Рассмотрим этот алгоритм на примере. Найдем

1-й шаг. Число под корнем разбиваем на грани по две цифры (справа налево):

2-й шаг. Извлекаем квадратный корень из первой грани, т. е. из числа 65, получаем число 8. Под первой гранью пишем квадрат числа 8 и вычитаем. К остатку приписываем вторую грань (59):

(число 159 - первый остаток).

3-й шаг. Удваиваем найденный корень и пишем результат слева:

4-й шаг. Отделяем в остатке (159) одну цифру справа, слева получаем число десятков (оно равно 15). Затем делим 15 на удвоенную первую цифру корня, т. е. на 16, так как 15 на 16 не делится, то в частном получается нуль, который записываем как вторую цифру корня. Итак, в частном получили число 80, которое опять удваиваем, и сносим следующую грань

(число 15 901 - второй остаток).

5-й шаг. Отделяем во втором остатке одну цифру справа и полученное число 1590 делим на 160. Результат (цифру 9) записываем как третью цифру корня и приписываем к числу 160. Полученное число 1609 умножаем на 9 и находим следующий остаток (1420):

В дальнейшем действия выполняются в той последовательности, которая указана в алгоритме (корень можно извлекать с нужной степенью точности).

Замечание. Если подкоренное выражение - десятичная - дробь, то ее целую часть разбивают на грани по две цифры справа налево, дробную часть - по две цифры слева направо и извлекают корень по указанному алгоритму.

ДИДАКТИЧЕСКИЙ МАТЕРИАЛ

1. Извлеките квадратный корень из числа: а) 32; б) 32,45; в) 249,5; г) 0,9511.

Библиографическое описание: Прямостанов С. М., Лысогорова Л. В. Методы извлечения квадратного корня // Юный ученый. — 2017. — №2.2. — С. 76-77..02.2019).





Ключевые слова : квадратный корень, извлечение квадратного корня.

На уроках математики я познакомился с понятием квадратного корня, и операцией извлечения квадратного корн. Мне стало интересно извлечение квадратного корня возможно только по таблице квадратов, с помощью калькулятора или есть способ извлечения вручную. Я нашел несколько способов: формула Древнего Вавилона, через решение уравнений, способ отбрасывания полного квадрата, метод Ньютона, геометрический метод, графический метод (, ), метод подбора угадыванием, метод вычетов нечётного числа.

Рассмотрим следующие способы:

Разложим на простые множители, используя признаки делимости 27225=5*5*3*3*11*11. Таким образом

  1. Канадский метод. Этот быстрый метод был открыт молодыми учёными одного из ведущих университетов Канады в 20 веке. Его точность - не более двух - трёх знаков после запятой.

где х-число, из которого надо извлечь корень, с-число ближайшего квадрата), например:

=5,92

  1. Столбиком. Этот способ позволяет найти приближённое значение корня из любого действительного числа с любой наперёд заданной точностью. К недостаткам способа можно отнести увеличивающуюся сложность вычисления с увеличением количества найденных цифр. Для ручного извлечения корня применяется запись, похожая на деление столбиком

Алгоритм извлечения квадратного корня

1.От запятой отдельно дробную и отдельно целую части делим на грани по две цифры в каждой грани (целую часть - справа налево; дробную - слева направо). Возможно, что в целой части может оказаться одна цифра, а в дробной - нули.

2.Извлечение начинается слева направо, и подбираем число, квадрат которого не превосходит числа, стоящего в первой грани. Это число возводим в квадрат и записывает под числом, стоящим в первой грани.

3.Находим разность между числом, стоящим в первой грани, и квадратом подобранного первого числа.

4.К получившейся разности сносим следующую грань, полученное число будет делимым . Образовываем делитель . Первую подобранную цифру ответа удваиваем (умножаем на 2), получаем число десятков делителя, а число единиц должно быть таким, чтобы его произведение на весь делитель не превосходило делимого. Подобранную цифру записываем в ответ.

5.К получившейся разности сносим следующую грань и выполняем действия по алгоритму. Если данная грань окажется гранью дробной части, то в ответе ставим запятую. (Рис. 1.)

Данным способом можно извлекать числа с разной точностью, например с точностью до тысячных. (Рис.2)

Рассматривая различные способы извлечения квадратного корня, можно сделать вывод: в каждом конкретном случае нужно определиться с выбором наиболее эффективного для того, чтобы меньше затратить времени для решения

Литература:

  1. Киселев А. Элементы алгебры и анализа. Часть первая.-М.-1928 г

Ключевые слова: квадратный корень, извлечение квадратного корня .

Аннотация: В статье описываются способы извлечения квадратного корня, и приведены примеры извлечения корней.

Соколов Лев Владимирович, учащийся 8 класса МКОУ «Тугулымская В(С)ОШ»

Цель работы: найти и показать те способы извлечения квадратных корней, которыми можно будет воспользоваться, не имея под рукой калькулятора.

Скачать:

Предварительный просмотр:

Районная научно-практическая конференция

обучающихся Тугулымского городского округа

Извлечение квадратных корней из больших чисел без калькулятора

Исполнитель: Лев Соколов,

МКОУ «Тугулымская В(С)ОШ»,

8 класс

Руководитель: Сидорова Татьяна

Николаевна

р.п. Тугулым, 2016 г.

Введение 3

Глава 1. Способ разложения на простые множители 4

Глава 2. Извлечение квадратного корня уголком 4

Глава 3. Способ использования таблицы квадратов двузначных чисел 6

Глава 4. Формула Древнего Вавилона 6

Глава 6. Канадский метод 7

Глава 7. Метод подбора угадыванием 8

Глава 8 . Метод вычетов нечётного числа 8

Заключение 10

Список литературы 11

Приложение 12

Введение

Актуальность исследования, когда я изучал тему квадратные корни в этом учебном году, то меня заинтересовал вопрос, как можно извлечь квадратный корень из больших чисел без калькулятора.

Я заинтересовался и решил изучить этот вопрос глубже, чем он изложен в школьной программе, а также приготовить мини-книжечку с наиболее простыми способами извлечения квадратных корней из больших чисел без калькулятора.

Цель работы: найти и показать те способы извлечения квадратных корней, которыми можно будет воспользоваться, не имея под рукой калькулятора.

Задачи:

  1. Изучить литературу по данному вопросу.
  2. Рассмотреть особенности каждого найденного способа и его алгоритм.
  3. Показать практическое применение полученных знаний и оценить

Степень сложности в использовании различных способов и алгоритмов.

  1. Создать мини-книжечку по самым интересным алгоритмам.

Объект исследования: математические символы – квадратные корни.

Предмет исследования: особенности способов извлечения квадратных корней без калькулятора.

Методы исследования:

  1. Поиск способов и алгоритмов извлечения квадратных корней из больших чисел без калькулятора.
  2. Сравнение найденных способов.
  3. Анализ полученных способов.

Все знают, что извлечь квадратный корень без калькулятора - это очень сложная

задача. Когда нет под рукой калькулятора, то начинаем методом подбора стараться вспомнить данные из таблицы квадратов целых чисел, но это не всегда помогает. Например, таблица квадратов целых чисел не даёт ответ на такие вопросы, как, например, извлечь корень из 75, 37,885,108,18061 и другие даже приблизительно.

Также часто на экзаменах ОГЭ и ЕГЭ пользование калькулятором запрещено и нет

таблицы квадратов целых чисел, а надо извлечь корень из 3136 или 7056 и т.д.

Но изучая литературу по данной теме, я узнал, что извлекать корни из таких чисел

возможно и без таблицы и калькулятора, люди научились задолго до изобретения микрокалькулятора. Исследуя эту тему, я нашел несколько способов решения данной проблемы.

Глава 1. Способ разложения на простые множители

Для извлечения квадратного корня можно разложить число на простые множители и извлечь квадратный корень из произведения.

Таким способом принято пользоваться при решении заданий с корнями в школе.

3136│2 7056│2

1568│2 3528│2

784│2 1764│2

392│2 882│2

196│2 441│3

98│2 147│3

49│7 49│7

7│7 7│7

√3136 = √2²∙2²∙2²∙7² = 2∙2∙2∙7 = 56 √3136 = √2²∙2²∙3²∙7² = 2∙2∙3∙7 = 84

Многие применяют его успешно и считают единственным. Извлечение корня разложением на множители - трудоёмкая задача, которая тоже не всегда приводит к желаемому результату. Попробуйте извлечь квадратный корень из числа 209764? Разложение на простые множители дает произведение 2∙2∙52441. А как быть дальше? С этой задачей сталкиваются все, и спокойно в ответе записывают остаток от разложения под знак корня. Методом проб и ошибок, подбором разложение, конечно, можно сделать, если быть уверенным в том, что получится красивый ответ, но практика показывает, что очень редко предлагаются задания с полным разложением. Чаще мы видим, что корень до конца не извлечь.

Поэтому, этот способ лишь частично решает проблему извлечения без калькулятора.

Глава 2. Извлечение квадратного корня уголком

Для извлечения квадратного корня уголком и рассмотрим алгоритм:
1-й шаг. Число 8649 разбиваем на грани справа налево; каждая из которых должна содержать две цифры. Получаем две грани:
.
2-й шаг. Извлекаем квадратный корень из первой грани 86, получаем
с недостатком. Цифра 9 –это первая цифра корня.
3-й шаг. Число 9 возводим в квадрат (9
2 = 81) и число 81 вычитаем из первой грани, получаем 86- 81=5. Число 5 – первый остаток.
4-й шаг. К остатку 5 приписываем вторую грань 49, получаем число 549.

5-й шаг . Удваиваем первую цифру корня 9 и, записывая слева, получаем-18

К числу нужно приписать такую наибольшую цифру, чтобы произведение числа, которое мы получим, на эту цифру было бы либо равно числу 549, либо меньше, чем 549. Это цифра 3. Она находится путем подбора: количество десятков числа 549, то есть число 54 делится на 18, получаем 3, так как 183 ∙ 3 = 549. Цифра 3 – это вторая цифра корня.

6-й шаг. Находим остаток 549 – 549 = 0. Так как остаток равен нулю, то мы получили точное значение корня – 93.

Пприведу еще пример: извлечь √212521

Шаги алгоритма

Пример

Комментарии

Разбить число на группы по 2 цифры в каждой справа налево

21’ 25’ 21

Общее число образовавшихся групп определяет количество цифр в ответе

Для первой группы цифр подобрать цифру, квадрат которой будет наибольшим, но не превосходящим числа первой группы

1 группа – 21

4 2 =16

цифра - 4

Найденная цифра записывается в ответе на первом месте

Из первой группы цифр вычесть найденный на шаге 2 квадрат первой цифры ответа

21’ 25’ 21

К остатку, найденному на шаге 3, приписать справа (снести) вторую группу цифр

21’ 25’ 21

16__

К удвоенной первой цифре ответа приписать справа такую цифру, чтобы произведение полученного в результате числа на эту цифру было наибольшим, но не превосходила числа, найденного на шаге 4

4*2=8

цифра – 6

86*6=516

Найденная цифра записывается в ответе на втором месте

Из числа, полученного на шаге 4 вычесть число, полученное на шаге 5. Снести к остатку третью группу

21’ 25’ 21

К удвоенному числу, состоящему из первых двух цифр ответа, приписать справа такую цифру, чтобы произведение полученного в результате числа на эту цифру был наибольшим, но не превосходило числа, полученного на шаге 6

46*2=92

цифра 1

921*1=921

Найденная цифра записывается в ответе на третьем месте

Записать ответ

√212521=461

Глава 3. Способ использования таблицы квадратов двузначных чисел

Про этот способ я узнал из Интернета. Способ очень простой и даёт мгновенное извлечение квадратного корня из любых целых чисел от 1 до 100 с точностью до десятых без калькулятора. Одно условие для этого метода – наличие таблицы квадратов чисел до 99.

(Она есть во всех учебниках алгебры 8 класса, и на экзамене ОГЭ предлагается в качестве справочного материала.)

Откройте таблицу и проверьте скорость нахождения ответа. Но сначала несколько рекомендаций: самый левый столбик – это будут в ответе целые, самая верхняя строчка – это десятые в ответе. А дальше всё просто: закройте две последние цифры числа в таблице и найдите нужное вам, не превосходящее подкоренное число, и далее действуйте по правилам этой таблицы.

Рассмотрим на примере. Найдём значение √87.

Закрываем две последние цифры у всех чисел в таблице и находим близкие для 87 – таких только два 86 49 и 88 37. Но 88 – это уже много.

Значит, остаётся только одно – 8649.

Левый столбик даёт ответ 9 (это целых), а верхняя строчка 3 (это десятых). Значит √87≈ 9,3. Проверим на МК √87 ≈ 9,327379.

Быстро, просто, доступно на экзамене. Но сразу понятно, что корни, большие 100 уже этим способом извлечь невозможно. Способ удобен для заданий с маленькими корнями и при наличии таблицы.

Глава 4. Формула Древнего Вавилона

Древние вавилоняне пользовались следующим способом нахождения приближенного значения квадратного корня их числа х. Число х они представляли в виде суммы а 2 +b, где а 2 ближайший к числу х точный квадрат натурального числа а (а 2 . (1)

Извлечем с помощью формулы (1) корень квадратный, например из числа 28:

Результат извлечения корня из 28 с помощью МК 5,2915026.

Как видим способ вавилонян дает хорошее приближение к точному значению корня.

Глава 5. Способ отбрасывания полного квадрата

(только у четырехзначных чисел)

Сразу стоит уточнить, что этот способ применим только для извлечения квадратного корня из точного квадрата, а алгоритм нахождения зависит от величины подкоренного числа.

  1. Извлечение корней до числа 75 2 = 5625

Например: √¯3844 = √¯ 37 00 + 144 = 37 + 25 = 62.

Число 3844 представим в виде суммы, выделив из этого числа квадрат 144, затем выделенный квадрат отбрасываем, к числу сотен первого слагаемого (37) прибавляем всегда 25 . Получим ответ 62.

Так можно извлекать только квадратные корни до числа 75 2 =5625!

2) Извлечение корней после числа 75 2 = 5625

Как же устно извлечь квадратные корни из чисел больше 75 2 =5625?

Например: √7225 = √ 70 00 + 225 = 70 + √225 = 70 + 15 = 85.

Поясним,7225 представим в виде суммы 7000 и выделенного квадрата 225. Затем к числу сотен прибавить квадратный корень из 225, равный 15.

Получим ответ 85.

Этот способ нахождения очень интересен и в какой – то мере оригинален, но в ходе моего исследования встретился только один раз в работе пермского преподавател.

Возможно, он мало изучен или имеет какие – то исключения.

Он достаточно сложен в запоминании из – за двойственности алгоритма и применим только для четырёхзначных чисел точных корней, но я проработал множество примеров и убедился в его правильности. Кроме всего этот способ доступен тем, кто уже запомнил наизусть квадраты чисел от 11 до 29, ведь без их знания он будет бесполезен.

Глава 6. Канадский метод

√ X = √ S + (X - S) / (2 √ S), гдеX - число, из которого необходимо извлечь квадратный корень, а S - число ближайшего точного квадрата.

Давайте попробуем извлечь квадратный корень из 75


√ 75 = 9 + (- 6/18) = 9 - 0,333 = 8,667

При детальном изучении этого метода легко можно доказать его сходство с вавилонским и поспорить за авторские права изобретения этой формулы, если такие есть в действительности. Метод несложный и удобный.

Глава 7. Метод подбора угадыванием

Этот метод предлагают английские студенты математического колледжа Лондона, но каждый в своей жизни хоть раз непроизвольно пользовался этим методом. Он основан на подборе разных значений квадратов близких чисел путём сужения области поиска. Овладеть этим способом может каждый, но вот пользоваться вряд ли, потому что он требует многократного вычисления произведения столбиком не всегда правильно угаданных чисел. Этот способ проигрывает и в красоте решения, и по времени. Алгоритм прост:

Предположим, вы хотите извлечь квадратный корень из 75.

Так как 8 2 = 64 и 9 2 = 81, вы знаете, ответ находится где-то между ними.

Попробуйте возвести 8,5 2 и вы получите 72,25 (слишком мало)

Теперь попробуйте 8,6 2 и вы получите 73,96 (слишком небольшой, но все ближе)

Теперь попробуйте 8,7 2 и вы получите 75,69 (слишком большая)

Теперь вы знаете, ответ находится между 8,6 и 8,7

Попробуйте возвести 8,65 2 и вы получите 74,8225 (слишком мало)

Теперь попробуйте 8,66 2 ... и так далее.

Продолжайте, пока не получите ответ достаточно точный для вас.

Глава 8. Метод вычетов нечётного числа

Многие знают метод извлечения квадратного корня разложением числа на простые множители. В своей работе представлю ещё один способ, с помощью которого можно узнать целую часть квадратного корня числа. Способ очень простой. Заметим, что для квадратов чисел верны следующие равенства:

1=1 2

1+3=2 2

1+3+5=3 2

1+3+5+7=4 2 и т.д.

Правило: узнать целую часть квадратного корня числа можно вычитая из него все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю, и сочтя количество выполненных действий.

Например, чтобы получить квадратный корень из 36 и 121 это:

Общее количество вычитаний = 6, поэтому квадратный корень из 36 = 6.

Общее количество вычитаний = 11, поэтому √121 = 11.

Еще пример: найдём √529

Решение: 1)_529

2)_528

3)_525

4)_520

5)_513

6)_504

7)_493

8)_480

9)_465

10)_448

11)_429

12)_408

13)_385

14)_360

15)_333

16)_304

17)_273

18)_240

19)_205

20)_168

21)_129

22)_88

23)_45

Ответ: √529 = 23

Ученые называют этот метод арифметическим извлечением квадратного корня, а за глаза «методом черепахи» из-за его медлительности.
Недостатком такого способа является то, что если извлекаемый корень не является целым числом, то можно узнать только его целую часть, но не точнее. В то же время такой способ вполне доступен детям, решающим простейшие математические задачи, требующие извлечения квадратного корня. Попробуйте извлечь квадратный корень из числа, например, 5963364 этим способом и вы поймёте, что он «работает», безусловно, без погрешностей для точных корней, но очень - очень длинный в решёнии.

Заключение

Описанные в работе методы извлечения корней встречаются во многих источниках. Тем не менее, разобраться в них оказалось для меня непростой задачей, что вызвало немалый интерес. Представленные алгоритмы позволят всем, кто заинтересуется данной темой, быстрее овладеть навыками вычисления квадратного корня, их можно использовать при проверке своего решения и не зависеть от калькулятора.

В результате проведённого исследования я пришел к выводу: различные способы извлечения квадратного корня без калькулятора необходимы в школьном курсе математики, чтобы развивать навыки вычислений.

Теоретическая значимость исследования – систематизированы основные методы извлечения квадратных корней.

Практическая значимость: в создании мини-книжечки, содержащей опорную схему извлечения квадратных корней различными способами (Приложение1).

Литература и сайты Интернета:

  1. И.Н. Сергеев, С.Н. Олехник, С.Б.Гашков «Примени математику». – М.: Наука, 1990
  2. Керимов З., «Как найти целый корень?» Научно-популярный физико-математический журнал "Квант" №2, 1980
  3. Петраков И.С. «математические кружки в 8-10 классах»; Книга для учителя.

–М.:Просвещение,1987

  1. Тихонов А.Н., Костомаров Д.П. «Рассказы о прикладной математики».- М.: Наука. Главная редакция физико- математической литературы, 1979
  2. Ткачева М.В. Домашняя математика. Книга для учащихся 8 класса учебных заведений. – Москва, Просвещение, 1994г.
  3. Жохов В.И., Погодин В.Н. Справочные таблицы по математике.-М.: ООО «Издательство «РОСМЭН-ПРЕСС», 2004.-120 с.
  4. http://translate.google.ru/translate
  5. http://www.murderousmaths.co.uk/books/sqroot.htm
  6. http://ru.wikipedia.ord /wiki /teorema/

Добрый день, уважаемые гости!

Меня зовут Лев Соколов, я учусь в 8 классе в вечерней школе.

Представляю вашему вниманию работу на тему: « Извлечение квадратных корней из больших чисел без калькулятора».

При изучении темы квадратные корни в этом учебном году, меня заинтересовал вопрос, как можно извлечь квадратный корень из больших чисел без калькулятора и я решил изучить его глубже, так как на следующий год мне предстоит сдавать экзамен по математике.

Цель моей работы: найти и показать способы извлечения квадратных корней без калькулятора

Для достижения цели я решал следующие задачи:

1. Изучить литературу по данному вопросу.

2. Рассмотреть особенности каждого найденного способа и его алгоритм.

3. Показать практическое применение полученных знаний и оценить степень сложности в использовании различных способов и алгоритмов.

4.Создать мини-книжечку по самым интересным алгоритмам.

Объектом моего исследования стали квадратные корни.

Предмет исследования: способы извлечения квадратных корней без калькулятора.

Методы исследования:

1. Поиск способов и алгоритмов извлечения квадратных корней из больших чисел без калькулятора.

2. Сравнение и анализ найденных способов.

Я нашел и изучил 8 способов извлечения квадратных корней без калькулятора и отработал их на практике. Название найденных способов приведены на слайде.

Я остановлюсь на тех из них, которые мне понравились.

Покажу на примере, как можно способом разложения на простые множители извлечь квадратный корень из числа 3025.

Основной недостаток этого способа - он занимает много времени.

С помощью формулы Древнего Вавилона я извлеку квадратный корень из этого же числа 3025.

Способ удобен только для малых чисел.

Из этого же числа 3025 извлекаем квадратный корень уголком.

На мой взгляд, это самый универсальный способ, он применим к любым числам.

В современной науке известно много способов извлечения квадратного корня без калькулятора, но я изучил не все.

Практическая значимость моей работы: в создании мини-книжечки, содержащей опорную схему извлечения квадратных корней различными способами.

Результаты моей работы могут успешно применяться на уроках математики, физики и других предметах, где требуется извлечение корней без калькулятора.

Спасибо за внимание!

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Извлечение квадратных корней из больших чисел без калькулятора Исполнитель: Лев Соколов, МКОУ « Тугулымская В(С)ОШ»,8 класс Руководитель: Сидорова Татьяна Николаевна I категория, учитель математики р.п. Тугулым

Правильному применению методов можно научиться, применяя и на разнообразных примерах. Г. Цейтен Цель работы: найти и показать те способы извлечения квадратных корней, которыми можно будет воспользоваться, не имея под рукой калькулятора. Задачи: - Изучить литературу по данному вопросу. - Рассмотреть особенности каждого найденного способа и его алгоритм. - Показать практическое применение полученных знаний и оценить степень сложности в использовании различных способов и алгоритмов. - Создать мини-книжечку по самым интересным алгоритмам.

Объект исследования: квадратные корни Предмет исследования: способы извлечения квадратных корней без калькулятора. Методы исследования: Поиск способов и алгоритмов извлечения квадратных корней из больших чисел без калькулятора. Сравнение найденных способов. Анализ полученных способов.

Способы извлечения квадратного корня: 1. Способ разложения на простые множители 2. Извлечение квадратного корня уголком 3. Способ использования таблицы квадратов двузначных чисел 4. Формула Древнего Вавилона 5. Способ отбрасывания полного квадрата 6. Канадский метод 7. Метод подбора угадыванием 8. Метод вычетов нечётного числа

Способ разложения на простые множители Для извлечения квадратного корня можно разложить число на простые множители и извлечь квадратный корень из произведения. 3136│2 7056│2 209764│2 1568│2 3528│2 104882│2 784│2 1764│2 52441│229 392│2 882│2 229│229 196│2 441│3 98│2 147│3 √209764 = √2∙2∙52441 = 49│7 49│7 = √2²∙229² = 458. 7│7 7│7 √3136 = √ 2²∙2²∙2²∙7² = 2∙2∙2∙7 = 56. √7056 = √2²∙2²∙3²∙7² = 2∙2∙3∙7 = 84. Не всегда легко можно разложить, чаще до конца не извлекается, занимает много времени.

Формула Древнего Вавилона (Вавилонский метод) Алгоритм извлечения квадратного корня древневавилонским способом. 1 . Представить число с в виде суммы а ² + b , где а ² ближайший к числу с точный квадрат натурального числа а (а ² ≈ с); 2. Приближенное значение корня вычисляется по формуле: Результат извлечения корня с помощью калькулятора равен 5,292.

Извлечение квадратного корня уголком Способ почти универсальный, так как применим к любым числам, но составление ребуса (угадывание цифры на конце числа) требует логики и хороших вычислительных навыков столбиком.

Алгоритм извлечения квадратного корня уголком 1. Разбиваем число (5963364) на пары справа налево (5`96`33`64) 2. Извлекаем квадратный корень из первой слева группы (- число 2). Так мы получаем первую цифру числа. 3. Находим квадрат первой цифры (2 2 =4). 4. Находим разность первой группы и квадрата первой цифры (5-4=1). 5.Сносим следующие две цифры (получили число 196). 6. Удваиваем первую, найденную нами цифру, записываем слева за чертой (2*2=4). 7.Теперь необходимо найти вторую цифру числа: удвоенная первая цифра, найденная нами, становится цифрой десятков числа, при умножении которого на число единиц, необходимо получить число меньшее 196 (это цифра 4, 44*4=176). 4 - вторая цифра числа &. 8. Находим разность (196-176=20). 9. Сносим следующую группу (получаем число 2033). 10. Удваиваем число 24, получаем 48. 11. 48 десятков в числе, при умножении которого на число единиц, мы должны получить число меньшее 2033 (484*4=1936). Найденная нами цифра единиц (4) и есть третья цифра числа. Далее процесс повторяется.

Метод вычетов нечётного числа (арифметический способ) Алгоритм извлечения квадратного корня: Вычитать нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю. Подсчитать количество выполненных действий – это число есть целаячасть числа извлекаемого квадратного корня. Пример 1: вычислить 1. 9 − 1 = 8; 8 − 3 = 5; 5 − 5 = 0. 2. Выполнено 3 действия

36 - 1 = 35 - 3 = 32 - 5 = 27 - 7 = 20 - 9 = 11 - 11 = 0 общее количество вычитаний = 6, поэтому квадратный корень из 36 = 6. 121 – 1 = 120 - 3 = 117- 5 = 112 - 7 = 105 - 9 = 96 - 11 = 85 – 13 = 72 - 15 = 57 – 17 = 40 - 19 = 21 - 21 = 0 Общее количество вычитаний = 11, поэтому квадратный корень из 121 = 11. 5963364 = ??? Российские учёные «за глаза» называют его «методом черепахи» из-за его медлительности. Он неудобен для больших чисел.

Теоретическая значимость исследования – систематизированы основные методы извлечения квадратных корней. Практическая значимость: в создании мини-книжечки, содержащей опорную схему извлечения квадратных корней различными способами.

Спасибо за внимание!

Предварительный просмотр:

При решении некоторых задач потребуется извлечь квадратный корень из крупного числа. Как это сделать?

Метод вычетов нечётного числа.

Способ очень простой. Заметим, что для квадратов чисел верны следующие равенства:

1=1 2

1+3=2 2

1+3+5=3 2

1+3+5+7=4 2 и т.д.

Правило: узнать целую часть квадратного корня числа можно вычитая из него все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю, и сочтя количество выполненных действий.

Например, чтобы получить квадратный корень из 36 и 121 это:

36 - 1 = 35 - 3 = 32 - 5 = 27 - 7 = 20 - 9 = 11 - 11 = 0

Общее количество вычитаний = 6, поэтому квадратный корень из 36 = 6.

121 - 1 = 120 - 3 = 117- 5 = 112 - 7 = 105 - 9 = 96 - 11 = 85 – 13 = 72 - 15 = 57 – 17 = 40 - 19 = 21 - 21 = 0

Общее количество вычитаний = 11, поэтому √121 = 11.

Канадский метод.

Этот быстрый метод был открыт молодыми учёными одного из ведущих университетов Канады в 20 веке. Его точность – не более двух – трёх знаков после запятой. Вот их формула:

√ X = √ S + (X - S) / (2 √ S), где X - число, из которого необходимо извлечь квадратный корень, а S - число ближайшего точного квадрата.

Пример. Извлечь квадратный корень из 75.

X = 75, S = 81. Это означает, что √ S = 9.

Просчитаем по этой формуле √75: √ 75 = 9 + (75 - 81) / (2∙ 9)
√ 75 = 9 + (- 6/18) = 9 - 0,333 = 8,667

Способ извлечения квадратного корня уголком.

1. Разбиваем число (5963364) на пары справа налево (5`96`33`64)

2. Извлекаем квадратный корень из первой слева группы ( - число 2). Так мы получаем первую цифру числа.

3. Находим квадрат первой цифры (2 2 =4).

4. Находим разность первой группы и квадрата первой цифры (5-4=1).

5.Сносим следующие две цифры (получили число 196).

6. Удваиваем первую, найденную нами цифру, записываем слева за чертой (2*2=4).

7.Теперь необходимо найти вторую цифру числа: удвоенная первая цифра, найденная нами, становится цифрой десятков числа, при умножении которого на число единиц, необходимо получить число меньшее 196 (это цифра 4, 44*4=176). 4 - вторая цифра числа &.

8. Находим разность (196-176=20).

9. Сносим следующую группу (получаем число 2033).

10. Удваиваем число 24, получаем 48.

11.48 десятков в числе, при умножении которого на число единиц, мы должны получить число меньшее 2033 (484*4=1936). Найденная нами цифра единиц (4) и есть третья цифра числа.


Действие извлечения корня квадратного обратно действию возведения в квадрат.

√81= 9 9 2 =81.

Метод подбора.

Пример: Извлечь корень из числа 676 .

Замечаем, что 20 2 = 400, а 30 2 = 900, значит 20

Точные квадраты натуральных чисел оканчиваются цифрами 0; 1; 4; 5; 6; 9.
Цифру 6 дают 4 2 и 6 2 .
Значит, если из 676 извлекается корень, то это либо 24, либо 26.

Осталось проверить: 24 2 = 576, 26 2 = 676.

Ответ: √ 676 = 26.

Еще пример: √6889 .

Так как 80 2 = 6400, а 90 2 = 8100, то 80 Цифру 9 дают 3 2 и 7 2 , то √6889 равен либо 83, либо 87.

Проверяем: 83 2 = 6889.

Ответ: √6889 = 83 .

Если затрудняетесь решать методом подбора, то можно подкоренное выражение разложить на множители.

Например, найти √893025 .

Разложим число 893025 на множители, вспомните, вы делали это в шестом классе.

Получаем: √893025 = √3 6 ∙5 2 ∙7 2 = 3 3 ∙5 ∙7 = 945.

Вавилонский метод.

Шаг №1. Представить число х в виде суммы: х=а 2 + b, где а 2 ближайший к числу х точный квадрат натурального числа а.

Шаг №2. Использовать формулу:

Пример. Вычислить .

Арифметический метод.

Вычитаем из числа все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю. Подсчитав количество выполненных действий, определяем, целую часть квадратного корня из числа.

Пример. Вычислить целую часть числа .

Решение. 12 - 1 = 11; 11 - 3 = 8; 8 - 5 = 3; 3 3 - целая часть числа . Итак, .

Метод (известный как метод Ньютона) заключается в следующем.

Пусть а 1 - первое приближение числа (в качестве а 1 можно брать значения квадратного корня из натурального числа - точного квадрата, не превосходящего .

Указанный способ позволяет извлекать квадратный корень из большого числа с любой точностью, правда с существенным недостатком: громоздкость вычислений.

Метод оценки.

Шаг №1. Выяснить диапазон, в котором лежит исходный корень (100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000).

Шаг №2 . По последней цифре определить на какую цифру заканчивается искомое число.

Цифра единиц числа х

Цифра единиц числа х 2

Шаг №3. Возвести в квадрат предполагаемые числа и определить из них искомое число.

Пример 1. Вычислить .

Решение. 2500 50 2 2 50

= *2 или = *8.

52 2 = (50 +2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;
58
2 = (60 − 2) 2 = 3600 − 2 · 60 · 2 + 4 = 3364.

Следовательно, = 58.

Математика зародилась тогда, когда человек осознал себя и стал позиционироваться как автономная единица мира. Желание измерить, сравнить, посчитать то, что тебя окружает, - вот что лежало в основе одной из фундаментальных наук наших дней. Сначала это были частички элементарной математики, что позволили связать числа с их физическими выражениями, позже выводы стали излагаться лишь теоретически (в силу своей абстрактности), ну а через некоторое время, как выразился один ученый, "математика достигла потолка сложности, когда из нее исчезли все числа". Понятие "квадратный корень" появилось еще в то время, когда его можно было без проблем подкрепить эмпирическими данными, выходя за плоскость вычислений.

С чего все начиналось

Первое упоминание корня, который на данный момент обозначается как √, было зафиксировано в трудах вавилонских математиков, положивших начало современной арифметике. Конечно, на нынешнюю форму они походили мало - ученые тех лет сначала пользовались громоздкими табличками. Но во втором тысячелетии до н. э. ими была выведена приближенная формула вычислений, которая показывала, как извлечь квадратный корень. На фото ниже изображен камень, на котором вавилонские ученые высекли процесс вывода √2 , причем он оказался настолько верным, что расхождение в ответе нашли лишь в десятом знаке после запятой.

Помимо этого, корень применялся, если нужно было найти сторону треугольника, при условии, что две другие известны. Ну и при решении квадратных уравнений от извлечения корня никуда не деться.

Наравне с вавилонскими работами объект статьи изучался и в китайской работе "Математика в девяти книгах", а древние греки пришли к выводу, что любое число, из которого не извлекается корень без остатка, дает иррациональный результат.

Происхождение данного термина связывают с арабским представлением числа: древние ученые полагали, что квадрат произвольного числа произрастает из корня, подобно растению. На латыни это слово звучит как radix (можно проследить закономерность - все, что имеет под собой "корневую" смысловую нагрузку, созвучно, будь то редис или радикулит).

Ученые последующих поколений подхватили эту мысль, обозначая его как Rx. Например, в XV веке, дабы указать, что извлекается корень квадратный из произвольного числа a, писали R 2 a. Привычная современному взгляду "галочка" √ появилась лишь в XVII веке благодаря Рене Декарту.

Наши дни

С точки зрения математики, квадратный корень из числа y - это такое число z, квадрат которого равен y. Иными словами, z 2 =y равносильно √y=z. Однако данное определение актуально лишь для арифметического корня, так как оно подразумевает неотрицательное значение выражения. Иными словами, √y=z, где z больше либо равно 0.

В общем случае, что действует для определения алгебраического корня, значение выражения может быть как положительным, так и отрицательным. Таким образом, в силу того, что z 2 =y и (-z) 2 =y, имеем: √y=±z или √y=|z|.

Благодаря тому, что любовь к математике с развитием науки лишь возросла, существуют разнообразные проявления привязанности к ней, не выраженные в сухих вычислениях. Например, наравне с такими занятными явлениями, как день числа Пи, отмечаются и праздники корня квадратного. Отмечаются они девять раз в сто лет, и определяются по следующему принципу: числа, которые обозначают по порядку день и месяц, должна быть корнем квадратным из года. Так, в следующий раз предстоит отмечать сей праздник 4 апреля 2016 года.

Свойства квадратного корня на поле R

Практически все математические выражения имеют под собой геометрическую основу, не миновала эта участь и √y, который определяется как сторона квадрата с площадью y.

Как найти корень числа?

Алгоритмов вычисления существует несколько. Наиболее простым, но при этом достаточно громоздким, является обычный арифметический подсчет, который заключается в следующем:

1) из числа, корень которого нам нужен, по очереди вычитаются нечетные числа - до тех пор, пока остаток на выходе не получится меньше вычитаемого или вообще будет равен нулю. Количество ходов и станет в итоге искомым числом. Например, вычисление квадратного корня из 25:

Следующее нечетное число - это 11, остаток у нас следующий: 1<11. Количество ходов - 5, так что корень из 25 равен 5. Вроде все легко и просто, но представьте, что придется вычислять из 18769?

Для таких случаев существует разложение в ряд Тейлора:

√(1+y)=∑((-1) n (2n)!/(1-2n)(n!) 2 (4 n))y n , где n принимает значения от 0 до

+∞, а |y|≤1.

Графическое изображение функции z=√y

Рассмотрим элементарную функцию z=√y на поле вещественных чисел R, где y больше либо равен нулю. График ее выглядит следующим образом:

Кривая растет из начала координат и обязательно пересекает точку (1; 1).

Свойства функции z=√y на поле действительных чисел R

1. Область определения рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль включен).

2. Область значений рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль опять же включен).

3. Минимальное значение (0) функция принимает лишь в точке (0; 0). Максимальное значение отсутствует.

4. Функция z=√y ни четная, ни нечетная.

5. Функция z=√y не является периодической.

6. Точка пересечения графика функции z=√y с осями координат лишь одна: (0; 0).

7. Точка пересечения графика функции z=√y также является и нулем этой функции.

8. Функция z=√y непрерывно растет.

9. Функция z=√y принимает лишь положительные значения, следовательно, график ее занимает первый координатный угол.

Варианты изображения функции z=√y

В математике для облегчения вычислений сложных выражений порой используют степенную форму написания корня квадратного: √y=y 1/2 . Такой вариант удобен, например, в возведении функции в степень: (√y) 4 =(y 1/2) 4 =y 2 . Этот метод является удачным представлением и при дифференцировании с интегрированием, так как благодаря ему корень квадратный представляется обычной степенной функцией.

А в программировании заменой символа √ является комбинация букв sqrt.

Стоит отметить, что в данной области квадратный корень очень востребован, так как входит в состав большинства геометрических формул, необходимых для вычислений. Сам алгоритм подсчета достаточно сложен и строится на рекурсии (функции, что вызывает сама себя).

Корень квадратный в комплексном поле С

По большому счету именно предмет данной статьи стимулировал открытие поля комплексных чисел C, так как математикам не давал покоя вопрос получения корня четной степени из отрицательного числа. Так появилась мнимая единица i, которая характеризуется очень интересным свойством: ее квадратом есть -1. Благодаря этому квадратные уравнения и при отрицательном дискриминанте получили решение. В С для корня квадратного актуальны те же свойства, что и в R, единственное, сняты ограничения с подкоренного выражения.

Что такое квадратный корень?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Это понятие очень простое. Естественное, я бы сказал. Математики на каждое действие стараются найти противодействие. Есть сложение - есть и вычитание. Есть умножение - есть и деление. Есть возведение в квадрат... Значит есть и извлечение квадратного корня! Вот и всё. Это действие (извлечение квадратного корня ) в математике обозначается вот таким значком:

Сам значок называется красивым словом "радикал ".

Как извлечь корень? Это лучше рассмотреть на примерах .

Сколько будет квадратный корень из 9? А какое число в квадрате даст нам 9? 3 в квадрате даст нам 9! Т.е:

А вот сколько будет квадратный корень из нуля? Не вопрос! Какое число в квадрате ноль даёт? Да сам же ноль и даёт! Значит:

Уловили, что такое квадратный корень? Тогда считаем примеры :

Ответы (в беспорядке): 6; 1; 4; 9; 5.

Решили? Действительно, уж куда проще-то?!

Но... Что делает человек, когда видит какое-нибудь задание с корнями?

Тосковать начинает человек... Не верит он в простоту и лёгкость корней. Хотя, вроде, и знает, что такое квадратный корень ...

Всё потому, что человек проигнорировал несколько важных пунктиков при изучении корней. Потом эти пунктики жестоко мстят на контрольных и экзаменах...

Пунктик первый. Корни надо узнавать в лицо!

Сколько будет корень квадратный из 49? Семь? Верно! А как вы узнали, что семь? Возвели семёрку в квадрат и получили 49? Правильно! Обратите внимание, чтобы извлечь корень из 49 нам пришлось проделать обратную операцию - возвести 7 в квадрат! И убедиться, что мы не промахнулись. А могли и промахнуться...

В этом и есть сложность извлечения корней . Возвести в квадрат можно любое число без особых проблем. Умножить число само на себя столбиком - да и все дела. А вот для извлечения корня такой простой и безотказной технологии нет. Приходится подбирать ответ и проверять его на попадание возведением в квадрат.

Этот сложный творческий процесс - подбор ответа - сильно упрощается, если вы помните квадраты популярных чисел. Как таблицу умножения. Если, скажем, надо умножить 4 на 6 - вы же не складываете четверку 6 раз? Сразу выплывает ответ 24. Хотя, не у всех он выплывает, да...

Для свободной и успешной работы с корнями достаточно знать квадраты чисел от 1 до 20. Причём туда и обратно. Т.е. вы должны легко называть как, скажем, 11 в квадрате, так и корень квадратный из 121. Чтобы добиться такого запоминания, есть два пути. Первый - выучить таблицу квадратов. Это здорово поможет решать примеры. Второй - решать побольше примеров. Это здорово поможет запомнить таблицу квадратов.

И никаких калькуляторов! Только для проверки. Иначе на экзамене будете тормозить нещадно...

Итак, что такое квадратный корень и как извлекать корни - думаю, понятно. Теперь выясним ИЗ ЧЕГО можно их извлекать.

Пунктик второй. Корень, я тебя не знаю!

Из каких чисел можно извлекать квадратные корни? Да почти из любых. Проще понять, из чего нельзя их извлекать.

Попробуем вычислить вот такой корень:

Для этого нужно подобрать число, которое в квадрате даст нам -4. Подбираем.

Что, не подбирается? 2 2 даёт +4. (-2) 2 даёт опять +4! Вот-вот... Нет таких чисел, которые при возведении в квадрат дадут нам отрицательное число! Хотя я такие числа знаю. Но вам не скажу). Поступите в институт - сами узнаете.

Такая же история будет с любым отрицательным числом. Отсюда вывод:

Выражение, в котором под знаком квадратного корня стоит отрицательное число - не имеет смысла ! Это запретная операция. Такая же запретная, как и деление на ноль. Запомните этот факт железно! Или, другими словами:

Квадратные корни из отрицательных чисел извлечь нельзя!

Зато из всех остальных - можно. Например, вполне можно вычислить

На первый взгляд это очень сложно. Подбирать дроби, да в квадрат возводить... Не волнуйтесь. Когда разберёмся со свойствами корней, такие примеры будут сводиться к всё той же таблице квадратов. Жизнь станет проще!

Ну ладно дроби. Но нам ведь ещё попадаются выражения типа:

Ничего страшного. Всё то же самое. Корень квадратный из двух - это число, которое при возведении в квадрат даст нам двойку. Только число это совсем неровное... Вот оно:

Что интересно, эта дробь не кончается никогда... Такие числа называются иррациональными. В квадратных корнях это - самое обычное дело. Кстати, именно поэтому выражения с корнями называют иррациональными . Понятно, что писать всё время такую бесконечную дробь неудобно. Поэтому вместо бесконечной дроби так и оставляют:

Если при решении примера у вас получилось что-то неизвлекаемое, типа:

то так и оставляем. Это и будет ответ.

Нужно чётко понимать, что под значками

Конечно, если корень из числа извлекается ровно , вы обязаны это сделать. Ответ задания в виде, например

вполне себе полноценный ответ.

И, конечно, надо знать на память приблизительные значения:

Это знание здорово помогает оценить ситуацию в сложных заданиях.

Пунктик третий. Самый хитрый.

Основную путаницу в работу с корнями вносит как раз этот пунктик. Именно он придаёт неуверенность в собственных силах... Разберёмся с этим пунктиком как следует!

Для начала опять извлечём квадратный корень их четырёх. Что, уже достал я вас с этим корнем?) Ничего, сейчас интересно будет!

Какое число даст в квадрате 4? Ну два, два - слышу недовольные ответы...

Верно. Два. Но ведь и минус два даст в квадрате 4... А между тем, ответ

правильный, а ответ

грубейшая ошибка. Вот так.

Так в чём же дело?

Действительно, (-2) 2 = 4. И под определение корня квадратного из четырёх минус два вполне подходит... Это тоже корень квадратный из четырёх.

Но! В школьном курсе математики принято считать за квадратные корни только неотрицательные числа! Т.е ноль и все положительные. Даже термин специальный придуман: из числа а - это неотрицательное число, квадрат которого равен а . Отрицательные результаты при извлечении арифметического квадратного корня попросту отбрасываются. В школе все квадратные корни - арифметические . Хотя особо об этом не упоминается.

Ну ладно, это понятно. Это даже и лучше - не возиться с отрицательными результатами... Это ещё не путаница.

Путаница начинается при решении квадратных уравнений. Например, надо решить вот такое уравнение.

Уравнение простое, пишем ответ (как учили):

Такой ответ (совершенно правильный, кстати) - это просто сокращённая запись двух ответов:

Стоп-стоп! Чуть выше я написал, что квадратный корень - число всегда неотрицательное! А здесь один из ответов - отрицательный ! Непорядок. Это первая (но не последняя) проблемка, которая вызывает недоверие к корням... Решим эту проблемку. Запишем ответы (чисто для понимания!) вот так:

Скобки сути ответа не меняют. Просто я отделил скобками знаки от корня . Теперь наглядно видно, что сам корень (в скобках) - число всё равно неотрицательное! А знаки - это результат решения уравнения . Ведь при решении любого уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат. В наше уравнение подходит корень из пяти (положительный!) как с плюсом, так и с минусом.

Вот так. Если вы просто извлекаете квадратный корень из чего-либо, вы всегда получаете один неотрицательный результат. Например:

Потому, что это - арифметический квадратный корень .

Но если вы решаете какое-нибудь квадратное уравнение, типа:

то всегда получается два ответа (с плюсом и минусом):

Потому, что это - решение уравнения.

Надеюсь, что такое квадратный корень со своими пунктиками вы уяснили. Теперь осталось узнать, что можно делать с корнями, каковы их свойства. И какие там пунктики и подводные кор... извините, камни!)

Всё это - в следующих уроках.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.