Воды Мирового океана помимо основных свойств воды (например, соленость способность растворения), обладают своими уникальными специфическими свойствами.

Свойства вод Мирового океана

Ученые справедливо называют Мировой океан главным аккумулятором тепла на нашей планете. Средняя температура вод мирового океана равна +17 градусам.

Толща воды прогревается солнечными лучами более медленно, нежели поверхность суши. Однако в отличие от материковой поверхности, океаническая вода медленнее отдает свое тепло атмосфере.

Обогрев планеты в ночное время происходит именно за счет тепла, которые излучают океанические воды. Воды океана замерзают при низких температурах, однако если для вод суши такие температуры должны быть ниже 0 °С, то для океанических вод – ниже -4 °С.

Это объясняется тем, что воды в океанах имеют очень высокий показатель солености. Плотность воды в океане зависит также от температурных показателях.

В северных широтах на поверхности океанов образовываются айсберги, их плотность значительно меньше плотности поверхности океана: за счет этого они могут передвигаться на незначительные расстояния.

Движение вод Мирового океана

Невероятно объемные массы воды Мирового океана имеют свойство передвигаться, зачастую они находятся в процессе постоянного движения. Главным показателем движения океанических и морских вод являются волны.

Иногда они очень маленькие и образовывают только незначительную рябь на поверхности, иногда они могут достигать нескольких метров, затапливая в острова и приморские города.

На движение вод в океанах и морях влияют три фактора: влияние ветра, движение литосферных плит, а также притяжение Луны (провоцирует отливы и приливы).

Сильный ветер может перемещать большие объемы водных масс на дальние расстояния, именно ветер формирует морские и океанические течения.

Течения в океане

Течения являются периодическими либо постоянными движениями воды в толще мирового океана. Океанические течения бывают разных видов.

В зависимости от температуры воды – холодные и теплые течения. Исходя из периодичности, выделяют периодичные, постоянные и неправильные течения.

Помимо этого существуют также подводные и поверхностные течения, которые расположены в толще океана и на его поверхности соответственно.

Самым известным теплым течением, расположенным в Атлантическом океане является течение Гольфстрим. Оно берет свое начало в районе берегов Северной Америки и достигает Флоридского пролива.

Зачастую в широком смысле под Гольфстримом имеется в виду система теплых течений, которые располагаются между побережьем Флориды и берегами Скандинавии.

Особенности вод своей местности

Воды разных местностей очень отличаются друг от друга. Изучение вод своей местности - очень увлекательное занятие, ведь все учащиеся должны знать все свойства вод ближайших водоемов, так как без этого дальнейшее изучение географии будет очень сложным.


Движение вод Мирового океана

По своему физическому состоянию вода - очень подвижная среда, поэтому в природе она находится в непрерывном движении. Это движение вызывают различные причины, прежде всего ветер. Воздействуя на воды океана, он возбуждает поверхностные течения, которые переносят огромные массы воды их одного района океана в другой. Энергия поступательного движения поверхностных вод вследствие внутреннего трения передается в нижележащие слои, которые также вовлекаются в движение. Однако непосредственное влияние ветра распространяется на сравнительно небольшое (до 300 м) расстояние от поверхности. Ниже в толще воды и в придонных горизонтах перемещение происходит медленно и имеет направления, связанные с рельефом дна.

Поверхностные течения образуют два больших круговорота, разделенных противотечением в районе экватора. Водоворот северного полушария вращается по часовой стрелке, а южного - против. При сопоставлении этой схемы с течениями реального океана можно увидеть значительное сходство между ними для Атлантического и Тихого океанов. В то же время нельзя не заметить, что реальный океан имеет более сложную систему противотечений у границ континентов, где, например, располагаются Лабрадорское течение (Северная Атлантика) и Аляскинское возвратное течение (Тихий океан). Кроме того, течения у западных окраин океанов отличаются большими скоростями перемещения воды, чем у восточных. Ветры прилагают к поверхности океана пару сил, вращающих воду в северном полушарии по часовой стрелке, а в южном - против нее. Большие водовороты океанических течений возникают в результате действия этой пары вращающих сил. Важно подчеркнуть, что ветры и течения не относятся «один к одному». Например, наличие быстрого течения Гольфстрим у западных берегов Северной Атлантики не означает, что в этом районе дуют особенно сильные ветры. Баланс между вращающей парой сил среднего поля ветра и результирующими течениями складывается на площади всего океана. Кроме того, течения аккумулируют огромное количество энергии. Поэтому сдвиг в поле среднего ветра не приводит автоматически к сдвигу больших океанических водоворотов.

На водовороты, приводимые в движение ветром, накладывается другая циркуляция, термохалинная («халина» - соленость). Вместе температура и соленость определяют плотность воды. Океан переносит тепло из тропических широт в полярные. Этот перенос осуществляется при участии таких крупных течений, как Гольфстрим, но существует также и возвратный сток холодной воды в направлении тропиков. Он происходит в основном на глубинах, расположенных ниже слоя возбуждаемых ветром водоворотов. Ветровая и термохалинная циркуляции представляют собой составные части общей циркуляции океана и взаимодействуют друг с другом. Так, если термохалинные условия объясняют в основном конвективные движения воды (опускание холодной тяжелой воды в полярных районах и ее последующий сток к тропикам), то именно ветры вызывают расхождение (дивергенцию) поверхностных вод и фактически «выкачивают» холодную воду обратно к поверхности, завершая цикл.

Представления о термохалинной циркуляции менее полны, чем о ветровой, но некоторые особенности этого процесса более или менее известны. Считается, что образование морских льдов в море Уэдделла и в Норвежском море имеет важное значение для формирования холодной плотной воды, распространяющейся у дна в Южной и Северной Атлантике. В оба района поступает вода повышенной солености, которая охлаждается зимой до температуры замерзания. При замерзании воды значительная часть содержащихся в ней солей не включается в новообразующийся лед. В результате соленость и плотность остающейся незамерзшей воды увеличиваются. Эта тяжелая вода опускается ко дну. Обычно ее соответственно называют антарктической донной и североатлантической глубинной водой.

Другая важная особенность термохалинной циркуляции связана с плотностной стратификацией океана и ее влиянием на перемешивание. Плотность воды в океане с глубиной возрастает и линии постоянной плотности идут почти горизонтально. Воду с разными характеристиками значительно легче перемешать в направлении линий постоянной плотности, чем поперек них.

Термохалинную циркуляцию трудно с определенностью охарактеризовать. По сути, и горизонтальная адвекция (перенос воды морскими течениями), и диффузия должны играть важную роль в термохалинной циркуляции. Определение относительного значения этих двух процессов в каком-либо районе или ситуации представляет важную задачу.

I. Волны и приливы

Волны регулярны и имеют некоторые общие характеристики - длину, амплитуду и период. Также отмечается скорость распространения волн.

Длина волны представляет собой расстояние между вершинами или подошвами волн, высота волны - вертикальное расстояние от подошвы до вершины, оно равно удвоенной амплитуде, период равен времени между моментами прохождения двух последовательных вершин (или подошв) через одну и ту же точку.

Высота ряби измеряется приблизительно сантиметром, а период составляет около одной секунды и меньше. Волны прибоя достигают нескольких метров в высоту при периодах от 4 до 12 с.

Океанические волны имеют разные очертания и формы.

Волны, вызванные местным ветром, называют ветровыми. Другой тип волн - волны зыби, которые медленно качают судно и при безветренной погоде. Зыбь образуют волны, которые сохраняются после того, как они выйдут их области действия ветра.

При любой скорости ветра достигается некое равновесное состояние, выражающееся в явлении полностью развитого волнения, когда энергия, передаваемая ветром волнам, равняется энергии, передаваемая ветром волнам, равняется энергии, теряемой при разрушении волн. Но для того, чтобы образовалось полностью развитое волнение, ветер должен дуть продолжительное время и на большом пространстве. Пространство, подвергающееся воздействию ветра, называется область разгона.

II. Цунами

Цунами распространяются волнами от эпицентра подводных землетрясений. Район воздействия волн цунами огромен.

Цунами связаны непосредственно с движениями земной коры. Мелкофокусное землетрясение, которое вызывает значительные смещения коры на дне океанов, вызовет и цунами. Но столь же сильное землетрясение, не сопровождающееся сколько-нибудь заметными подвижками коры, цунами не вызовет.

Цунами возникает в виде одиночного импульса, передний фронт которого распространяется со скоростью мелководной волны. Исходный импульс далеко не всегда обеспечивает концентрическое распространение энергии, а с ней и волны.

III. Приливы

Приливы - медленные подъемы и спады уровня воды и перемещения ее кромки. Приливообразующие силы - результат притяжения Солнца и Луны. Когда Солнце и Луна находятся примерно на одной линии с Землей, то есть в периоды полнолуния и новолуния, приливы оказываются наибольшими. Т.к. плоскости обращения Солнца и Луны не параллельны, действие сил Луны и Солнца меняется по сезонам, а также в зависимости от фазы Луны. Приливообразующая сила Луны примерно вдвое больше приливообразующей силы Солнца. Большие различия в амплитуде приливов на разных участках побережья определяются главным образом формой океанических бассейнов.

Свойства вод Мирового океана

Вода - «универсальный растворитель»: в ней, хотя бы в малой степени, способен раствориться любой из элементов. Вода имеет наибольшую среди всех обычных жидкостей теплоемкость, то есть для ее нагревания на один градус требуется затратить больше тепла по сравнению с другими жидкостями. Больше тепла требуется и на ее испарение. Эти и другие особенности воды имеют огромное биологическое значение. Так, благодаря высокой теплоемкости воды сезонные колебания температуры воздуха оказываются меньше, чем это было бы в ином случае.

Температура всей массы океанской воды около 4градусов по Цельсию. Океаны холодные. Вода в них прогревается только у самой поверхности, а с глубиной она становится холоднее. Только 8% вод океана теплее 10 град., более половины холоднее 2.3 град. С глубиной температура изменяется неравномерно.

Вода - наиболее теплоемкое тело на Земле. Поэтому океан медленно нагревается и медленно отдает тепло, служит аккумулятором тепла. На его долю приходится более 2/3 поглощенной солнечной радиации. Она расходуется на испарение, на нагревание верхнего слоя воды до глубины примерно 300 м, а также на нагревание воздуха.

Средняя температура поверхностных вод океана более +17 град., причем в северном полушарии она на 3 град. выше, чем в южном. Наибольшие температуры воды в северном полушарии наблюдаются в августе, наименьшие - в феврале, в южном полушарии - наоборот. Суточные и годовые колебания температуры воды незначительные: суточные не превышают 1 град., годовые составляют не более 5..10 град. в умеренных широтах.

Температура поверхностных вод зональна. В приэкваториальных широтах температура весь год 27...28 град., в тропических районах на западе океанов 20...25 град., на востоке 15...20 град. (из-за течений). В умеренных широтах температура воды плавно понижается от 10 до 0 град. в южном полушарии, в северном полушарии при той же тенденции у западных берегов материков теплее, чем у восточных, тоже из-за течений. В приполярных районах температура воды весь год 0...-2 град., в центре Арктики характерны многолетние льды мощностью до 5-7 м.

Максимальные температуры поверхностных вод наблюдаются в тропических морях и заливах: в Персидском заливе более 35 град, в Красном море 32 град. В придонных слоях Мирового океана (М.о.) температуры на всех широтах низкие: от +2 на экваторе до -2 в Арктике и Антарктике.

При охлаждении морской воды ниже точки замерзания образуется морской лед.

Льдом постоянно покрыто 3 - 4% площади океана. Морской лед отличается от пресноводного в ряде отношений. У соленой воды температура замерзания понижается по мере увеличения солености. В диапазоне солености от 30 до 35 промилле точка замерзания меняется от -1.6 до -1.9 град.

Образование морского льда можно рассматривать как замерзание пресной воды с вытеснением солей в ячейки морской воды внутри толщи льда. Когда температура достигает точки замерзания, образуются ледяные кристаллы, которые «окружают» не замерзшую воду. Незамерзшая вода обогащается солями, вытесненными кристаллами льда, что приводит к дальнейшему понижению точки замерзания воды в этих ячейках. Если кристаллы льда не полностью окружат обогащенную солями незамерзшую воду, она будет опускаться и смешиваться с нижележащей морской водой. Если процесс замерзания растянут во времени, почти весь обогащенный солями рассол уйдет из льда и его соленость окажется близкой к нулю. При быстром замерзании большая часть рассола захватится льдом и его соленость будет почти такой же, как и соленость окружающей воды.

Обычно прочность морского льда составляет одну треть прочности пресноводного льда той же толщины. Однако старый морской лед (с очень низкой соленостью) или лед, образовавшийся при температуре ниже точки кристаллизации хлористого натрия, не уступает по прочности пресноводным льдам.

Замерзание морской воды происходит при отрицательных температурах: при средней солености - около -2 град. Чем выше соленость, тем ниже температура замерзания.

Для замерзания морской воды необходимо, чтобы либо глубина была невелика, либо ниже поверхностного слоя на небольших глубинах располагалась вода с более высокой соленостью. При наличии мелководного галоклина поверхностная вода, даже охладившись до точки замерзания, будет легче, чем более теплая, но более соленая подстилающая вода.

Когда поверхностный слой воды охладится до точки замерзания и перестанет углубляться, начнется льдообразование. Поверхность моря приобретает маслянистый, с особым свинцовым оттенком вид. По мере роста ледяные кристаллы становятся видимыми и приобретают форму игл. Эти кристаллы или иглы смерзаются друг с другом и образуют тонкий слой льда. Этот слой легко изгибается под действием волн. С увеличением толщины лед теряет эластичность, а затем ледяной покров разламывается на отдельные куски, дрейфующие самостоятельно. Сталкиваясь между собой во время волнения, куски льда приобретают округлые формы. Эти округлые куски льда от 50 см до 1 м в диаметре называются блинчатым льдом. На следующем этапе замерзания куски блинчатого льда смерзаются и образуют поля дрейфующего льда. Волны и приливы снова разламывают поля льда, формируя гряды торосов, имеющих во много раз большую толщину по сравнению с первоначальным ледяным покровом. В ледяном покрове образуются участки чистой воды - полыньи, которые позволяют подводным лодкам всплывать на поверхность даже в Центральной Арктике.

Образование льда в значительной мере уменьшает взаимодействие океана с атмосферой, задерживая распространение конвекции в глубь океана. Перенос тепла должен осуществляться уже через лед - весьма плохой проводник тепла.

Толщина арктического льда около 2 м, а температура воздуха зимой в районе Северного полюса опускается до - 40 град. Лед действует как изолятор, предохраняя океан от выхолаживания.

Морской лед играет и другую важную роль в энергетическом бюджете океана. Вода - хороший поглотитель солнечной энергии. Напротив, лед, в особенности пресный, и снег - очень хорошие отражатели. Если чистая вода поглощает около 80% падающей радиации, то морской лед может отражать до 80%. Так присутствие льда значительно уменьшает нагревание земной поверхности.

Льды затрудняют судоходство, с айсбергами связаны катастрофы судов.

Айсберги распространяются гораздо дальше границы морских льдов. Они формируются на суше. Хотя лед представляет собой твердое тело, он все же медленно течет. Снег, накапливаясь в Гренландии, Антарктиде и горах высоких широт, дает начало ледникам, сползающим вниз. На линии берега огромные блоки льда откалываются от ледника, рождая айсберги. Поскольку плотность льда составляет около 90% плотность морской воды, айсберги остаются на плаву. Приблизительно 80 - 90% объема айсберга находится под водой. Этот объем зависит также от количества воздушных включений. После своего образования айсберги увлекаются океаническими течениями и, попадая в более низкие широты, постепенно тают.

Большая часть айсбергов, представляющих опасность для судовождения, зарождается на западном побережье Гренландии, севернее 68 30 с.ш. Здесь около сотни ледников продуцируют около 15000 айсбергов в год. Вначале эти айсберги дрейфуют к северу вместе с Западно-Гренландским течением, а затем поворачивают к югу, увлекаемые Лабрадорским течением. Наибольшее впечатление производят айсберги, отколовшиеся от шельфового ледника Росса - одного из уникальных явлений Антарктики. Он представляет собой очень мощный по толщине слой льда, спускающегося с материка и находящегося на плаву. От ледника Росса откалываются громадные антарктические айсберги.

Морской лед солоноватый, но соленость его в несколько раз меньше солености площади М.о. Помимо слабосоленых морских льдов в океанах есть пресноводные речные и материковые (айсберги) льды. Под влиянием ветров и течений льды из полярных районов выносятся в умеренные широты и там тают. растворенными в ней хлоридами (более 88%) и сульфатами (около 11%). Соленый вкус воде придает поваренная соль, горький - соли магния. Для океанской воды характерно постоянное процентное соотношение различных солей, несмотря на различную соленость. Соли, как и сама вода океанов, поступали на земную поверхность прежде всего из недр Земли, особенно на заре ее формирования. Соли приносятся в океан и речными водами, богатыми карбонатами (более 60%). Однако, количество карбонатов в океанской воде не увеличивается и составляет всего 0.3%. Это объясняется тем, что они выпадают в осадок, а также расходуются на скелеты и раковины животных, потребляются водорослями, которые после отмирания погружаются на дно.

В распределении солености поверхностных вод прослеживается зональность, обусловленная прежде всего соотношением выпадающих атмосферных осадков и испарения. Уменьшают соленость сток речных вод и тающие айсберги. В приэкваториальных широтах, где осадков выпадает больше, чем испаряется, и велик речной сток, соленость 34-35 промилле. В тропических широтах мало осадков, но велико испарение, поэтому соленость составляет 37 промилле. В умеренных широтах соленость близка к 35, а в приполярных - наименьшая (32-33 промилле), т.к. количество осадков здесь больше испарения, велик речной сток, особенно сибирских рек, много айсбергов, главным образом вокруг Антарктиды и Гренландии.

Широтную закономерность солености нарушают морские течения. Например, в умеренных широтах соленость больше у западных побережий материков, куда поступают тропические воды, меньше - у восточных берегов, омываемых полярными водами. Наименьшей соленостью обладают прибрежные воды близ устьев рек. Максимальная соленость наблюдается в тропических внутренних морях, окруженных пустынями. Соленость влияет на другие свойства воды, такие, как плотность, температура замерзания и т.д.

Плотность морской воды зависит от давления, температуры и солености. Плотность морской воды близка к 1.025 г/см куб. Охлаждаясь, вода становится еще более тяжелой. Давление также увеличивает плотность морской воды. Поэтому на глубине 5000 м плотность морской воды возрастает до 1.050 г/см куб. Как правило, океанографы не измеряют плотность непосредственно, предпочитая вычислять ее по данным о температуре, солености и давлении. Часто их интересует зависимость плотности морской воды только от температуры и солености.

Обычно плотность, при вычислении которой давление не учитывается, возрастает с глубиной. В этом случае говорят, что вода устойчиво стратифицирована. В стратифицированном океане трудно перемещать воду поперек линий постоянной плотности, это значительно легче сделать вдоль таких линий. Говоря языком физики, для перемещения воды поперек линий постоянной плотности нужно совершить работу - увеличить потенциальную энергию. Для перемещения воды вдоль линий постоянной плотности нужно лишь преодолеть трение воды, а морская вода обладает повышенной «текучестью».

В океане не только холодно, но и темно. На глубине свыше 100 м невозможно увидеть днем ничего, кроме редких биолюминисцентных вспышек света от проплывающих рыб и зоопланктона. В отличие от атмосферы, сравнительно прозрачной для всех волн электромагнитного спектра, океан непроницаем для них. Ни длинные радиоволны, ни коротковолновое ультрафиолетовое излучение не могут проникнуть в его глубины.

В любой текучей среде, включая морскую воду, потери солнечного излучения довольно хорошо описываются так называемым законом Беера, который гласит, что количество энергии, поглощенной на некотором расстоянии, пропорционально исходному ее количеству. Это дает возможность охарактеризовать морскую воду с помощью коэффициента относительного пропускания. Коэффициент пропускания меняется у воды в зависимости от длины волны излучения, и в частности видимая часть спектра солнечного света пропускается водой значительно лучше, чем излучение с более короткими или более длинными волнами. Различие между пресной и соленой морской водой в этом отношении не играет роли.

Установлено, что на 100-метровую глубину в океан проникает менее 1% солнечной энергии, достигшей поверхности воды.

Из-за непрозрачности океана для электромагнитного излучения мы лишены возможности использовать радиоволны и радары для изучения океана. Погрузившаяся подводная лодка может принять радиосообщение только через плавающую на поверхности антенну либо с помощью радиоустройств, работающих на волнах такой длины, при которой закон Беера уже не выполняется. С другой стороны, для звуковых волн океан гораздо более проницаем, чем атмосфера, и по причине своеобразного изменения скорости звука в водной толще он может распространяться в океане на чрезвычайно большие расстояния.

Скорость звука в океане меняется в зависимости от давления, температуры и солености - 1500 м/с, что в 4 - 5 раз превышает скорость звука в атмосфере. С увеличением температуры, солености и давления скорость звука возрастает. Скорость звука в воде не зависит от его высоты или частоты.

Звук в океане распространяется не по прямой линии, он всегда отклоняется в сторону, где скорость меньше.

В соответствии с увеличением давления скорость звука растет с глубиной. Совместное влияние температуры и давления обычно приводит к тому, что где-то в промежуточном слое между поверхностью и дном океана скорость звука принимает минимальное значение. Этот слой минимума скорости называют звуковым каналом. Из-за того, что путь звука всегда искривляется в сторону слоя воды с меньшей скоростью распространения, слой минимума скорости канализирует звук.

Звуковой канал в океане обладает свойством непрерывности. Он простирается почти от поверхности океанических вод в полярных широтах до глубины около 2000 м у берегов Португалии, при средней глубине порядка 700 м. Сверхдальнее распространение звука в океане объясняется тем, что и источник звука, и улавливатель находятся возле оси звукового канала.

Океанская вода содержит соли, газы, твердые частицы органического и неорганического происхождения. По массе они составляют всего 3.5%, но от них зависят определенные свойства воды.

Таблица 1. Состав морской воды

Компонент

Концентрац.г/кг

Компонент

Концентрация г/кг

Бикарбонат

Стронций

Таблица 2. Химический состав планктона (в микро граммах элемента на грамм сухого веса планктона)

Большинство из металлов в водах океана присутствует в морской воде в крайне малых количествах. Как показывает таблица, живые организмы извлекают металлы из морской воды. Чаще всего концентрация металлов в живых организмах в сравнении с их содержанием в морской воде не превышает концентрации фосфора.

Погружающееся с поверхности океана вещество включает множество частиц с большой реакционной поверхностью. Частицы из кичи марганца и железа также обладают обширными активными поверхностями. Некоторые из них осаждаются из верхних слоев океана, а другие образуются при окислении восстановленного железа и марганца, диффундирующих из донных отложений или приносятся горячими водами из области раздвигающихся срединно-океанических хребтов. Такие соединения захватывают металлы. Самое яркое подтверждение этому - железомарганцевые конкреции на дне океанов, в которых содержится до 1% никеля и меди, а также многие другие металлы.

Подобное захватывание металлов еще эффективнее происходит в прибрежных водах, где постоянное взмучивание наносов и биологическая переработка толщи отложений обеспечивают непрерывный поток окисляющегося железа и марганца в растворе из донных отложений.

После попадания металлов в донные отложения, вероятность их повторного появления в вышерасположенной толще воды очень мала, хотя некоторое перераспределение внутри самих отложений и наблюдается.



В открытом океане вода более прозрачная, чем вблизи берегов, так как около берегов в воде больше примесей. В зависимости от типа примесей вода может иметь различный оттенок. Например, воды Желтого моря имеют желтый оттенок из-за ила такого цвета, который попадает в море вместе с водами впадающих в него рек.

Вода по-сравнению с сушей медленнее нагревается и медленнее остывает. Ее теплоемкость больше. В теплое время вода океана накапливает огромное количество тепла и, остывая в холодное время, отдает его. Поэтому Мировой океан существенно влияет на температуру суши, когда ветры дуют с него на материки.

С глубиной температура вод океана падает и уже глубже 200 м может быть около нуля или даже ниже.

Температура верхних слоев вод Мирового океана, также как и на суше, зависит от широты местности. На экваторе она намного теплее, чем на полюсах. В умеренных поясах летом вода теплее, чем зимой. Средняя температура поверхностных вод Мирового океана около +17 °C.

Важным свойством океана является его соленость. На самом деле морская вода горько-соленая. В ней растворены различные соли. Соленость показывает, сколько граммов солей растворено в 1 литре воды. Измеряется соленость в промилле (‰). Средняя соленость вод Мирового океана около 35‰. Это значит, что в 1 литре океанической воды растворено 35 граммов различных солей.

В океанах растворено множество различных веществ, но больше всего в ней поваренной соли.

Соленость вод океана не везде одинакова. Так не нее влияют входящие в моря реки. Они опресняют близлежащие воды. Таяние льдов также делает воду менее соленой. Течения переносят воды и влияют на соленость. Особенно сильно влияют на соленость осадки. Где много дождей, соленость меньше. В тех местах, где высокая температура и мало осадков, соленость высокая, так как при высокой температуре вода больше испаряется.

Соленость и температура оказывают влияние на плотность воды. Холодная вода тяжелее теплой, более соленая вода тяжелее менее соленой. Различная плотность воды приводит к тому, что она перемещается.

Количество растворенных в воде веществ влияет на температуру ее замерзания. Чем их больше, тем при более низкой температуре замерзает вода. Так в среднем океаническая вода замерзает при температуре –2 °C.

Живые организмы, живущие в морях и океанах, приспособлены к определенной солености.

В воде также растворены газы. Так количество кислорода в воде уменьшается с повышением температуры. Поэтому в теплых водах количество живых организмов меньше, чем в относительно более холодных. С глубиной количество кислорода также уменьшается.

«отопительной системой» планеты. Действительно, средняя температура воды в океане + 17°С, в то время, когда — только +14°С. Океан является своеобразным аккумулятором тепла на Земле. Вода значительно медленнее нагревается из-за своей низкой теплопроводности, по сравнению с твердой сушей, но и очень медленно расходует тепло, при этом обладая очень большой теплоемкостью.

Температура воды в океане зависит прежде всего от географической широты, чем дальше от экватора, тем температура воды будет ниже, однако, не стоит думать, что во всей толще океана вода имеет одинаковую температуру. Из-за низкой теплопроводности солнцем нагреваются только поверхностные воды, в то время как с увеличением глубины в океан поступает все меньше солнечного света, а температура воды понижается. Глубже 3-4 км она постоянна во всем океане и примерно равна 3°С. Эта температура на дне океана также неслучайна. Дело в том, что плотность воды меняется в зависимости от температуры нелинейно. То есть, при охлаждении плотность воды сначала увеличивается и, когда температура воды опускается до +4°С — становится максимальной, при дальнейшем охлаждении плотность снова начинает расти, при температуре 0°С вода превращается в лед, а плотность льда, как известно, уже на столько ниже плотности окружающей его жидкой воды, что он плавает по её поверхности. Именно поэтому в океане образуются плавучие льды и айсберги, образующиеся в приполярных областях планеты. Однако, стоит заметить, что океаническая вода замерзает не при нулевой температуре, а при значениях около -2°С, так как вода в океане соленая.

Соленость воды в океане измеряется в ‰ (промилле). Средняя соленость Мирового океана — 35‰. Это значит, что 35/1000 массы океанической воды составляет чистая соль, а в одном килограмме воды будет содержаться 35 граммов соли. Большую часть от этой соли составляют хлориды (Cl-) — 88%, около 11% приходится на сульфаты (SO42-) и около 1% на карбонаты (CO32-) и прочие вещества. Соленость Мирового океана зависит от ряда факторов:
впадающие в океан реки и большое количество осадков снижают соленость, разбавляя воду, большое испарение и образование льда увеличивают концентрацию соли. Поэтому соленость океана меняется с географической широтой. На экваторе из-за большого количества впадающих рек и обильных осадков соленость достаточно низкая. В тропиках соленость воды на планете самая высокая — испарение идет очень активно, но осадки при этом не образуются, и дождей очень мало. В умеренных широтах соленость очень низкая, так как с падением температуры при удалении от экватора испарение с поверхности океана уменьшается, а дождей здесь выпадает много. У полюсов соленость имеет средние значения, так как при низком количестве осадков и образовании льдов, активно идут процессы их таяния, распресняющие воду в океане.

Прозрачность вод Мирового океана уменьшается при удалении от экватора. С понижением растет количество растворенного в ней кислорода, что приводит к увеличению числа микроорганизмов, населяющих океан. Тем не менее, в полярных морях она снова возрастает из-за низких температур. Поэтому самым прозрачным морем является море Уэделла в . Для измерения прозрачности используется диск Секки — это диск черно-белой окраски, опускаемый в воду, при этом для определения прозрачности фиксируется глубина, на которой он исчезает. В море Уэделла он исчезает на глубине 79 м. Вторым по прозрачности является Саргассово море — 66 м. Теоретически в дистиллированной воде диск Секки должен исчезать на глубине 80 м.

Морская вода - удивительнейшее создание природы. И самое примечательное в ней - ее состав. В морской воде растворены очень многие элементы периодической системы, хотя большинство из них - в ничтожных количествах. Это уникальный по разнообразию компонентов раствор, исключительно благоприятный для зарождения и поддержания органической жизни.

В морской воде количественно преобладают ионы хлора и натрия. Если же рассматривать не отдельные ионы, а химические соединения, то больше всего в морской воде растворено хлоридов (88,7%), среди которых преобладает хлористый натрий, или обыкновенная поваренная соль. Значительно уступают хлоридам сульфаты (10,8%), соли всем хорошо знакомой серной кислоты. На все прочие вещества приходится всего около 0,5% общего солевого состава морской воды. Именно химический состав стихии Нептуна объясняет, почему морская вода на вкус горько-соленая и плавать в ней гораздо легче, чем в пресной, речной и озерной. Первое обстоятельство не требует особых комментариев, второе объясняется большей плотностью морской воды.

Показателем количества растворенных в воде химических веществ служит особая характеристика, которую ученые называют соленостью. Соленость - это выраженная в граммах масса всех солей, содержащихся в 1 кг морской воды. Соленость измеряется в тысячных долях, или промилле (%о). На поверхности открытого океана колебания солености невелики: от 32 до 38%о. Средняя поверхностная соленость составляет около 35%о (более точно - 34,73). Чуть выше средние значения солености и Тихого океана (по 34,87%о), чуть ниже средняя соленость (34,58%©). Сказывается распресняющее воздействие антарктических льдов.

Для сравнения стоит сказать, что обычная соленость речных вод не превышает 0,15%о, т. е. в 1 кг речной воды растворено не больше 0,15 г минеральных веществ- Наименее солеными в открытом океане являются воды приполярных районов обоих полушарий. Этому способствует таяние материковых льдов (особенно в Южном полушарии) и больших объемов (в Северном полушарии). Такую же закономерность можно обнаружить и в отдельных океанах. К тропикам соленость увеличивается, причем максимальные ее значения достигаются в широтной полосе 20 - 30° к югу и северу от экватора. В окраинных и особенно во внутренних морях соленость отличается от океанской. В Красном море, которое сообщается с океаном через мелководный и достаточно узкий Баб-эль-Мандебский пролив и практически не получает пресных вод с континентов, а также находится в зоне повишенного испарения, поверхностная соленость достигает самых высоких значений - до 42%о. , далеко вдающееся в пределы суши, сообщающееся с океаном через несколько мелких и узких проливов, находится в зоне умеренного и принимает воды множества рек и речек. В результате Балтика относится к самым распресненным бассейнам Мирового океана. Поверхностная соленость в его центральной части составляет всего 6 - 8%о, а на севере моря, в мелководном Ботническом заливе, соленость и вовсе опускается до 2 - 3%о.С увеличением глубины соленость меняется. Это объясняется движением подповерхностных вод или, как принято говорить у океанологов, гидрологическим режимом конкретного бассейна. Например, в экваториальных широтах и под поверхностными водами толщиной 100 - 150 м прослеживаются слои очень соленых вод - выше 36%о, которые образуются за счет переноса глубинными противотечениями с западных окраин океанов более соленых, тропических по происхождению вод.

Однако соленость резко изменяется только до глубин порядка 1500 м. Ниже этого горизонта колебания солености ничтожно малы. На больших глубинах разных океанов количественные значения солености сближаются. Сезонные изменения солености на поверхности открытого океана невелики. Они не превышают 1%о.

Однако в встречаются соленостные аномалии. Так, в Красном море на глубине около 2000 м обнаружены воды, соленость которых достигает 300%о. Такая аномально высокая соленость обычно наблюдается на небольших площадях, где горячие, сильно минерализованные источники выносят в придонные слои океана растворы мантийного происхождения. Эти объекты получили образное название «черных курильщиков».
У морской воды есть еще одно важнейшее свойство - постоянство солевого состава. Оно не зависит ни от географической точки, ни от глубины, с которой взят образец воды. Это фундаментальное свойство установлено еще в конце XIX в. на основании анализа проб кругосветной экспедиции на судне «Челленджер» (1872 — 1876). Оно имеет огромное значение для обитателей океана. Кроме того, постоянство состава морской воды свидетельствует о единстве океанской среды на нашей планете и существовании процессов перемешивания, охватывающих всю толщу вод, все районы Мирового океана.

Кроме Твердых Веществ в морской воде растворены кислород, азот, углекислый газ, и это является необходимым условием для развития органической жизни в океане.

На растворимость кислорода в морской воде оказывают влияние и температура воды, и соленость, и степень переме-шанности, и некоторые другие факторы. Важнейшие - температура и соленость. Чем выше температура и соленость морской воды, тем меньше растворимость кислорода в ней, и наоборот. Итак, теплые и соленые тропические воды содержат меньше растворенного кислорода и не столь благоприятны для живых обитателей океана, чем холодные и менее соленые воды умеренных широт и приполярные воды. Это хорошо известно рыбакам, которые испокон веков занимались рыбным ловом именно в водах второго типа.

В тропических районах обогащенная кислородом вода появляется в результате выхода глубинных вод в приповерхностные горизонты либо приносится из умеренных широт холодными течениями. Углекислый газ (С02) находится в морской воде в виде углекислых соединений. В океан он поступает из , выделяется при дыхании живых организмов и разложении органического вещества, а также вместе с другими вулканическими газами из глубоких земной коры. Растворимость С02 в морской воде в десятки и сотни раз выше, чем у кислорода, поскольку углекислый газ легко соединяется с водой, образуя углекислоту.
В океане этот газ играет очень важную роль, являясь источником углерода, необходимого для построения органического вещества.

Полным антагонистом углекислого газа, который необходим для органической жизни, является сероводород (Н2С). До недавних пор считали, что этот убивающий всякую жизнь газ встречается только в глубинах внутренних морей, где водообмен с открытым океаном ограничен (Черное, и др.).
Благоприятные условия для его накопления в морской воде существуют прежде всего в глубоководных впадинах. Здесь, на у дне, содержание сероводорода увеличено до 7 см3/л. Однако в 70-е гг. XX в. океанологи обнаружили этот газ в открытой северо-западной части Индийского океана, причем на средних глубинах. Следовательно, сероводород образуется не только в условиях застоя воды. Гораздо большую роль играют глубинные процессы в , побочный продукт которых (сероводород) по коровым разломам и трещинам попадает в океан. Кстати, сероводород и в , где он был впервые обнаружен, распространен гораздо выше двухсотметрового горизонта - глубины, которой ограничивали раньше его присутствие. Оказывается, над зараженными сероводородом черноморскими глубинами существует слой кислорода и газа, губительного для всего живого. Это так называемый С-слой. В его толщина меняется от 2 до 200 м. Выяснилось также, что зараженную сероводородом водную толщу нельзя считать полностью безжизненной. В этой анаэробной (т. е. лишенной доступа кислорода воздуха) толще отмечены процессы образования биохимических соединений. На больших глубинах Черного моря гидробиологи обнаружили различные примитивные формы жизни: палочки, кокки, нитевидные водоросли.