Рис. 128. Прибор для измерения нормального потенциала металла

Существует несколько теорий, объясняющих возникновение тока в гальванических элементах. Наиболее простая из них была выдвинута Нернстом (1888 г.)и позднее подробно развита академиком Л. В. Писаржевским на основе представлений о строении металлов из положительно заряженных ионов исвободных электронов.

Лев Владимирович Писаржевский родился в 1874 г.в. г. Кишиневе. Окончив естественный факультет Новороссийского университета (г. Одесса), Писаржевский был оставлен при нем для подготовки к прафессорскому званию. В 1902 г. он защитил магистерскую диссертацию, а в/1913 г. был избран профессором Екатеринославского горного института (г. Днепропетровск). С 1930 г. Писаржевский был действительным членом Академии наук СССР.

Крупный ученый и блестящий педагог, Писаржевский смело использовал достижения физики для изучения и объяснения химических процессов. Важнейшие его работы посвящены исследованию перекисей и надкислот, разработке теории растворов, приложению электронной теории к химии и разработке теории возникновения тока в гальванических элементах.

Возникновение тока в гальваническом элементе происходит следующим образом. Если погрузить любой металл в воду, ионы его начинают переходить в раствор под влиянием притяжения, испытываемого ими со стороны полярных молекул воды. Вследствие этого металл, в котором остается избыток электронов, заряжается отрицательно, а раствор - положительно. Однако число ионов, которое металл посылает в раствор, как показывает опыт, очень мало. Возникающий на металле по мере ухода ионов отрицательный заряд начинает притягивать обратно ушедшие из металла ионы, так что вскоре наступает состояние равновесия, при котором в единицу времени столько же ионов уходит из металла, сколько и возвращается в него:

металл⇄ионы металла

(в растворе)

Перешедшие в раствор ионы не распределяются равномерно по всей массе раствора, а вследствие притяжения к отрицательно заряженному металлу располагаются близ его поверхности, образуя так называемый двойной электрический слой (рис. 127). В результате между металлом и раствором устанавливается определенная разность потенциалов.

Лев Владимирович Писаржевский (1874-1938)

Предположим теперь, что мы прибавили к воде, в которую погружен металл, некоторое количество соли того же металла. Вследствие увеличения концентрации ионов металла в растворе равновесие между ними и металлом нарушится и часть ионов перейдет обратно в металл. Следовательно, в раствор своей соли

металл должен посылать меньше ионов, чем в чистую воду, и тем меньше, чем больше концентрация ионов в растворе. При достаточно большой концентрации соли ионы могут совсем не перейти из металла в раствор, так что ни металл, ни раствор не будут заряжены.

Наконец, если концентрация ионов металла в растворе достаточно велика, а активность металла сравнительно мала, металл не только не посылает ионов в раствор, но, наоборот, часть ионов переходит из раствора в металл. При этом между металлом и раствором тоже возникает разность потенциалов, но теперь уже раствор заряжается отрицательно за счет избытка отрицательных ионов соли, а металл - положительно. Практически дело обстоит так, что одни (более активные) всегда заряжаются в растворах своих солей отри-цательно, другие (менее активные) -положительно.

Следует заметить, что во всех случаях при погружении металла в раствор его соли количество переходящих в раствор или выделяющихся из раствора ионов настолько мало, что не может быть обнаружено химическим путем. Однако заряд их достаточно велик, чтобы создать поддающуюся измерению разность потенциалов.

Изложенная выше теория очень просто объясняет механизм действия гальванических элементов. Рассмотрим, например, медно-цинковый элемент. В этом элементе на цинковой пластинке, погруженной в раствор ZnSО 4 , возникает некоторый отрицательный заряд, а на меди, погруженной в раствор CuSO 4 ,- положительный заряд. Если не связаны друг с другом проводником, возникновение указанных зарядов, как мы видели выше, должно тотчас же приостановить и дальнейший переход ионов цинка в раствор, и выделение из раствора ионов меди. Но если соединить обе пластинки проволокой, то накапливающиеся на цинке электроны все время будут перетекать к медной пластинке, где их недостает. Таким образом, получает возможность посылать все новые и новые количества ионов Zn в раствор, у медной же пластинки ионы Сu разряжаются и выделяются в виде металлической меди. Этот процесс продолжается до тех пор, пока не растворится весь или не израсходуется вся медная соль.

Рис. 127. Двойной электрический слой

В гальванических элементах тот электрод, который в процессе работы элемента разрушается, посылая ионы в раствор, называется анодом, а электрод, у которого разряжаются положительные ионы, называется катодом.

Гальванический элемент может быть построен из любых двух металлов, погруженных в растворы их солей. При этом совершенно не обязательно, чтобы один металл заряжался «отрицательно, а другой - положительно. Единственным условием для перетекания электронов от одного заряженного тела к другому является существование разности потенциалов между ними. Но последняя должна возникнуть, какие бы мы ни взяли, так как способность отщеплять электроны и переходить в ионы у всех металлов различна. Если, например, составить гальванический элемент из цинка и железа, погруженных в нормальные растворы их солей, то, хотя оба металла заряжаются в растворах отрицательно, между ними все же возникнет некоторая разность потенциалов. При соединении металлов проводником электроны потекут от цинка, как металла более активного, к железу; будет растворяться, а - выделяться из раствора. Происходящая в элементе реакция выразится уравнением

Zn + Fe = Fe + Zn

Разность потенциалов, возникающая между металлом и раствором его соли, называется электродным потенциалом металла и может служить мерой его способности отдавать электроны или, что то же самое, мерой его химической активности при реакциях в растворах. Поэтому, измерив потенциалы всех металлов при одинаковых концентрациях их ионов, мы могли бы количественно охарактеризовать активность металлов.

К сожалению, прямое измерение этих величин очень затруднительно и не дает точных результатов. Это ясно уже из того, что нельзя, например, присоединить вольтметр к раствору, не погрузив в раствор металлический проводник. Но тогда возникает разность потенциалов между проводником и раствором, так что напряжение, показываемое вольтметром, будет зависеть от двух разностей потенциалов: разности потенциалов между интересующим нас металлом и раствором его соли и разности потенциалов между металлическим проводником и тем же раствором.

Гораздо легче измерить разность потенциалов (разность напряжений электронов) между двумя различными металлическими электродами, погруженными в растворы соответствующих солей, т. е. узнать, насколько потенциал одного металла больше или меньше потенциала другого металла. Если измерить таким образом относительные потенциалы всех металлов, сравнивая их потенциалы с потенциалом какого-нибудь одного из них, то полученные числа будут так же точно характеризовать активность металлов, как и абсолютные величины их потенциалов.

В качестве стандартного электрода, с потенциалом которого сравнивают потенциалы других металлов, принят так называемый нормальный водородный электрод. Последний состоит из платиновой пластинки, покрытой рыхлым слоем платины и погруженной в двунормальный раствор серной кислоты. Через раствор непрерывно пропускают под давлением в 1 ат ток чистого водорода, который, приходя в соприкосновение с платиной, в довольно большом количестве поглощается ею. Насыщенная водородом платиновая пластинка ведет себя так, как если бы она была сделана из водорода. При соприкосновении ее с раствором серной кислоты возникает определенная разность потенциалов (потенциал водородного электрода), условно принимаемая при измерениях относительных потенциалов за нуль.

Разность потенциалов между металлом, погруженным в раствор его соли, содержащий 1 грамм ион металла на литр, и нормальным водородным электродом называется нормальным потенциалом металла.

Для измерения нормальных потенциалов обычно пользуются приборами, подобными изображенному на рис. 128. По существу такой прибор представляет собой гальванический элемент, одним из электродов которого служит испытуемый металл, а другим - водородный электрод. Так как потенциал водородного электрода принимается за нуль, то, измерив разность потенциалов на полюсах такого элемента или его электродвижущую силу, мы непосредственно находим нормальный потенциал металла.

В табл. 27 указаны нормальные потенциалы важнейших металлов. Они берутся со знаком минус, когда потенциал металла ниже потенциала водородного электрода, и со знаком плюс, когда потенциал металла выше его.

Если расположить металлы, включая и , по убывающей величине напряжения их электродов, т. е. по убывающим отрицательным нормальным потенциалам (и возрастающим положительным), то получится тот же самый ряд напряжений.

Таблица 27

Нормальные потенциалы металлов

Металл Ион Потенциал в вольтах Металл Ион Потенциал в вольтах
К К - 2,92 Ni Ni - 0,23
Са Са - 2,84 Sn Sn - 0,14
Na Na - 2,713 Pb Pb - 0,126
Mg Mg - 2,38 н 2 H 0,000
Al Аl - 1,66 Сu Сu + 0,34
Мn Mn - 1,05 Hg Hg 2 + 0,798
Zn Zn - 0,763 Ag Ag + 0,799
Fe Fe - 0,44 Au Au + 1,42

Зная нормальные потенциалы металлов, легко определить электродвижущую силу любого элемента, состоящего из двух металлов, погруженных в растворы их солей. Для этого нужно только найти разность нормальных потенциалов взятых металлов.

Чтобы величина электродвижущей силы имела положительное значение, всегда вычитают из большего потенциала меньший. Например, электродвижущая сила медно-цинкового элемента:

э. д. с. = 0,34 - (-0,763) = 1,103

Понятно, что такую величину она будет иметь, если концентрации ионов Zn и Сu в соответствующих растворах равны 1 граммиону на 1 литр. Для иных концентраций потенциалы металлов, а следовательно, и электродвижущие силы могут быть вычислены по формуле, выведенной Нернстом:

Ряд напряжений характеризует некоторые свойства металлов:

1. Чем меньшее значение имеет электродный потенциал металла, тем он химически активнее, легче окисляется и труднее восстанавливается из своих ионов. Активные металлы в природе существуют только в виде соединœений Na, K, ..., встречаются в природе, как в виде соединœений, так и в свободном состоянии Cu, Ag, Hg; Au, Pt - только в свободном состоянии;

2. Металлы, имеющие более отрицательный электродный потенциал, чем магний, вытесняют водород из воды;

3. Металлы, стоящие в ряду напряжений до водорода, вытесняют водород из растворов разбавленных кислот (анионы которых не проявляют окислительных свойств);

4. Каждый металл ряда, не разлагающий воду, вытесняет металлы, имеющие более положительные значения электродных потенциалов из растворов их солей;

5. Чем больше отличаются металлы значениями электродных потенциалов, тем большее значение э.д.с. будет иметь построенный из них гальванический элемент.

Зависимость величины электродного потенциала (Е) от природы металла, активности его ионов в растворе и температуры выражается уравнением Нернста

Е Ме = Е о Ме + RTln(a Ме n +)/nF,

где Е о Ме – стандартный электродный потенциал металла, a Me n + – активность ионов металла в растворе. При стандартной температуре 25 о С, для разбавленных растворов заменяя активность (а) концентрацией (с), натуральный логарифм десятичным и подставляя значения R , T и F, получим

Е Ме = Е о Ме + (0,059/n)lgс.

К примеру, для цинкового электрода, помещенного в раствор своей соли, концентрацию гидратированных ионов Zn 2+ × mH 2 O сокращенно обозначим Zn 2+ , тогда

Е Zn = Е о Zn + (0,059/n) lg[ Zn 2+ ].

В случае если = 1 моль/дм 3 , то Е Zn = Е о Zn .


  • - Ряд напряжений металлов

    По величине стандартного электродного потенциала металлы принято располагать в ряд напряжений металлов: Li+/Li, Rb+/Rb, K+/K, Cs+/Cs, Ba2+/Ba, Sr2+/Sr, Ca2+/Ca, Na+/Na, Mg2+/Mg, Al3+/Al, Mn2+/Mn, Zn2+/Zn, Cr3+/Cr, Fe2+/Fe, Cd2+/Cd, Co2+/Co, Ni2+/Ni, Sn2+/Sn, Pb2+/Pb, Fe3+/Fe, 2H+/H2, Sb3+/Sb, Bi3+/Bi, Cu2+/Cu, Hg2+/Hg, Ag+/Ag, Pt2+/Pt, Au+/Au 1. Ряд напряжений характеризует... [читать подробенее]


  • - Ряд напряжений металлов

    Уравнение Нернста Ряд стандартных электродных потенциалов (напряжений). Располагая металлы в порядке возрастания их стандартных электродных потенциалов, получают ряд напряжений Николая Николаевича Бекетова (1827-1911), или ряд стандартных электродных потенциалов....

  • Если из всего ряда стандартных электродных потенциалов выделить только те электродные процессы, которые отвечают общему уравнению

    то получим ряд напряжений металлов. В этот ряд всегда помешают, кроме металлов, также водород, что позволяет видеть, какие металлы способны вытеснять водород из водных растворов кислот.

    Таблица 19. Ряд напряжений металлов

    Ряд напряжений для важнейших металлов приведен в табл. 19. Положение того или иного металла в ряду напряжений характеризует его способность к окислительно-восстановительным взаимодействиям в водных растворах при стандартных условиях. Ионы металлов являются окислителями, а металлы в виде простых веществ - восстановителями. При этом, чем дальше расположен металл в ряду напряжений, тем более сильным окислителем в водном растворе являются его ионы, и наоборот, чем ближе металл к началу ряда, тем более сильные восстановительные свойства проявляет простое вещество - металл.

    Потенциал электродного процесса

    в нейтральной среде равен В (см. стр. 273). Активные металлы начала ряда, имеющие потенциал, значительно более отрицательный, чем -0,41 В, вытесняют водород из воды. Магний вытесняет водород только из горячей воды. Металлы, расположенные между магнием и кадмием, обычно не вытесняют водород из воды. На поверхности этих металлов образуются оксидные пленки, обладающие защитным действием .

    Металлы, расположенные между магнием и водородом, вытесняют водород из растворов кислот. При этом на поверхности некоторых металлов также образуются защитные пленки, тормозящие реакцию. Так, оксидная пленка на алюминии делает этот металл стойким не только в воде, но и в растворах некоторых кислот. Свинец не растворяется в серной кислоте при ее концентрации ниже , так как образующаяся при взаимодействии свинца с серной кислотой соль нерастворима и создает на поверхности металла защитную пленку. Явление глубокого торможения окисления металла, обусловленное наличием на его поверхности защитных оксидных или солевых пленок, называется пассивностью, а состояние металла при этом - пассивным состоянием.

    Металлы способны вытеснять друг друга из растворов солей. Направление реакции определяется при этом их взаимным положением в ряду напряжений. Рассматривая конкретные случаи таких реакций, следует помнить, что активные металлы вытесняют водород не только из воды, но и из любого водного раствора. Поэтому взаимное вытеснение металлов из растворов их солей практически происходит лишь в случае металлов, расположенных в ряду после магния.

    Вытеснение металлов из их соединений другими металлами впервые подробно изучал Бекетов. В результате своих работ он расположил металлы по их химической активности в вытеснительный ряд», являющийся прототипом ряда напряжений металлов.

    Взаимное положение некоторых металлов в ряду напряжений и в периодической системе на первый взгляд не соответствует друг, другу. Например, согласно положению в периодической системе химическая активность калия должна быть больше, чем натрия, а натрия - больше, чем лития. В ряду же напряжений наиболее активным оказывается литий, а калий занимает среднее положение между литием и натрием. Цинк и медь по их положению в периодической системе должны иметь приблизительно равную химическую активность, но в ряду напряжений цинк расположен значительно раньше меди. Причина такого рода несоответствий состоит в следующем.

    При сравнении металлов, занимающих то или иное положение в периодической системе, за меру их химической активности - восстановительной способности - принимается величина энергии ионизации свободных атомов. Действительно, при переходе, например, сверху вниз по главной подгруппе I группы периодической системы энергия ионизации атомов уменьшается, что связано с увеличением их радиусов (т. е. с большим удалением внешних электронов от ядра) и с возрастающим экранированием положительного заряда ядра промежуточными электронными слоями (см. § 31). Поэтому атомы калия проявляют большую химическую активность - обладают более сильными восстановительными свойствами, - чем атомы натрия, а атомы натрия - большую активность, чем атомы лития.

    При сравнении же металлов в ряду напряжений за меру химической активности принимается работа превращения металла, находящегося в твердом состоянии, в гидратированные ионы в водном растворе. Эту работу можно представить как сумму трех слагаемых: энергии атомизации - превращения кристалла металла в изолированные атомы, энергии ионизации свободных атомов металла и энергии гидратации образующихся ионов. Энергия атомизации характеризует прочность кристаллической решетки данного металла. Энергия ионизации атомов - отрыва от них валентных электронов - непосредственно определяется положением металла в периодической системе. Энергия, выделяющаяся при гидратации, зависит от электронной структуры иона, его заряда и радиуса.

    Ионы лития и калия, имеющие одинаковый заряд, но различные радиусы, будут создавать около себя неодинаковые электрические поля. Поле, возникающее вблизи маленьких ионов лития, будет более сильным, чем поле около больших ионов калия. Отсюда ясно, что ионы лития будут гидратироваться с выделением большей энергии, чем ноны калия.

    Таким образом, в ходе рассматриваемого превращения затрачивается энергия на атомизацию и ионизацию и выделяется энергия при гидратации. Чем меньше будет суммарная затрата энергии, тем легче будет осуществляться весь процесс и тем ближе к началу ряда напряжений будет располагаться данный металл. Но из трех слагаемых общего баланса энергии только одно - энергия ионизации-непосредственно определяется положением металла в периодической системе. Следовательно, нет оснований ожидать, что взаимное положение тех или иных металлов в ряду напряжений всегда будет соответствовать их положению в периодической системе. Так, для лития суммарная затрата энергии оказывается меньшей, чем для калия, в соответствии с чем литий стоит в ряду напряжений раньше калия.

    Для меди и цинка затрата энергии на ионизацию свободных атомов и выигрыш ее при гидратации ионов близки. Но металлическая медь образует более прочную кристаллическую решетку, чем цинк, что видно из сопоставления температур плавления этих Металлов: цинк плавится при , а медь только при . Поэтому энергия, затрачиваемая на атомизацию этих металлов, существенно различна, вследствие чего суммарные энергетические затраты на весь процесс в случае меди гораздо больше, чем в случае цинка, что и объясняет взаимное положение этих металлов в ряду напряжений.

    При переходе от воды к неводным растворителям взаимное положение металлов в ряду напряжений может изменяться. Причина этого лежит в том, что энергия сольватации ионов различных металлов по-разному изменяется при переходе от одного растворителя к другому.

    В частности, ион меди весьма энергично сольватируется в некоторых органических растворителях; это приводит к тому, что в таких растворителях медь располагается в ряду напряжений до водорода и вытесняет его из растворов кислот.

    Таким образом, в отличие от периодической системы элементов, ряд напряжений металлов не является отражением общей Закономерности, на основе которой можно давать разностороннюю Характеристику химических свойств металлов. Ряд напряжений Характеризует лишь окислительно-восстановительную способность Электрохимической системы «металл - ион металла» в строго определенных условиях: приведенные в нем величины относятся к водному раствору, температуре и единичной концентрации (активности) ионов металла.

    К металлам относятся s-элементы 1 и 2 групп, все d- и f-элементы, а также ряд р-элементов главных подгрупп: 3 (кроме бора), 4 (Ge, Sn, Pb), 5 (Sb, Bi) и Ро. Наиболее типичные элементы-металлы расположены в начале периодов. Ранее мы говорили о том, что в металлах имеет место сильно делокализованная связь. Это вызвано тем, что, вследствие эффекта экранирования, валентные электроны в атомах металлов слабее притягиваются к ядру и первые энергии ионизации для них относительно невелики. При обычной для нас температуре (порядка 300 К), которая довольно далека от абсолютного нуля, энергии теплового движения достаточно для свободного передвижения электронов по всему металлу.

    Поскольку связь в металлах сильно делокализована и распространяется на весь кристалл, то металлы обладают высокой пластичностью, электро- и теплопроводностью. Наибольшей электро- и теплопроводностью обладают серебро и медь, наименьшей – ртуть. Последняя является и самым легкоплавким металлом (-38,9 С). самым тугоплавким металлом является вольфрам (3390 С). Такое большое различие в температурах плавления и кипения объясняется наличием в металлах, кроме металлической связи, и определенной доли ковалентных связей, особенно для переходных элементов, обладающих большим количеством валентных электронов.

    Рассмотрим электронные конфигурации ртути и вольфрама.

    Hg – 5d 10 6s 2 ; W – 5d 4 6s 2 . Межмолекулярное взаимодействие между атомами ртути очень мало, настолько мало, что в целом при большой плотности, вследствие тяжести атомов, она является самым легкоплавким металлом. Поскольку все подуровни в атоме ртути заполнены, то образование ковалентных связей вообще невозможно, а металлическая связь довольно слаба, слабее, чем в щелочных металлах, которые вообще являются самыми легкоплавкими среди всех металлов. Наоборот, в атоме W возможно образование сразу четырех валентных связей. Кроме того, металлическая связь наиболее сильна среди всех 5d-элементов, а сами атомы тяжелее, чем у электронных аналогов: Mo и Cr. Совокупность данных факторов и приводит к наибольшей тугоплавкости вольфрама.

    Электронная конфигурация осмия (5d 6 6s 2) такова, что ему до завершения 5d-подуровня не хватает 4 электронов, поэтому он наиболее сильно способен притягивать электроны соседних атомов, что вызывает укорочение связи металл-металл. Поэтому осмий обладает наибольшей плотностью (22,4 г/см 3).

    В чистом виде металлы встречаются сравнительно мало. В основном, это инертные в химическом отношении металлы (золото, а также металлы платиновой группы – платина, родий, иридий, осмий и т.д.). Серебро, медь, ртуть, олово могут находиться как в самородном состоянии, так и в виде соединений. Остальные металлы встречаются в виде соединений, которые называются рудами.

    Металлы из их соединений получают, восстанавливая их из оксидов. В качестве восстановителей применяют С, СО, активные металлы, водород, метан. Если в качестве руды выступает сульфид металла (ZnS, FeS 2), то его предварительно переводят в оксид. Восстановление металлов из их соединений другими металлами называется металлотермией. Некоторые металлы извлекают из растворов их солей электролизом, например, алюминий или натрий. В основе всех способов получения металлов из их соединений лежат окислительно-восстановительные процессы.

    Процесс перехода электронов в окислительно-восстановительной полуреакции можно представить следующим общим уравнением:

    Процессу перехода электронов отвечает изменение энергии Гиббса, равное ∆G = –nFE, где F (постоянная Фарадея, отвечает количеству электричества, необходимое для восстановления или окисления одного моля вещества) = 96500 Кл/моль, n – количество электронов, Е – электродный потенциал, В – это разность напряжений между окислителем и восстановителем. C другой стороны, ∆G = –RTlnK = –nFE; RTlnK = nFE. Отсюда Е = RTlnK/nF. Поскольку K = /, а 2,3lnK = lgK, то зависимость электродного потенциала от концентраций веществ – участников электродного процесса – и от температуры выражает следующее уравнение:

    E = E 0 + lg/ – уравнение Нернста.

    При стандартной температуре (298 К) уравнение принимает вид:

    E = E 0 + 0,059lg/

    Концентрация окислителя всегда указывается в числителе, а потенциал всегда указывается для полуреакции восстановления: Ox + ne = Red.

    При равновесных концентрациях окислителя и восстановителя, равных единице, Е = Е 0 – стандартный электродный потенциал: это потенциал данного электродного процесса при единичных концентрациях всех веществ. Поскольку абсолютное значение стандартных электродных потенциалов определить невозможно, то за точку отсчета принят потенциал полуреакции: 2Н + + 2е = Н 2 . Потенциал данного электродного процесса принят равным 0 при единичных концентрациях катиона водорода. Водородный электрод состоит из платиновой пластинки, которая погружена в раствор серной кислоты с [Н + ] = 1 моль/л и омывается струей Н 2 под давлением 101325 Па при 298 К.

    Электродным потенциалом называют ЭДС гальванического элемента, который состоит из исследуемого электрода и стандартного водородного электрода. Располагая металлы в порядке возрастания величины их электродных потенциалов, получаем ряд стандартных электродных потенциалов металлов. Он характеризует химические свойства металлов. Каждый металл в ряду вытесняет все последующие металлы из раствора их солей. Металлы, стоящие в ряду левее водорода, вытесняют его из растворов кислот.

    Потенциал любой окислительно-восстановительной реакции можно вычислить, исходя из значения потенциалов полуреакций.

    Рассмотрим простой пример: Zn + 2HCl = ZnCl 2 + H 2 . Для данного процесса имеют место две полуреакции:

    Zn 2+ + 2e = Zn 0 E 0 (Zn 2+ /Zn) = –0,76 B

    2H + + 2e = H 2 0 E 0 (2H + /H 2) = 0,00 B

    Поскольку потенциал второй полуреакции выше, чем первой, вторая полуреакция будет протекать слева направо, то есть в сторону образования молекул водорода. Первая же полуреакция будет протекать справа налево, то есть в сторону образования катионов цинка.

    При рассмотрении получения металлов мы говорили о том, что ряд металлов восстанавливают из их оксидов другими, более активными металлами. Например, магнием можно восстановить медь из оксида меди(II). Сравним две полуреакции:

    Cu 2+ + 2e = Cu Е 0 = +0,34 В

    Mg 2+ + 2e = Mg Е 0 = –2,36 В

    Потенциал первой полуреакции выше, чем второй и именно она будет протекать слева направо, а вторая – справа налево.

    Таким образом, для определения направления протекания окислительно-восстановительных реакций необходимо записать две полуреакции от окисленной форме к восстановленной и сравнить их потенциалы. Реакция, потенциал которой будет выше, будет протекать слева направо, а та, у которой потенциал ниже – справа налево.

    Почти все реакции металлов являются окислительно-восстановительными процессами и для определения их направления необходимо, в первую очередь, учитывать потенциалы каждой из полуреакций в окислительно-восстановительном процессе. Но, кроме того, бывают и исключения. Например, свинец нерастворим в серной кислоте, несмотря на то, что потенциал пары Pb 2+ /Pb составляет –0,15 В. Дело в том, что сульфат свинца нерастворим и его образование препятствует дальнейшему окислению свинца.

    Лекция 15.

    Электролиз.

    В растворах и расплавах электролитов находятся противоположно заряженные ионы (катионы и анионы), которые находятся в постоянном движении. Если в такого рода жидкость, например в расплав хлорида натрия (плавится при 801 0 С) погрузить инертные (графитовые) электроды и пропустить постоянный электрический ток, то ионы под действием внешнего электрического поля будут двигаться к электродам катионы – к катоду, а анионы – к аноду. Катионы натрия, достигнув катода, принимают от него электроны и восстанавливаются до металлического натрия:

    Хлорид-ионы окисляются на аноде:

    2Сl ­­– – 2e = Cl 2 0 ­

    В итоге на катоде выделяется металлический натрий, а аноде молекулярный хлор. Суммарное уравнение электролиза расплава хлорида натрия выглядит следующим образом.

    К: Na + + e = Na 0 2

    А: 2Сl ­­– – 2e = Cl 2 0 ­ 1

    2Na + + 2Сl ­­– электролиз ® 2Na 0 + Cl 2 0 ­

    2NaСl = 2Na + Cl 2 ­

    Эта реакция является окислительно-восстановительной: на аноде протекает процесс окисления, а на катоде – процесс восстановления.

    Окислительно-восстановительный процесс, протекающий на электродах при прохождении электрического тока через расплав или раствор электролита, называется электролизом.

    Сущность электролиза состоит в осуществлении за счет электрической энергии химических реакций. При этом катод отдает электроны катионам, а анод принимает электроны у анионов. Действие постоянного электрического тока намного сильнее действия химических восстановителей и окислителей. Именно путем электролиза удалось впервые получить газообразный фтор.

    Электролиз проводили в растворе фторида калия в плавиковой кислоте. В данном случае на аноде выделяется фтор, а на катоде – водород. Электролиз осуществляется в электролитической ванне.

    Следует различать электролиз расплавленных электролитов и их растворов. В последнем случае в процессах могут участвовать молекулы воды. Например, при электролизе водного раствора хлорида натрия на инертных (графитовых) электродах на катоде вместо катионов натрия восстанавливаются молекулы воды.

    2Н 2 О + 2е = Н 2 ­ + 2ОН –

    а на аноде окисляются хлорид-ионы:

    2Сl ­­– – 2e = Cl 2 0 ­

    В итоге на катоде выделяется водород, на аноде – хлор, а в растворе накапливаются молекулы гидроксида натрия. Общее уравнение электролиза водного раствора хлорида натрия имеет вид:

    К: 2Н 2 О + 2е = Н 2 ­ + 2ОН –

    А: 2Сl ­­– – 2e = Cl 2 0 ­

    2Н 2 О + 2Сl ­­– = Н 2 ­ + Cl 2 ­ + 2ОН –

    Кстати, именно таким образом в промышленности получают гидроксиды всех щелочных и некоторых щелочноземельных металлов, а также алюминия.

    В чем же отличие электролиза расплавов и водных растворов электролитов? Восстановительные процессы на катоде водных растворов электролитов зависят от величины стандартных электродных потенциалов металлов, а именно они чаще всего выступают в качестве катионов, восстанавливающихся на катоде. Здесь возможны три варианта:

    1. Катионы металлов, которые имеют стандартный электродный потенциал, выше, чем у водорода, то есть больше нуля при электролизе полностью восстанавливаются на катоде (медь, серебро, золото и другие).

    2. Катионы металлов, имеющих очень маленькое значение стандартного электродного потенциала (от лития до алюминия включительно), не восстанавливаются на катоде, а восстанавливаются молекулы воды.

    3. Катионы металлов, у которых значение стандартного электродного потенциала, меньше, чем у водорода, но больше, чем у алюминия, при электролизе восстанавливаются на катоде вместе с молекулами воды.

    Если же в водном растворе находятся одновременно несколько катионов металлов, то при электролизе выделение их на катоде протекает в порядке уменьшения алгебраической величины стандартного электродного потенциала соответствующего металла. Например, при анализе бронзы типа БрАЖ или БрАЖМц (медь, алюминий, железо и марганец) можно, подобрав определенное значение силы тока, отделить медь на инертный электрод (например, платиновый), вытащить электрод, взвесить его и определить содержание меди. Затем отделить алюминий, определить его содержание. Таким способом хорошо отделять металлы с положительным значением стандартного электродного потенциала.

    Все электроды делят на нерастворимые (инертные) – угольные, графитовые, платиновые, иридиевые. Растворимые – медь, серебро, цинк, кадмий, никель и другие. Понятие растворимого электрода имеет значение для анода, поскольку именно он способен растворяться при электролизе. На нерастворимом аноде в процессе электролиза происходит окисление анионов или молекул воды. При этом анионы бескислородных кислот достаточно легко окисляются. Если же в растворе присутствуют анионы кислородсодержащих кислот, то на аноде окисляются молекулы воды с выделением кислорода по реакции:

    2Н 2 О – 4е = О 2 ­ + 4Н +

    Растворимый анод при электролизе сам окисляется, отдавая электроны во внешнюю электрическую цепь и переходя в раствор:

    А: Ме Û Ме n+ + nе –

    Рассмотрим примеры электролиза расплавов и растворов электролитов.

    Электрохимический ряд активности металлов (ряд напряжений , ряд стандартных электродных потенциалов ) - последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ 0 , отвечающих полуреакции восстановления катиона металла Me n+ : Me n+ + nē → Me

    Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

    История

    Последовательность расположения металлов в порядке изменения их химической активности в общих чертах была известна уже алхимикам . Процессы взаимного вытеснения металлов из растворов и их поверхностное осаждение (например, вытеснение серебра и меди из растворов их солей железом) рассматривались как проявление трансмутации элементов.

    Поздние алхимики вплотную подошли к пониманию химической стороны взаимного осаждения металлов из их растворов. Так, Ангелус Сала в работе «Anatomia Vitrioli» (1613) пришёл к выводу, что продукты химических реакций состоят из тех же «компонентов», которые содержались в исходных веществах. Впоследствии Роберт Бойль предложил гипотезу о причинах, по которым один металл вытесняет другой из раствора на основе корпускулярных представлений .

    В эпоху становления классической химии способность элементов вытеснять друг друга из соединений стала важным аспектом понимания реакционной способности. Й. Берцелиус на основе электрохимической теории сродства построил классификацию элементов, разделив их на «металлоиды» (сейчас применяется термин «неметаллы») и «металлы» и поставив между ними водород.

    Последовательность металлов по их способности вытеснять друг друга, давно известная химикам, была в 1860-е и последующие годы особенно основательно и всесторонне изучена и дополнена Н. Н. Бекетовым . Уже в 1859 году он сделал в Париже сообщение на тему «Исследование над явлениями вытеснения одних элементов другими». В эту работу Бекетов включил целый ряд обобщений о зависимости между взаимным вытеснением элементов и их атомным весом, связывая эти процессы с «первоначальными химическими свойствами элементов - тем, что называется химическим сродством » . Открытие Бекетовым вытеснения металлов из растворов их солей водородом под давлением и изучение восстановительной активности алюминия, магния и цинка при высоких температурах (металлотермия) позволило ему выдвинуть гипотезу о связи способности одних элементов вытеснять другие из соединений с их плотностью: более лёгкие простые вещества способны вытеснять более тяжёлые (поэтому данный ряд часто также называют вытеснительный ряд Бекетова , или просто ряд Бекетова ).

    Не отрицая значительных заслуг Бекетова в становлении современных представлений о ряде активности металлов, следует считать ошибочным бытующее в отечественной популярной и учебной литературе представление о нём как единственном создателе этого ряда. Многочисленные экспериментальные данные, полученные в конце XIX века, опровергали гипотезу Бекетова. Так, Уильям Одлинг описал множество случаев «обращения активности». Например, медь вытесняет олово из концентрированного подкисленного раствора SnCl 2 и свинец - из кислого раствора PbCl 2 ; она же способна к растворению в концентрированной соляной кислоте с выделением водорода . Медь, олово и свинец находятся в ряду правее кадмия , однако могут вытеснять его из кипящего слабо подкисленного раствора CdCl 2 .

    Бурное развитие теоретической и экспериментальной физической химии указывало на иную причину различий химической активности металлов. С развитием современных представлений электрохимии (главным образом в работах Вальтера Нернста) стало ясно, что эта последовательность соответствует «ряду напряжений» - расположению металлов по значению стандартных электродных потенциалов . Таким образом, вместо качественной характеристики - «склонности» металла и его иона к тем или иным реакциям - Нерст ввёл точную количественную величину, характеризующую способность каждого металла переходить в раствор в виде ионов, а также восстанавливаться из ионов до металла на электроде, а соответствующий ряд получил название ряда стандартных электродных потенциалов .

    Теоретические основы

    Значения электрохимических потенциалов являются функцией многих переменных и поэтому обнаруживают сложную зависимость от положения металлов в периодической системе . Так, окислительный потенциал катионов растёт с увеличением энергии атомизации металла, с увеличением суммарного потенциала ионизации его атомов и с уменьшением энергии гидратации его катионов.

    В самом общем виде ясно, что металлы, находящиеся в начале периодов характеризуются низкими значениями электрохимических потенциалов и занимают места в левой части ряда напряжений. При этом чередование щелочных и щёлочноземельных металлов отражает явление диагонального сходства . Металлы, расположенные ближе к серединам периодов, характеризуются большими значениями потенциалов и занимают места в правой половине ряда. Последовательное увеличение электрохимического потенциала (от −3,395 В у пары Eu 2+ /Eu [ ] до +1,691 В у пары Au + /Au) отражает уменьшение восстановительной активности металлов (свойство отдавать электроны) и усиление окислительной способности их катионов (свойство присоединять электроны). Таким образом, самым сильным восстановителем является металлический европий , а самым сильным окислителем - катионы золота Au + .

    В ряд напряжений традиционно включается водород, поскольку практическое измерение электрохимических потенциалов металлов производится с использованием стандартного водородного электрода .

    Практическое использование ряда напряжений

    Ряд напряжений используется на практике для сравнительной [относительной] оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе :

    • Металлы, стоящие левее водорода, являются более сильными восстановителями, чем металлы, расположенные правее: они вытесняют последние из растворов солей. Например, взаимодействие Zn + Cu 2+ → Zn 2+ + Cu возможно только в прямом направлении.
    • Металлы, стоящие в ряду левее водорода, вытесняют водород при взаимодействии с водными растворами кислот-неокислителей; наиболее активные металлы (до алюминия включительно) - и при взаимодействии с водой.
    • Металлы, стоящие в ряду правее водорода, с водными растворами кислот-неокислителей при обычных условиях не взаимодействуют.
    • При электролизе металлы, стоящие правее водорода, выделяются на катоде; восстановление металлов умеренной активности сопровождается выделением водорода; наиболее активные металлы (до алюминия) невозможно при обычных условиях выделить из водных растворов солей.

    Таблица электрохимических потенциалов металлов

    Металл Катион φ 0 , В Реакционная способность Электролиз (на катоде):
    Li + -3,0401 реагирует с водой выделяется водород
    Cs + -3,026
    Rb + -2,98
    K + -2,931
    Fr + -2,92
    Ra 2+ -2,912
    Ba 2+ -2,905
    Sr 2+ -2,899
    Ca 2+ -2,868
    Eu 2+ -2,812
    Na + -2,71
    Sm 2+ -2,68
    Md 2+ -2,40 реагирует с водными растворами кислот
    La 3+ -2,379
    Y 3+ -2,372
    Mg 2+ -2,372
    Ce 3+ -2,336
    Pr 3+ -2,353
    Nd 3+ -2,323
    Er 3+ -2,331
    Ho 3+ -2,33
    Tm 3+ -2,319
    Sm 3+ -2,304
    Pm 3+ -2,30
    Fm 2+ -2,30
    Dy 3+ -2,295
    Lu 3+ -2,28
    Tb 3+ -2,28
    Gd 3+ -2,279
    Es 2+ -2,23
    Ac 3+ -2,20
    Dy 2+ -2,2
    Pm 2+ -2,2
    Cf 2+ -2,12
    Sc 3+ -2,077
    Am 3+ -2,048
    Cm 3+ -2,04
    Pu 3+ -2,031
    Er 2+ -2,0
    Pr 2+ -2,0
    Eu 3+ -1,991
    Lr 3+ -1,96
    Cf 3+ -1,94
    Es 3+ -1,91
    Th 4+ -1,899
    Fm 3+ -1,89
    Np 3+ -1,856
    Be 2+ -1,847
    U 3+ -1,798
    Al 3+ -1,700
    Md 3+ -1,65
    Ti 2+ -1,63 конкурирующие реакции: и выделение водорода , и выделение металла в чистом виде
    Hf 4+ -1,55
    Zr 4+ -1,53
    Pa 3+ -1,34
    Ti 3+ -1,208
    Yb 3+ -1,205
    No 3+ -1,20
    Ti 4+ -1,19
    Mn 2+ -1,185
    V 2+ -1,175
    Nb 3+ -1,1
    Nb 5+ -0,96
    V 3+ -0,87
    Cr 2+ -0,852
    Zn 2+ -0,763
    Cr 3+ -0,74
    Ga 3+ -0,560