянием - плёночным кипением при очень высокой температуре теплообменной поверхности, и соответственно при новом, очень высоком значении разности температур Dt между температурной стенки и температурой насыщения, остающейся постоянной, так как её значение зависит только от величины давления. Режим кипения пузырьковый (рис. 14.2,а ) и пленочный (рис. 14.2,б ) представлен на рис. 14.2.

Рис. 14.2. Режимы кипения: а – пузырьковый, б – переходный, в – пленочный

На рисунке запечатлен также (см. рис. 14.2,б ) момент перехода от пузырькового к плёночному кипению. При плёночном режиме кипения перенос тепла от поверхности нагрева к жидкости осуществляется путем теплопроводности и конвективного теплообмена в паровой плёнке, а также излучения сквозь плёнку пара. По мере увеличения температуры поверхности нагрева (и соответственно, роста Dt) все большая часть тепла в жидкость передаётся за счёт излучения. Интенсивность теплообмена при плёночном режиме кипения невелика. Пар, накапливающийся в паровой плёнке, периодически пульсациями отрывается в виде больших пузырей.

На графике 14.3 показаны пузырьковый и плёночный режимы кипения. Из графика видно, что плавного перехода от одного режима к другому нет. Если мы увеличиваем плотность теплового потока, это приводит к увеличению интенсивности теплообмена, но одновременно немного возрастает и температура поверхности (и соответственно Dt). Увеличение тепловой нагрузки свыше допустимого предела вызывает кризис кипения. Этот кризисный переход на рис. 14.3 показан стрелкой и происходит как перескок с кривой пузырькового кипения на линию плёночного кипения при том же значении тепловой нагрузки qкр1. Обычно кризис кипения заканчивается расправлением (пережогом) поверхности нагрева.

Рис. 14.3. Зависимость критической тепловой нагрузки от ∆t

Однако если разрушения поверхности не произошло, и установился плёночный режим кипения, то снижение плотности теплового потока не даст быстрого результата, и плёночный режим будет сохраняться. При снижении теплового потока процесс будет происходить по линии плёночного кипения. И только если мы снизим нагрузку до значения qкр2, возникнут предпосылки для смены режима. Эта смена режима также имеет кризисный характер и называется вторым кризисом кипения. При снижении тепловой нагрузки до значения qкр2 жидкость в отдельных точках начинает касаться теплообменной поверхности, из-за чего увеличивается отвод тепла от поверхности, что приводит к быстрому охлаждению поверхности нагрева. Происходит смена режимов и устанавливается пузырьковое кипение. Этот обратный переход также осуществляется "перескокам" по стрелке с кривой плёночного на линию пузырькового кипения при qкр2. Для воды при атмосферном давлении значение критической плотности теплового потока при этом равно qкр2 = 25000 Вт/м 2 .

Итак, оба перехода: от пузырькового к плёночному и обратно носит кризисный характер. Они происходят при тепловых потоках qкр1 и qкр2 соответственно. В этих условиях переходный режим кипения стационарно существовать не может, потому что переход осуществляется практически мгновенно, за доли секунды.

На практике широко применяется кипение жидкости движущейся внутри труб или каналов различной формы. Из-за движения жидкости в ограниченном объеме возникают новые особенности. На развитие процесса влияет скорость вынужденного движения жидкости или пароводяной смеси и структура двухфазового потока. Характер движения смеси воды и пара внутри труб представлен на (рис. 14.4)

Рис. 14.4. Характер движения пароводяной смеси в трубах

В зависимости от содержания пара, скорости смеси и расположения труб в пространстве характер движения может быть в виде однородной эмульсии (см. рис. 14.4а) или в виде самостоятельных потоков воды и пара (см. рис. 14.4б , 14.4д ).

Если труба расположена вертикально, то самостоятельный поток пара будет двигаться по оси трубы, в центре, а плёнка воды - по периферии, по стенке трубы. При горизонтальном расположении труб пар двигается в верхней части трубы, вода - в нижней.

Экспериментальные данные по кипению были обобщеныЛабунцовым Д.А. Им предложено критериальное уравнение для расчета теплоотдачи при пузырьковом кипении.

где - критерий Нуссельта, характеризующий теплообмен при кипении на границе стенка – жидкость;

Критерий Рейнольдса, характеризующий состояние сил инерции и сил вязкости при кипении;

Характерный линейный размер, пропорциональный отрывному диаметру пузыря, м;

Скорость кипения, м/с;

Cp - теплоемкость жидкости, кДж/(кг·К);

r - теплота парообразования, кДж/кг;

s - поверхностное натяжение, Н/м;

r", r"" - плотность жидкости и пара при данной температуре насыщения, кг/м 3 ;

Ts - абсолютное значение температуры насыщения, К.

Значения постоянных С и n принимаются равными:

Значения всех физических параметров, входящих в критерии подобия следует принимать при данной температуре насыщения. В связи со сложностью и громоздкостью расчётов по определению коэффициента теплоотдачи с помощью критериального уравнения (14.2), на практике для вычисления коэффициента теплоотдачи в режиме пузырькового кипения широко используют зависимость, полученную при кипении воды М.А. Михеевым:

где q - поверхностная плотность теплового потока, Вт/м 2 ;

p - абсолютное давление пара, Па.

Пузырьковое кипение характеризуется высокой интенсивностью теплоотдачи и соответственно возможностью отвода с единицы поверхности значительных потоков тепла, ограниченных только значением критического теплового потока qкр1. Величину qкр1 в условиях естественной конвенции на горизонтальных трубах и плитках можно определить из формулы:

При плёночном режиме кипения кипящая жидкость отделена от поверхности нагрева паровой пленкой. Поэтому температура поверхности tc значительно превышает температуру насыщения ts. Из-за высоких значений температуры теплообменной поверхности между ней и жидкостью возникает лучистый теплообмен. Интенсивность конвективного теплообмена при плёночном кипении определяется термическим сопротивлением паровой плёнки. Характер движения пара в плёнке и её толщина зависят от размеров и формы поверхности нагрева и ее расположения в пространстве. Расчет теплоотдачи при пленочном кипении на горизонтальных трубах можно вести по зависимости

Все физические параметры в этой формуле (за исключением плотности жидкости r") относятся к правой фазе. Их следует выбирать по средней температуре пара

При плёночном кипении на поверхности вертикальных труб опытные данные обобщены Лабунцовым Д.А:

Физические свойства пара здесь также следует выбирать по средней температуре пара.

ТЕПЛООБМЕН ПРИ КИПЕНИИ И КОНДЕНСАЦИИ

ТЕПЛООБМЕН ПРИ КИПЕНИИ

Кипением называется процесс интенсивного парообразования, происходящего во всем объеме жидкости, находящейся при температуре насыщения или несколько перегретой относительно температуры насыщения, с образованием паровых пузырей. В процессе фазового превращения поглощается теплота парообразования. Процесс кипения обычно связан с подводом теплоты к кипящей жидкости.

Режимы кипения жидкости.

Различают кипение жидкостей на твердой поверхности теплообмена, к которой извне подводится теплота, и кипение в объеме жидкости.

При кипении на твердой поверхности образования паровой фазы наблюдается в отдельных местах этой поверхности. При объемном кипении паровая фаза возникает самопроизвольно (спонтанно) непосредственно в объеме жидкости в виде отдельных пузырьков пара. Объемное кипение может происходить лишь при более значительном перегреве жидкой фазы относительно температуры насыщения при данном давлении, чем кипение на твердой поверхности. Значительный перегрев может быть получен, например, при быстром сбросе давления в системе. Объемное кипение может иметь место при наличии в жидкости внутренних источников тепла.

В современной энергетике и технике обычно встречаются процессы кипения на твердых поверхностях нагрева (поверхности труб, стенки каналов и т.п.). Этот вид кипения в основном и рассматривается далее.

Механизм теплообмена при пузырьковом кипении отличается от механизма теплоотдачи при конвекции однофазной жидкости наличием дополнительного переноса массы вещества и теплоты паровыми пузырями из пограничного слоя в объем кипящей жидкости. Это приводит к высокой интенсивности теплоотдачи при кипении по сравнению с конвекцией однофазной жидкости.

Для возникновения процесса кипения необходимо выполнение двух условий: наличие перегрева жидкости относительно температуры насыщения и наличие центров парообразования.

Перегрев жидкости имеет максимальную величину непосредственно у обогреваемой поверхности теплообмена. На ней же находятся центры парообразования в виде неровностей стенки, пузырьков воздуха, пылинок и др. Поэтому образование пузырьков пара происходит непосредственно на поверхности теплообмена.

Рисунок 3.1 – режимы кипения жидкости в неограниченном объеме: а) -пузырьковый; б) – переходный; в) - пленочный

На рис. 3.1. схематически показаны режимы кипения жидкости в неограниченном объеме. При пузырьковом режиме кипения (рис. 3.1,а) по мере увеличения температуры поверхности нагрева t c и соответственно температурного напора число действующих центров парообразования растет, процесс кипения становится все более интенсивным. Паровые пузырьки периодически отрываются от поверхности и, всплывая к свободной поверхности, продолжают расти в объеме.


При повышении температурного напора Δt значительно возрастает поток теплоты, который отводится от поверхности нагрева к кипящей жидкости. Вся эта теплота в конечном счете расходуется на образование пара. Поэтому уравнение теплового баланса при кипении имеет вид:

где Q - тепловой поток, Вт; r - теплота фазового перехода жидкости, Дж/кг; G п - количество пара, образующегося в единицу времени в результате кипения жидкости и отводимого от ее свободной поверхности, кг/с.

Тепловой поток Q при увеличении температурного напора Δt растет не беспредельно. При некотором значении Δt он достигает максимального значения (Рис. 3.2), а при дальнейшем повышении Δt начинает уменьшаться.

Рисунок 3.2 – Зависимость плотности теплового потока q

от температурного напора Δt при кипении воды в большом объеме при атмосферном давлении: 1- подогрев до температуры насыщения; 2 – пузырьковый режим; 3 – переходный режим; 4 – пленочный режим.

Дать участки 1 2 3 и 4

Пузырьковыйрежим кипения имеет место на участке 2 (Рис. 3.2) до достижения максимального теплоотвода в точке q кр1 , называемой первой критической плотностью теплового потока . Для воды при атмосферном давлении первая критическая плотность теплового потока составляет ≈ Вт/м 2 ; соответствующее критическое значение температурного напора Вт/м 2 . (Эти значения относятся к условиям кипения воды при свободном движении в большом объеме. Для других условий и других жидкостей значения будут иными).

При бóльших Δt наступает переходный режим кипения (рис. 3.1, б ). Он характеризуется тем, что как на самой поверхности нагрева, так и вблизи нее пузырьки непрерывно сливаются между собой, образуются большие паровые полости. Из-за этого доступ жидкости к самой поверхности постепенно все более затрудняется. В отдельных местах поверхности возникают «сухие» пятна; их число и размеры непрерывно растут по мере увеличения температуры поверхности. Такие участки как бы выключаются из теплообмена, так как отвод теплоты непосредственно к пару происходит существенно менее интенсивно. Это и определяет резкое снижение теплового потока (участок 3 на Рис. 3.2) и коэффициента теплоотдачи в области переходного режима кипения.

Наконец, при некотором температурном напоре вся поверхность нагрева покрывается сплошной пленкой пара, оттесняющей жидкость от поверхности. С этого момента имеет место пленочный режим кипения (рис. 3.1, в ). При этом перенос теплоты от поверхности нагрева к жидкости осуществляется путем конвективного теплообмена и излучения через паровую пленку. Интенсивность теплообмена в режиме пленочного кипения достаточно низкая (участок 4 на рис. 3.2). Паровая пленка испытывает пульсации; пар, периодически накапливающийся в ней, отрывается в виде больших пузырей. В момент наступления пленочного кипения тепловая нагрузка, отводимая от поверхности, и соответственно количество образующегося пара имеют минимальные значения. Это соответствует на рис. 3.2 точке q кр2 , называемой второй критической плотностью теплового потока. При атмосферном давлении для воды момент начала пленочного кипения характеризуется температурным напором ≈150 °С, т. е. температура поверхности t c составляет примерно 250°С. По мере увеличения температурного напора все большая часть теплоты передается за счет теплообмена излучением.

Все три режима кипения можно наблюдать в обратном порядке, если, например, раскаленное массивное металлическое изделие опустить в воду для закалки. Вода закипает, вначале охлаждение тела идет относительно медленно (пленочное кипение), затем скорость охлаждения быстро нарастает (переходный режим), вода начинает периодически смачивать поверхность, и наибольшая скорость снижения температуры поверхности достигается в конечной стадии охлаждения (пузырьковое кипение). В этом примере кипение протекает в нестационарных условиях во времени.

На рис. 3.3 показана визуализация пузырькового и пленочного режимов кипения на электрически обогреваемой проволоке, находящейся в воде.

рис. 3.3 визуализация пузырькового и пленочного режимов кипения на электрически обогреваемой проволоке: а) - пузырьковый и б) - пленочный режим кипения.

На практике часто встречаются также условия, когда к поверхности подводится фиксированный тепловой поток, т. е. q = const. Это характерно, например, для тепловых электрических нагревателей, тепловыделяющих элементов ядерных реакторов и, приближенно, в случае лучистого обогрева поверхности от источников с весьма высокой температурой. В условиях q = const температура поверхности t c и соответственно температурный напор Δt зависят от режима кипения жидкости. Оказывается, что при таких условиях подвода теплоты переходный режим стационарно существовать не может. Вследствие этого процесс кипения приобретает ряд важных особенностей. При постепенном повышении тепловой нагрузки q температурный напор Δt возрастает в соответствии с линией пузырькового режима кипения на рис. 3.2, и процесс развивается так же, как это было описано выше. Новые условия возникают тогда, когда подводимая плотность теплового потока достигает значения, которое соответствует первой критической плотности теплового потока q кр1 . Теперь при любом незначительном (даже случайном) повышении величины q возникает избыток между количеством подводимой к поверхности теплоты и той максимальной тепловой нагрузкой q кр1 , которая может быть отведена в кипящую жидкость. Этот избыток (q - q кр1) вызывает увеличение температуры поверхности, т. е. начинается нестационарный разогрев материала стенки. Развитие процесса приобретает кризисный характер. За доли секунды температура материала поверхности нагрева возрастает на сотни градусов, и лишь при условии, что стенка достаточно тугоплавкая, кризис заканчивается благополучно новым стационарным состоянием, отвечающим области пленочного кипения при весьма высокой температуре поверхности. На рис. 3.2 этот кризисный переход от пузырькового режима кипения к пленочному условно показан стрелкой как «перескок» с кривой пузырькового кипения на линию пленочного кипения при той же тепловой нагрузке q кр1 . Однако обычно это сопровождается расплавлением и разрушением поверхности нагрева (ее пережогом).

Вторая особенность состоит в том, что если произошел кризис и установился пленочный режим кипения (поверхность не разрушилась), то при снижении тепловой нагрузки пленочное кипение будет сохраняться, т. е. обратный процесс теперь будет происходить по линии пленочного кипения (рис. 3.2). Лишь при достижении q кр2 жидкость начинает вновь в отдельных точках периодически достигать (смачивать) поверхность нагрева. Отвод теплоты растет и превышает подвод теплоты, вследствие чего возникает быстрое охлаждение поверхности, которое также носит кризисный характер. Происходит быстрая смена режимов, и устанавливается стационарное пузырьковое кипение. Этот обратный переход (второй кризис) на рис. 3.2 также условно показан стрелкой как «перескок» с кривой пленочного кипения на линию пузырькового кипения при q = q кр2 .

Итак, в условиях фиксированного значения плотности теплового потока q , подводимого к поверхности нагрева, оба перехода от пузырькового к пленочному и обратно носят кризисный характер. Они происходят при критических плотностях теплового потока q кр1 и q кр2 соответственно. В этих условиях переходный режим кипения стационарно существовать не может, он является неустойчивым.

На практике широко применяются методы отвода теплоты при кипении жидкости, движущейся внутри труб или каналов различной формы. Так, процессы генерации пара осуществляются за счет кипения воды, движущейся внутри котельных труб. Теплота к поверхности труб подводится от раскаленных продуктов сгорания топлива за счет излучения и конвективного теплообмена.

Для процесса кипения жидкости, движущейся внутри ограниченного объема трубы (канала), описанные выше условия остаются в силе, но вместе с этим появляется ряд новых особенностей.

Вертикальная труба . Труба или канал представляет собой ограниченную систему, в которой при движении кипящей жидкости происходят непрерывное увеличение паровой и уменьшение жидкой фаз. Соответственно этому изменяется и гидродинамическая структура потока, как по длине, так и по поперечному сечению трубы. Соответственно изменяется и теплоотдача.

Наблюдается три основные области с разной структурой потока жидкости по длине вертикальной трубы при движении потока снизу вверх (рис. 3.4): I – область подогрева (экономайзерный участок, до сечения трубы, где Т с =Т н ); II – область кипения (испарительный участок, от сечения, где Т с =Т н , i ж < i н, до сечения, где Т с =Т н , i см i н); III – область подсыхания влажного пара.

Испарительный участок включает в себя области с поверхностным кипением насыщенной жидкости.

На рис. 3.4 схематично показан структура такого потока. Участок 1 соответствует подогреву однофазной жидкости до температуры насыщения (экономайзерный участок). На участке 2 происходит поверхностное пузырьковое кипение, при котором теплоотдача увеличивается по сравнению с участком 2. На участке 3 имеет место эмульсионный режим, при котором двухфазный поток состоит из жидкости и равномерно распределенных в ней сравнительно небольших пузырьков, которые в дальнейшем сливаются, образуя крупные пузыри-пробки, соизмеримые с диаметром трубы. При пробковом режиме (участок 4) пар движется в виде отдельных крупных пузырей-пробок, разделенных прослойками парожидкостной эмульсии. Далее на участке 5 в ядре потока сплошной массой движется влажный пар, а у стенки трубы – тонкий кольцевой слой жидкости. Толщина этого слоя жидкости постепенно уменьшается. Данный участок соответствует кольцевому режиму кипения, который заканчивается при исчезновении жидкости на стенке. На участке 6 происходит подсушивания пара (повышение степени сухости пара). Поскольку процесс кипения завершен, то теплоотдача снижается. В дальнейшем, вследствие увеличения удельного объема пара, скорость пара увеличивается, что ведет к некоторому увеличению теплоотдачи.

Рис.3.4 – Структура потока при кипении жидкости внутри вертикальной трубы

Увеличение скорости циркуляции при заданных q с , длине трубы и температуры на входе приводит к уменьшению участков с развитым кипением и увеличению длины экономайзерного участка; с увеличением q с при заданной скорости, наоборот, длина участков с развитым кипением увеличивается, а длина экономайзерного участка уменьшается.

Горизонтальные и наклонные трубы. При движении двухфазного потока внутри труб, расположенных горизонтально или с небольшим наклоном, кроме изменения структуры потока по длине, имеет место значительное изменение структуры по периметру трубы. Так, если скорость циркуляции и содержания пара в потоке невелики, наблюдается расслоение двухфазного потока на жидкую фазу, движущуюся в нижней части трубы, и паровую, движущуюся в верхней части ее (рис. 3.5,а ). При дальнейшем увеличении паросодержания и скорости циркуляции поверхность раздела между паровой и жидкой фазами приобретает волновой характер, и жидкость гребнями волн периодически смачивает верхнюю часть трубы. С дальнейшим увеличение содержания пара и скорости волновое движение на границе раздела фаз усиливается, что приводит к частичному выбрасыванию жидкости в паровую область. В результате двухфазный поток приобретает характер течения, сначала близкий к пробковому, а потом – к кольцевому.

Рис. 3.5 – Структура потока при кипении жидкости внутри горизонтальной трубы.

а – расслоенный режим кипения; б – стержневой режим; 1 – пар; 2 – жидкость.

При кольцевом режиме по всему периметру трубы устанавливается движение тонкого слоя жидкости, в ядре потока перемещается парожидкостная смесь (рис. 3.5,б ). Однако и в этом случае полной осевой симметрии в структуре потока не наблюдается.

если интенсивность подвода теплоты к стенкам трубы достаточно высока, то процесс кипения может происходить также при течении в трубе, недогретой до температуры насыщения жидкости, Такой процесс возникает, когда температура стенки t c превышает температуру насыщения t s . он охватывает пограничный слой жидкости непосредственно у стенки. Паровые пузырьки, попадающие в холодное ядро потока, быстро конденсируются. Этот вид кипения называют кипением с недогревом .

Отвод теплоты в режиме пузырькового кипения является одним из наиболее совершенных методов охлаждения поверхности нагрева. Он находит широкое применение в технических устройствах.

3.1.2. Теплообмен при пузырьковом кипении.

Наблюдения показывают, что при увеличении температурного напора Δt = t c -t s , а также давления р на поверхности нагрева увеличивается число активных центров парообразования. В итоге все большее количество пузырьков непрерывно возникает, растет и отрывается от поверхности нагрева. Вследствие этого увеличиваются турбулизация и перемешивание пристенного пограничного слоя жидкости. В процессе своего роста на поверхности нагрева пузырьки также интенсивно забирают теплоту из пограничного слоя. Все это способствует улучшению теплоотдачи. В целом процесс пузырькового кипения носит довольно хаотичный характер.

Исследования показывают, что на технических поверхностях нагрева число центров парообразования зависит от материала, строения и микрошероховатости поверхности, наличия неоднородности состава поверхности и адсорбированного поверхностью газа (воздуха). Заметное влияние оказывают различные налеты, окисные пленки, а также любые другие включения.

Наблюдения показывают, что в реальных условиях центрами парообразования обычно служат отдельные элементы неровности и микрошероховатости поверхности (предпочтительно различные углубления и впадины).

Обычно на новых поверхностях число центров парообразования выше, чем на тех же поверхностях после длительного кипения. В основном это объясняется наличием адсорбированного поверхностью газа. Со временем газ постепенно удаляется, он смешивается с паром, находящимся в растущих пузырьках, и выносится в паровое пространство. Процесс кипения и теплоотдача стабилизируются во времени и по интенсивность.

На условия образования паровых пузырьков большое влияние оказывает поверхностное натяжение на границе раздела жидкости и пара.

Вследствие поверхностного натяжения давление пара внутри пузырька р п выше давления окружающей его жидкости р ж. Их разность определяется уравнением Лапласа

(3-1)

где σ- поверхностное натяжение; R - радиус пузырька.

Уравнение Лапласа выражает условие механического равновесия. Оно показывает, что поверхностное натяжение наподобие упругой оболочки «сжимает» пар в пузырьке, причем тем сильнее, чем меньше его радиус R .

Зависимость давления пара в пузырьке от его размера накладывает особенности на условие теплового или термодинамического равновесия малых пузырьков. Пар в пузырьке и жидкость на его поверхности находятся в равновесии, если поверхность жидкости имеет температуру, равную температуре насыщения при давлении пара в пузырьке, t s (р п). Эта температура выше, чем температура насыщения при внешнем давлении в жидкости t s (р ж). Следовательно, для осуществления теплового равновесия жидкость вокруг пузырька должна быть перегрета на величину t s (р п)-t s (р ж).

Следующая особенность заключается в том, что это равновесие оказывается неустойчивым . Если температура жидкости несколько превысит равновесное значение, то произойдет испарение части жидкости внутрь пузырьков и его радиус увеличится. При этом согласно уравнению Лапласа давление пара в пузырьке понизится. Это приведет к новому отклонению от равновесного состояния. Пузырек начнет неограниченно расти. Так же при незначительном понижении температуры жидкости часть пара сконденсируется, размер пузырька уменьшится, давление пара в нем повысится. Это повлечет за собой дальнейшее отклонение от равновесных условий, теперь уже в другую сторону. В итоге пузырек полностью сконденсируется и исчезнет.

Следовательно, в перегретой жидкости не любые случайно возникшие маленькие пузырьки обладают способностью к дальнейшему росту, а только те, радиус которых превышает значение, отвечающее рассмотренным выше условиям неустойчивого механического и теплового равновесия. Это минимальное значение

(3-2а)

где производная представляет собой физическую характеристику данного вещества, она определяется уравнением Клапейрона - Клаузиса

(3-3)

т. е. выражается через другие физические постоянные: теплоту фазового перехода r , плотности пара ρ п и жидкости ρ ж и абсолютную температуру насыщения T s .

Уравнение (3-2) показывает, что если в отдельных точках поверхности нагрева появляются паровые зародыши, то способностью к дальнейшему самопроизвольному росту обладают лишь те из них, радиус кривизны которых превышает значение R min . Поскольку с ростом Δt величина R min снижается, уравнение (3-2) объясняет

экспериментально наблюдаемый факт увеличения числа центров парообразования при повышении температуры поверхности.

Увеличение числа центров парообразования с ростом давления также связано с уменьшением R min , ибо при повышении давления величина p′ s растет, а σ снижается. Расчеты показывают, что для воды, кипящей при атмосферном давлении, при Δt = 5°С R min = 6,7 мкм, а при Δt = 25°С R min = 1,3 мкм.

Наблюдения, проведенные с применением скоростной киносъемки, показывают, что при фиксированном режиме кипения частота образования паровых пузырьков оказывается неодинаковой как в различных точках поверхности, так и во времени. Это придает процессу кипения сложный статистический характер. Соответственно скорости роста и отрывные размеры различных пузырьков также характеризуются случайными отклонениями около некоторых средних величин.

После достижения пузырьком определенного размера он отрывается от поверхности. Отрывной размер определяется в основном взаимодействием сил тяжести, поверхностного натяжения и инерции. Последняя величина представляет собой динамическую реакцию, возникающую в жидкости вследствие быстрого роста пузырьков в размерах. Обычно эта сила препятствует отрыву пузырьков. Кроме того, характер развития и отрыва пузырьков в большой мере зависит от того, смачивает жидкость поверхность или не смачивает. Смачивающая способность жидкости характеризуется краевым углом θ, который образуется между стенкой и свободной поверхностью жидкости. Чем больше θ, тем хуже смачивающая способность жидкости. Принято считать, что при θ <90° (рис. 3.6, а ), жидкость смачивает поверхность, а при θ >90° - не смачивает. Значение краевого угла зависит от природы жидкости, материала, состояния и чистоты поверхности. Если кипящая жидкость смачивает поверхность нагрева, то паровые пузырьки имеют тонкую ножку и от поверхности отрываются легко (рис. 3.7, а ). Если же жидкость не смачивает поверхность, то паровые пузырьки имеют широкую ножку (рис. 3.7, б ) и отрываются по перешейку, или парообразование происходит по всей поверхности.

Теплоотдача при кипении жидкости.

Режимы кипения жидкости.

Кипением называется процесс интенсивного парообразования, происходящего во всем объеме жидкости, перегретой относительно температуры насыщения, с образованием паровых пузырей. Процессы кипения находят применение в теплоэнергетике, химической технологии, атомной энергетики и др.

Различают кипение жидкости на твердой поверхности теплообмена, к которой подводится тепло, и кипение в объеме жидкости.

При кипении на твердой поверхности образование паровой фазы наблюдается в отдельных местах этой поверхности. При объемном кипении паровая фаза возникает самопроизвольно (спонтанно) непосредственно в объеме жидкости. Объемное кипение может происходить лишь при значительном перегреве жидкости относительно температуры насыщения при данном давлении. Значительный перегрев имеет место, например при сбросе давления в системе.

Для возникновения процесса кипения необходимо два фактора: 1) перегрев жидкости, 2) наличие центров парообразования.

Различают два основных режима кипения пузырьковый и пленочный . Кипение, при котором пар образуется в виде отдельных периодически зарождающихся, растущих и отрывающихся паровых пузырей, называется пузырьковым.

С увеличением теплового потока до некоторого значения отдельные паровые пузыри сливаются, образуя у поверхности теплообмена сплошной паровой слой, периодически прорывающий в объем жидкости. Этот режим кипения, который характеризуется наличием на поверхности пленки пара, называется пленочным.

Интенсивность теплообмена при пленочном кипении меньше, чем при пузырьковом.

Элементы физики процесса кипения.

Интенсивность теплообмена при пузырьковом кипении зависит от микрохарактеристик кипения и режимных параметров процесса.

К микрохарактеристикам процесса относятся критический радиус пузырька, скорость его роста, отрывной диаметр и частота отрыва, работа необходимая для образования пузырька, характеристики поверхности и жидкости.

1). Минимальный радиус парового пузырька.

Обычно считают, что жидкость закипает при температуре t ж, равной t н выходящего из нее насыщенного пара, давление которого р н = р ж. Однако это не совсем так. При t ж = t н пузыри пара существовать не могут, и теплоотдача идет по законам естественной конвекции.

Дело в том, что давление насыщенного пара внутри пузырей р п должно уравновешивать не только давление жидкости р ж, но и силы поверхностного натяжения, сжимающие пузырь подобно упругой оболочке. А если р п > р н, то и t п > t н, поскольку более высокому давлению пара в насыщенном состоянии соответствует более высокая температура. Естественно, что и температура жидкости t ж, внутри которой образуются паровые пузыри, должна быть по меньшей мере равна t п. Таким образом, перегрев жидкости ∆t ж = (t ж - t н), необходимый для её закипания, однозначно определяется давлением ∆р, создаваемым силами поверхностного натяжения.

Для определения ∆р мысленно разрежем сферический пузырь по диаметру, заменим действие отброшенной нижней части на верхнюю силой поверхностного натяжения (она действует по периметру) и приравняем её вертикальной проекции сил давления (они действуют по полусфере) – см. рисунок.

отсюда получим:

Согласно этой формуле ∆р растет с уменьшением радиуса пузыря R. Поэтому при любом перегреве жидкости ∆t ж всегда найдется такой критический радиус пузыря R кр, при котором суммарное давление р ж + ∆р будет равно давлению насыщения р н при температуре t ж = t н + ∆t ж. Пузыри с радиусом R>R кр будут расти, поскольку р п > р ж + ∆р, а пузыри с радиусом R

Было получено УКК:

Если на границе раздела фаз кроме сил давления действуют и другие силы (например, силы поверхностного натяжения), то можно записать уравнение КК в обобщенном виде:

Для случая паровой пузырь
= 0,

В такой форме R к характеризует радиус кривизны пузырьков пара. Одновременно R к определяет порядок размеров неровностей поверхности, которые при данных условиях могут служить центрами парообразования.

С повышением ∆T значение R к уменьшается.

С повышением Р знач. R к уменьшается тоже, так как увеличивается ρ".

Увеличение ∆T и Р → ↓ R к → усиление кипения, так как увеличивается число центров парообразования.

В действительности зародышами паровых пузырей являются пузырьки газа. Газ в пузырьках, как упругое тело, только сжимается под действием поверхностного натяжения, не исчезая (так как он не может конденсироваться), поэтому критического радиуса для газовых пузырей не существует. Пар из перегретой жидкости образуется на поверхности газовых пузырей, радиус которых больше критического. Сильнее всего жидкость перегрета, естественно, около обогреваемой поверхности, поэтому там величина критического радиуса минимальна. Пузырьки газа или воздуха в микротрещинах и шероховатостях обогреваемой поверхности, радиус которых превышает R кр, и является местами зарождения паровых пузырей – так называемыми центрами парообразования.

После зарождения паровые пузыри быстро растут, отрываются от поверхности и всплывают, но небольшие части остаются на поверхности и служат зародышами следующих пузырей.