Биологическая эволюция - это историческое развитие органического мира. Слово «эволюция» латинское и в переводе означает - «развертывание», а в широком смысле - всякое изменение, развитие, преобразование. В биологии слово «эволюция» было впервые использовано в 1762 г. швейцарским естествоиспытателем и философом Ш. Бонне.

Жизнь возникла на Земле около 3,5 млрд. лет назад. Предшественниками первых организмов были сложные органические белковые соединения, образовывавшие студенистые комочки, так называемые коацерватные капельки. Эти капельки, плававшие в первичном океане, были способны расти, усваивая из окружающей среды различные питательные вещества. Они распадались на дочерние капельки, из которых дольше существовали более совершенные. Строение коацерватов постепенно усложнялось, у них образовалось ядро и другие элементы живой клетки. Так появились простейшие одноклеточные организмы.

Проходили тысячелетия, и строение живых существ в результате естественного отбора все более совершенствовалось. У некоторых из этих простейших организмов появилась способность поглощать энергию солнечного луча и строить в своем теле из углекислого газа и воды органические вещества. Так возникли первые одноклеточные растения- синезеленые водоросли.

Другие живые существа сохранили прежний способ питания, но пищей им стали служить первичные растения. Это были первые животные.

В дальнейшем в результате эволюции из одноклеточных простейших возникли первые многоклеточные организмы-губки, археоциаты (вымершие беспозвоночные животные), кишечнополостные. Постепенно мир растений и животных становился сложнее и разнообразнее, они заселили и сушу.

По их ископаемым остаткам - отпечаткам, окаменелым скелетам-ученые установили, что чем древнее организмы, тем они проще устроены. Чем ближе к нашему времени, тем организмы становятся сложнее и все более похожими на современных.

В результате развития органического мира на Земле появились высшие растения и высокоорганизованные животные. От млекопитающих - ископаемых человекообразных обезьян - произошел человек.

Такова краткая схема эволюции жизни на нашей планете.

Эволюция-одна из форм движения в природе. Оно непрерывно и постепенно приводит к качественным и количественным изменениям живых организмов, которые подвержены воздействию как неживой природы, так и других организмов.

Изучением причин и закономерностей эволюции в биологии занимается эволюционное учение-комплекс знаний об историческом развитии живой природы. Основой этого учения является эволюционная теория.

Еще философы античного мира-Эмпедокл, Демокрит, Лукреций Кар и другие - высказывали гениальные догадки о развитии жизни. Но прошло еще много веков, прежде чем в науке накопилось достаточно фактов, позволивших ученым открыть изменяемость видов, а затем создать теорию, объясняющую происходящий в природе эволюционный процесс.

Во второй половине XVIII-первой половине XIX в. Ж. Бюффон и Э. Ж. Сент-Илер во Франции, Э. Дарвин в Англии, И. В. Гёте в Германии, М. В. Ломоносов, А. И. Радищев, А. А. Каверзнев, К. Ф. Рулье в России и другие создали учение об изменяемости видов животных и растений, противоречившее учению церкви об их сотворении богом и неизменности. Однако они не рассматривали причин, которые приводят к этим изменениям.

Первая попытка создать эволюционную теорию была сделана французским естествоиспытателем Ж. Б. Ламарком (1744-1829). В своем труде «Философия зоологии» (1809) он изложил целостную теорию происхождения видов, но и он не смог правильно объяснить, каковы движущие силы развития органического мира.

Подлинно научную эволюционную теорию создал английский естествоиспытатель Чарлз Дарвин. Она была изложена в книге «Происхождение видов путем естественного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь», 1859). Дарвину удалось определить движущие силы - факторы эволюционного процесса. Это неопределенная изменчивость, борьба за существование, естественный отбор.

В результате борьбы за существование выживают наиболее приспособленные к условиям жизни организмы, а менее приспособленные, слабые устраняются от размножения или гибнут. Благодаря естественному отбору у растений и животных накапливаются и суммируются полезные наследственные изменения, а также возникают новые приспособления (адаптации).

Борьба за существование и естественный отбор - важнейшие движущие факторы эволюции, они взаимосвязаны между собой. Именно они определяют дальнейшее существование организма. В процессе биологической эволюции возрастает и число видов живых организмов. Образование новых видов в природе - важнейший этап в процессе эволюции.

В результате эволюционного процесса изменяется генетический состав популяций, преобразуются биоценозы и биосфера в целом.

Эволюционное учение и его ядро - биологическая эволюционная теория - основа современной прогрессивной биологии.

В процессе исторического развития одни виды вымирают, другие изменяются и дают начало новым видам. Что же собой представляют виды? Существуют ли виды реально в природе?

Впервые термин "вид" ввел английский ботаник Джон Рей (1628- 1705). Шведский ботаник К. Линней рассматривал вид в качестве основной систематической единицы. Он не был сторонником эволюционных воззрений и считал, что виды со временем не изменяются.

Ж. Б. Ламарк отмечал, что различия между некоторыми видами очень незначительны, и в этом случае выделить виды довольно сложно. Он сделал вывод о том, что виды в природе не существуют, а систематика придумана человеком для удобства. Реально существует только особь. Органический мир представляет собой совокупность особей, связанных между собой родственны ми узами.

Как видно, взгляды Линнея и Ламарка на реальное существование вида были прямо противоположными: Линней считал, чтo виды существуют, они неизменны; Ламарк отрицал реальное существование видов в природе.

В настоящее время общепринята точка зрения Ч. Дарвина: виды реально существуют в природе, но постоянство их относительно; виды возникают, развиваются, а затем либо исчезают, либо изменяются, порождая новые виды.

Вид - это надорганизменная форма существования живой природы. Он представляет собой совокупность морфологически и физиологически сходных особей, свободно между собой скрещивающихся и дающих плодовитое потомство, занимающих определенный ареал и обитающих в сходных экологических условиях. Виды различаются по многим критериям. Критерии, по которым особи относятся к одному виду, представлены в таблице.

Критерии вида

При определении принадлежности особи к какому-либо виду нельзя ограничиваться лишь одним критерием, а необходимо использовать всю совокупность критериев. Так, не возможно ограничиться только морфологическим критерием , поскольку особи одного вида могут различаться внешне. Например, у многих птиц - воробьев, снегирей, фазанов самцы внешне значительно отличаются от самок.

В природе у животных широко распространен альбинизм, при котором в клетках отдельных особей в результате мутации нарушается синтез пигмента. Животные с такими мутациями имеют белую окраску. Глаза у них красные, потому что в радужной оболочке нет пигмента, и сквозь нее просвечивают кровеносные сосуды. Несмотря на внешние отличия, такие особи, например белые вороны, мыши, ежи, тигры, относятся к своим видам, а не выделяются в самостоятельные виды.

В природе существуют внешне почти неразличимые виды-двойники. Так, раньше малярийным комаром называли фактически шесть видов, похожих внешне, но не скрещивающихся между собой и различающихся по другим критериям. Однако из них только один вид питается кровью человека и разносит малярию.

Процессы жизнедеятельности у разных видов часто протекают очень сходно. Это говорит об относительности физиологического критерия . Например, у некоторых видов арктических рыб интенсивность обмена веществ такая же, как и у рыб, обитающих в тропических водах.

Нельзя использовать и один молекулярно-биологический критерий , так как многие макромолекулы (белки и ДНК) обладают не только видовой, но и индивидуальной специфичностью. Поэтому по биохимическим показателям не всегда можно определить, к одному или разным видам относятся особи.

Генетический критерий также не универсален. Во-первых, у разных видов число и даже форма хромосом могут быть одинаковыми. Во-вторых, в одном виде могут быть особи с разным числом хромосом. Так, у одного вида долгоносика имеются диплоидные (2п), триплоидные (Зп), тетраплоидные (4п) формы. В-третьих, иногда особи разных видов могут скрещиваться и давать плодовитое потомство. Известны гибриды волка и собаки, яка и крупного рогатого скота, соболя и куницы. В царстве растений межвидовые гибриды встречаются довольно часто, а иногда бывают и более отдаленные межродовые гибриды.

Нельзя считать универсальным и географический критерий , так как ареалы многих видов в природе совпадают (например,ареал даурской лиственницы и душистого тополя). Кроме того, существуют виды-космополиты, которые распространены повсеместно и не имеют четко ограниченного ареала (некоторые виды сорных растений, комаров, мышей). Ареалы некоторых быстро расселяющихся видов, таких, как домовая муха, изменяются. У многих перелетных птиц различаются ареалы гнездовий и зимовки. Экологический критерий не является универсальным, так как в пределах одного ареала многие виды обитают в очень разных природных условиях. Так, многие растения (например, пырей ползучий, одуванчик) могут жить и в лесу, и на пойменных лугах.

Виды реально существуют в природе. Они относительно постоянны. Виды можно различить по морфологическому, молекулярно-биологическому, генетическому, экологическому, географическому, физиологическому критериям. При определении принадлежности особи к тому или иному виду следует учитывать не один критерий, а весь их комплекс.

Вам известно, что вид состоит из популяций. Популяция представляет собой группу морфологически сходных особей одного вида, свободно скрещивающихся между собой и занимающих определенное место обитания в ареале вида.

Для каждой популяции характерен свой генофонд - совокупность генотипов всех особей популяции. Генофонды разных популяций даже одного вида могут различаться.

Процесс образования новых видов начинается внутри популяции, то есть популяция является элементарной единицей эволюции. Почему же именно популяцию, а не вид или отдельную особь рассматривают как элементарную единицу эволюции?

Особь не может эволюционировать. Она может изменяться, приспосабливаясь к условиям внешней среды. Но эти изменения не эволюционные, так как они не передаются по наследству. Вид, как правило, неоднороден и состоит из ряда популяций. Популяция относительно самостоятельна и может длительное время существовать вне связи с другими популяциями вида. В популяции протекают все эволюционные процессы: у особей возникают мутации, между особями происходит скрещивание, действуют борьба за существование и естественный отбор. В результате генофонд популяции со временем изменяется, и она становится родоначальником нового вида. Именно поэтому элементарная единица эволюции - популяция, а не вид.

Рассмотрим закономерности на следования признаков в популяциях разных типов. Эти закономерности различны для самооплодотворяющихся и раздельнополых организмов. Самооплодотворение особенно часто наблюдается у растений. У самоопыляющихся растений, например гороха, пшеницы, ячменя, овса, популяции состоят из так называемых гомозиготных линий. Чем объясняется их гомозиготность? Дело в том, что при самоопылении увеличивается доля гомозигот в популяции, а доля гетерозигот сокращается.

Чистая линия - это потомки одной особи. Она представляет собой совокупность самоопыляющихся растений.

Начало изучения генетики популяций было положено в 1903 г датским ученым В. Иоганнсеном. Он исследовал популяцию самоопыляемого растения фасоли, легко дающей чистую линию - группу потомков отдельной особи, генотипы которых идентичны.

Иоганнсен взял семена одного сорта фасоли и определил изменчивость одного признака - массы семени. Оказалось, что она варьирует от 150 мг до 750 мг. Ученый высеял отдельно две группы семян: массой от 250 до 350 мг и массой от 550 до 650 мг. Средняя масса семени вновь выросших растений составила в легкой группе 443,4 мг, в тяжелой - 518 мг. Иоганнсен сделал вывод, что исходный сорт фасоли состоит из генетически различных растений.

В течение 6-7 поколений ученый вел отбор семян тяжелых и легких с каждого растения, то есть про водил отбор в чистых линиях. В результате он пришел к выводу, что отбор в чистых линиях не дал сдвига ни в сторону легких, ни в сторону тяжелых семян, значит в чистых линиях отбор не эффективен. А изменчивость массы семян внутри чистой линии является модификационной, ненаследственной и возникает под воздействием условий среды.

Закономерности наследования признаков в популяциях раздельно полых животных и перекрестноопыляемых растений были установлены независимо друг от друга английским математиком Дж Харди и немецким врачом В. Вайнбергом в 1908-1909 гг. Эта закономерность, получившая название закона Харди - Вайнберга, отражает зависимость между частотами аллелей и генотипов в популяциях. Данный за кон объясняет, каким образом в популяции сохраняется генетическое равновесие, то есть число особей с доминантными и рецессивными при знаками остается на определенном уровне.

Согласно этому закону, частоты доминантных и рецессивных аллелей в популяции будут оставаться постоянными из поколения в поколение при наличии определенных условий: высокой численности особей в популяции; свободном их скрещивании; отсутствии отбора и миграции особей; одинаковой численности особей с разными генотипами.

Нарушение хотя бы одного из этих условий ведет к вытеснению одного аллеля (например, А) другим (а). Под действием естественного отбора, популяционных волн и других факторов эволюции особи с доминантным аллелем А будут вытеснять особи с рецессивным аллелем а.

В популяции может измениться соотношение особей с разными генотипами. Предположим, что генетический состав популяции был таким: 20% АА, 50% Аа, 30% аа. Под воздействием факторов эволюции он может оказаться следующим: 40% АА, 50% Аа, 10% аа. Используя закон Харди - Вайнберга, можно вычислить частоту встречаемости любого доминантного и рецессивного гена в популяции, а также любого генотипа.

Популяция - элементарная единица эволюции, так как она обладает относительной самостоятельностью и ее генофонд может изменяться. Закономерности наследования различны в популяциях разных типов. В популяциях самоопыляющихся растений отбор происходит между чистыми линиями. В популяциях раздельнополых животных и перекрестноопыляемых растений закономерности наследования подчиняются закону Харди - Вайнберга.

В соответствии с законом Харди - Вайнберга при относительно постоянных условиях частота аллелей в популяции остается неизменной из поколения в поколение. В этих условиях популяция находится в состоянии генетического равновесия, в ней не происходят эволюционные изменения. Однако в природе нет идеальных условий. Под влиянием факторов эволюции - мутационного процесса, изоляции, естественного отбора и др. - генетическое равновесие в популяции постоянно нарушается, происходит элементарное эволюционное явление - изменение генофонда популяции. Рассмотрим действие различных факторов эволюции.

Один из главных факторов эволюции - мутационный процесс. Мутации были открыты в начале XX в. голландским ботаником и генетиком Де Фризом (1848-1935).

Главной причиной эволюции он считал именно мутации. В то время были известны только крупные мутации, затрагивающие фенотип. Поэтому Де Фриз полагал, что виды возникают в результате крупных мутаций сразу, скачкообразно, без естественного отбора.

Дальнейшие исследования показали, что многие крупные мутации вредны. Поэтому многие ученые считали, что мутации не могут служить материалом для эволюции.

Лишь в 20-х гг. нашего столетия отечественные ученые С. С. Четвериков (1880- 1956) и И. И. Шмальгаузен (1884-1963) показали роль мутаций в эволюции. Было установлено, что любая природная популяция насыщена, как губка, разно образными мутациями. Чаще всего мутации рецессивны, находятся в гетерозиготном состоянии и не проявляются фенотипически. Именно эти мутации и служат генетической ос новой эволюции. При скрещивании гетерозиготных особей эти мутации у потомков могут переходить в гомозиготное состояние. Отбор из поколения в поколение сохраняет особей с полезными мутациями. Полезные мутации сохраняются естественным отбором, вредные - накапливаются в популяции в скрытом виде, создавая резерв изменчивости. Это приводит к изменению генофонда популяции.

Накоплению наследственных различий между популяциями способствует изоляция , благодаря которой между особями разных популяций не происходит скрещивания, а значит, и обмена генетической ин формацией.

В каждой популяции благодаря естественному отбору накапливаются определенные полезные мутации. Через несколько поколений изолированные популяции, обитающие в разных условиях, будут различаться по ряду признаков.

Широко распространена пространственная , или географическая изоляция , когда популяции разделены различными преградами: реками, горами, степями и т. п. Например, даже в близкорасположенных реках обитают разные популяции рыб одного и того же вида.

Различают также экологическую изоляцию , когда особи разных популяций одного вида предпочитают разные места и условия обитания. Так, в Молдавии у желтогорлой лесной мыши образовались лесные и степные популяции. Особи лесных популяций более крупные, пи таются семенами древесных пород, а особи степных популяций - семенами злаков.

Физиологическая изоляция возникает в том случае, когда у особей разных популяций созревание половых клеток происходит в разные сроки. Особи таких популяций не могут скрещиваться. Например, в озере Севан обитают две популяции форели, нерест которых происходит в разные сроки, поэтому они не скрещиваются между собой.

Существует также поведенческая изоляция . Брачное поведение особей разных видов различается. Это препятствует их скрещиванию. Механическая изоляция связана с различиями в строении органов размножения.

Изменение частот аллелей в популяциях может происходить не только под влиянием естественного отбора, но и независимо от него. Частота аллеля может измениться случайным образом. Например, преждевременная гибель особи - единственной обладательницы какого-либо аллеля приведет к исчезновению этого аллеля в популяции. Это явление получило название дрейфа генов .

Важным источником дрейфа генов являются популяционные волны - периодические значительные изменения численности особей популяции. Численность особей изменяется из года в год и зависит от многих факторов: количества пищи, погодных условий, численности хищников, массовых заболеваний и др. Роль популяционных волн в эволюции была установлена С. С. Четвериковым, который показал, что изменение численности особей в популяции влияет на эффективность естественного отбора. Так, при резком сокращении численности популяции могут случайно сохраниться особи с определенным генотипом. Например, в популяции могут сохраниться особи с такими генотипами: 75% Аа, 20% АА, 5% аа. Наиболее многочисленные генотипы, в данном случае Аа, будут определять генный состав популяции до следующей "волны".

Дрейф генов обычно снижает генетическую изменчивость в популяции, главным образом в результате утраты редко встречающихся аллелей. Этот механизм эволюционных изменений особенно эффективен в небольших популяциях. Однако только естественный отбор на основе борьбы за существование способствует сохранению особей с определенным генотипом, соответствующим среде обитания.

Элементарное эволюционное явление - изменение генофонда популяции происходит под влиянием элементарных факторов эволюции - мутационного процесса, изоляции, дрейфа генов, естественного отбора. Однако дрейф генов, изоляция и мутационный процесс не определяют направленности процесса эволюции, то есть выживания особей с определенным, соответствующим среде обитания генотипом. Единственным направляющим фактором эволюции является естественный отбор.

Основные положения эволюционного учения Ч. Дарвина.

  1. Наследственная изменчивость - основа эволюционного процесса;
  2. Стремление к размножению и ограниченность средств жизни;
  3. Борьба за существование - основной фактор эволюции;
  4. Естественный отбор как результат наследственной изменчивости и борьбы за существование.

ФОРМЫ ЕСТЕСТВЕННОГО ОТБОРА

ФОРМА
ОТБОРА
ДЕЙСТВИЕ НАПРАВЛЕННОСТЬ РЕЗУЛЬТАТ ПРИМЕРЫ
Движущий При изменении условий существования организмов В пользу особей, имеющих отклонения от средней нормы Возникает новая средняя форма, более соответствующая изменившимся условиям Возникновение у насекомых устойчивости к ядохимикатам; распространение темноокрашенных бабочек березовой пяденицы в условиях потемнения коры берез от постоянного задымления
Стабилизи
рующий
В неизменных, постоянных условиях существования Против особей с возникающими крайними отклонениями от средней нормы выраженности признака Сохранение и укрепление средней нормы проявления признака Сохранение у насекомоопыляемых растений размеров и формы цветка (цветки должны соответствовать форме и величине тела насекомогоопылителя, строению его хоботка)
Дизруптив
ный
В изменяющихся условиях жизни В пользу организмов, имеющих крайние отклонения от средней выраженности признака Образование новых средних норм вместо прежней, переставшей соответствовать условиям жизни При частых сильных ветрах на океанических островах сохраняются насекомые с хорошо развитыми или с рудиментарными крыльями

ВИДЫ ЕСТЕСТВЕННОГО ОТБОРА

Задачи и тесты по теме "Тема 14. "Эволюционное учение"."

  • Проработав эти темы, Вы должны уметь:

    1. Сформулировать своими словами определения: эволюция, естественный отбор, борьба за существование, адаптация, рудимент, атавизм, идиоадаптация, биологический прогресс и регресс.
    2. Кратко описать, каким образом та или иная адаптация сохраняется отбором. Какую роль играют в этом гены, генетическая изменчивость, частота генов, естественный отбор.
    3. Объяснить, почему в результате отбора не образуется популяция идентичных, безупречно адаптированных организмов.
    4. Сформулировать, что такое генетический дрейф; привести пример ситуации, в которой он играет важную роль, и объяснить, почему его роль особенно велика в небольших популяциях.
    5. Описать два способа возникновения видов.
    6. Сравнивать естественный и искусственный отбор.
    7. Кратко перечислить ароморфозы в эволюции растений и позвоночных, идиоадаптация в эволюции птиц и млекопитающих, покрытосеменных растений.
    8. Назвать биологические и социальные факторы антропогенеза.
    9. Сравнивать эффективность потребления растительной и животной пищи.
    10. Кратко описать черты древнейшего, древнего, ископаемого человека, человека современного типа.
    11. Указать черты развития и сходства человеческих рас.

    Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

    • Тема 14. "Эволюционное учение." §38, §41-43 стр. 105-108, стр.115-122
    • Тема 15. "Приспособленность организмов. Видообразование." §44-48 стр. 123-131
    • Тема 16. "Доказательства эволюции. Развитие органического мира." §39-40 стр. 109-115, §49-55 стр. 135-160
    • Тема 17. "Происхождение человека." §49-59 стр. 160-172

Эволюция — процесс развития, состоящий из постепенных изменений, без резких скачков (в противовес революции). Чаще всего, говоря об эволюции, имеют ввиду биологическую эволюцию.

Биологическая эволюция — необратимое и направленное историческое развитие живой природы, сопровождающееся изменением генетического состава популяций, формированием адаптаций, образованием и вымиранием видов, преобразованием экосистем и биосферы в целом. Биологическая эволюция изучается эволюционной биологией.

Существует несколько эволюционных теорий, общим для которых является утверждение, что ныне живущие формы жизни являются потомками других форм жизни, существовавших ранее. Эволюционные теории отличаются объяснением механизмов эволюции. В данный момент наиболее распространённой является т.н. синтетическая теория эволюции, являющаяся развитием теории Дарвина.

Гены, которые передаются потомству, в результате выражения образуют сумму признаков организма (фенотип). При воспроизведении организмов у их потомков появляются новые или изменённые признаки, которые возникают в результате мутации или при переносе генов между популяциями или даже видами. У видов, которые размножаются половым путём, новые комбинации генов возникают при генетической рекомбинации. Эволюция происходит, когда наследственные различия становятся более частыми или редкими в популяции.

Эволюционная биология изучает эволюционные процессы и выдвигает теории для объяснения их причин. Изучение окаменелостей и разнообразия видов живых организмов к середине XIX века убедило большинство учёных, что виды изменяются с течением времени. Однако механизм этих изменений оставался неясен до публикации в 1859 году книги Происхождение видов английского учёного Чарльза Дарвина о естественном отборе как движущей силе эволюции. Теория Дарвина и Уоллеса, в конечном итоге, была принята научным сообществом. В 30-х годах прошлого века идея дарвиновского естественного отбора была объединена с законами Менделя, которые сформировали основу синтетической теории эволюции (СТЭ). СТЭ позволила объяснить связь субстрата эволюции (гены) и механизма эволюции (естественный отбор).

Наследственность

Наследственность, присущее всем организмам свойство повторять в ряду поколений одинаковые признаки и особенности развития; обусловлено передачей в процессе размножения от одного поколения к другому материальных структур клетки, содержащих программы развития из них новых особей. Тем самым наследственность обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ, характера их индивидуального развития, или онтогенеза. Как общебиологическое явление наследственность — важнейшее условие существования дифференцированных форм жизни, невозможных без относительного постоянства признаков организмов, хотя оно нарушается изменчивостью — возникновением различий между организмами. Затрагивая самые разнообразные признаки на всех этапах онтогенеза организмов, наследственность проявляется в закономерностях наследования признаков, т. е. передачи их от родителей потомкам.

Иногда термин «Наследственность» относят к передаче от одного поколения другому инфекционных начал (так называемая инфекционная наследственность) или навыков обучения, образования, традиций (так называемая социальная, или сигнальная, наследственность). Подобное расширение понятия наследственность за пределы его биологической и эволюционной сущности спорно. Лишь в случаях, когда инфекционные агенты способны взаимодействовать с клетками хозяина вплоть до включения в их генетический аппарат, отделить инфекционную наследственность от нормальной затруднительно. Условные рефлексы не наследуются, а заново вырабатываются каждым поколением, однако роль наследственность в скорости закрепления условных рефлексов и особенностей поведения бесспорна. Поэтому в сигнальную наследственность входит компонент биологической наследственности.

Изменчивость

Изменчивость — это разнообразие признаков и свойств у особей и групп особей любой степени родства. Присуща всем живым организмам. Различают изменчивость наследственную и не наследственную, индивидуальную и групповую, качественную и количественную, направленную и ненаправленную. Наследственная изменчивость обусловлена возникновением мутаций, не наследственная — воздействием факторов внешней среды. Явления наследственности и изменчивости лежат в основе эволюции.

Мутация

Мутация — случайно возникшие, стойкие изменения генотипа,затрагивающие целые хромосомы, их части или отдельные гены. Мутации могут быть крупными, хорошо заметными, например отсутствие пигмента (альбинизм), отсутствие оперения у кур, короткопалость и др. Однако чаще всего мутационные изменения — это мелкие, едва заметные уклонения от нормы.

Мутации событие достаточно редкое. Частота возникновения отдельных спонтанных мутаций выражается числом гамет одного поколения, несущих определенную мутацию, по отношению к общему числу гамет.

Мутации возникают, в основном, в результате действия двух причин: спонтанных ошибок репликации последовательности нуклеотидов и действия различных мутагенных факторов, вызывающих ошибки репликации.

Мутации, вызванные действием мутагенов (облучение, химические вещества, температура и др.) , называют индуцированными, в отличие от спонтанных мутаций, происходящих при случайных ошибках действия ферментов, обеспечивающих репликацию, или (и) в результате тепловых колебаний атомов в нуклеотидах.

Типы мутаций. По характеру изменения генетического аппарата мутации делят на геномные, хромосомные и генные, или точковые. Геномные мутации заключаются в изменении числа хромосом в клетках организма. К ним относятся: полиплоидия — увеличение числа наборов хромосом, когда вместо обычных для диплоидных организмов 2 наборов хромосом их может быть 3, 4 и т. д.; гаплоидия — вместо 2 наборов хромосом имеется лишь один; анеуплоидия — одна или несколько пар гомологических хромосом отсутствуют (нуллисомия) или представлены не парой, а лишь одной хромосомой (моносомия) либо, напротив, 3 или более гомологичными партнёрами (трисомия, тетрасомия и т. д.). К хромосомным мутации, или хромосомным перестройкам, относятся: инверсии — участок хромосомы перевёрнут на 180°, так что содержащиеся в нём гены расположены в обратном порядке по сравнению с нормальным; транслокации — обмен участками двух или более негомологичных хромосом; делеции — выпадение значительного участка хромосомы; нехватки (малые делеции) — выпадение небольшого участка хромосомы; дупликации — удвоение участка хромосомы; фрагментации — разрыв хромосомы на 2 части или более. Генные мутации представляют собой стойкие изменения химического строения отдельных генов и, как правило, не отражаются на наблюдаемой в микроскоп морфологии хромосом. Известны также мутации генов, локализованных не только в хромосомах, но и в некоторых самовоспроизводящихся органеллах цитоплазмы (например, в митохондриях, пластидах).

Причины мутаций и их искусственное вызывание. Полиплоидия чаще возникает, когда хромосомы в начале клеточного деления — митоза — разделились, но деления клетки почему-либо не произошло. Искусственно полиплоидию удаётся вызвать, воздействуя на вступившую в митоз клетку веществами, нарушающими цитотомию. Реже полиплоидия бывает следствием слияния 2 соматических клеток или участия в оплодотворении яйцеклетки 2 спермиев. Гаплоидия — большей частью следствие развития зародыша без оплодотворения. Искусственно её вызывают, опыляя растения убитой пыльцой или пыльцой др. вида (отдалённого). Основная причина анеуплоидии — случайное нерасхождение пары гомологичных хромосом при мейозе, в результате чего обе хромосомы этой пары попадают в одну половую клетку или в неё не попадает ни одна из них. Реже возникают анеуплоиды из немногих оказавшихся жизнеспособными половых клеток, образуемых несбалансированными полиплоидами.

Причины хромосомных перестроек и наиболее важной категории мутации — генных — долгое время оставались неизвестными. Это давало повод для ошибочных автогенетических концепций, согласно которым спонтанные генные Мутации возникают в природе якобы без участия воздействий окружающей среды. Лишь после разработки методов количественного учёта генных мутации выяснилась возможность вызывать их различными физическими и химическими факторами — мутагенами.

Рекомбинация

Рекомбинация - перераспределение генетического материала родителей в потомстве, приводящее к наследственной комбинативной изменчивости живых организмов. В случае несцепленных генов (лежащих в разных хромосомах) это перераспределение может осуществляться при свободном комбинировании хромосом в мейозе, а в случае сцепленных генов — обычно путём перекреста хромосом — кроссинговера. Рекомбинация — универсальный биологический механизм, свойственный всем живым системам — от вирусов до высших растений, животных и человека. Вместе с тем в зависимости от уровня организации живой системы процесс Рекомбинация (генетич.) имеет ряд особенностей. Проще всего рекомбинация происходит у вирусов: при совместном заражении клетки родственными вирусами, различающимися одним или несколькими признаками, после лизиса клетки обнаруживаются не только исходные вирусные частицы, но и возникающие с определённой средней частотой частицы-рекомбинанты с новыми сочетаниями генов. У бактерий существует несколько процессов, заканчивающихся рекомбинация: конъюгация, т. е. объединение двух бактериальных клеток протоплазменным мостиком и передача хромосомы из донорской клетки в реципиентную, после чего происходит замена отдельных участков хромосомы реципиента на соответствующие фрагменты донора; трансформация — передача признаков молекулами ДНК, проникающими из среды сквозь клеточную оболочку; трансдукция — передача генетического вещества от бактерии-донора к бактерии-реципиенту, осуществляемая бактериофагом. У высших организмов рекомбинация происходит в мейозе при образовании гамет: гомологичные хромосомы сближаются и устанавливаются бок о бок с большой точностью (т. н. синапсис), затем происходит разрыв хромосом в строго гомологичных точках и перевоссоединение фрагментов крест-накрест (кроссинговер). Результат рекомбинация обнаруживается по новым сочетаниям признаков у потомства. Вероятность кроссинговера между двумя точками хромосом приблизительно пропорциональна физическому расстоянию между этими точками. Это даёт возможность на основании экспериментальных данных по рекомбинация строить генетические карты хромосом, т. е. графически располагать гены в линейном порядке в соответствии с их расположением в хромосомах, и притом в определённом масштабе. Молекулярный механизм рекомбинация детально не изучен, однако установлено, что ферментативные системы, обеспечивающие рекомбинация, принимают участие и в таком важнейшем процессе, как исправление повреждений, возникающих в генетическом материале. После синапсиса вступает в действие эндонуклеаза — фермент, осуществляющий первичные разрывы в цепях ДНК. По-видимому, эти разрывы у многих организмов происходят в структурно детерминированных участках — рекомбинаторах. Далее происходит обмен двойными или одинарными цепями ДНК и в заключение специальные синтетические ферменты — ДНК-полимеразы — заполняют бреши в цепях, а фермент лигаза замыкает последние ковалентные связи. Ферменты эти выделены и изучены лишь у некоторых бактерий, что позволило приблизиться к созданию модели рекомбинация in vitro (в пробирке). Одно из важнейших следствий рекомбинация — образование реципрокного потомства (т. е. при наличии двух аллельных форм генов АВ и ав должны получиться два продукта рекомбинации — Ав и aB в равных количествах). Принцип реципрокности соблюдается, когда рекомбинация происходит между достаточно удалёнными точками хромосомы. При внутригенной рекомбинации это правило часто нарушается. Последнее явление, изученное главным образом на низших грибах, называется генной конверсией. Эволюционное значение рекомбинация заключается в том, что благоприятными для организма часто оказываются не отдельные мутации, а их комбинации. Однако одновременное возникновение в одной клетке благоприятного сочетания из двух мутаций маловероятно. В результате рекомбинации осуществляется сочетание мутаций, принадлежащих двум независимым организмам, и тем самым ускоряется эволюционный процесс.

Механизмы эволюции

Естественный отбор

Существуют два основных эволюционных механизма. Первый — это естественный отбор, то есть процесс, в результате которого наследственные признаки, благоприятные для выживания и размножения, распространяются в популяции, а неблагоприятные становятся более редкими. Это происходит потому, что особи с благоприятными признаками размножаются с большей вероятностью, поэтому больше особей следующего поколения имеют те же признаки. Адаптации к окружающей среде возникают в результате накопления последовательных, мелких, случайных изменений и естественного отбора варианта, наиболее приспособленного к окружающей среде.

Генетический дрейф

Второй основной механизм — это генетический дрейф, независимый процесс случайного изменения в частоте признаков. Генетический дрейф происходит в результате вероятностных процессов, которые обуславливают случайные изменения в частоте признаков в популяции. Хотя изменения в результате дрейфа и селекции в течение одного поколения довольно малы, различие в частотах накапливаются в каждом последующем поколении и со временем приводят к значительным изменениям в живых организмах. Этот процесс может завершиться образованием нового вида. Более того, биохимическое единство жизни указывает на происхождение всех известных видов от общего предка (или пула генов) в результате процесса постепенной дивергенции.

Историческое развитие живой природы происходит по определенным законам и характеризуется совокупностью отдельных признаков. Успехи биологии в первой половине 19 века послужили предпосылкой создания новой науки - эволюционной биологии. Она сразу стала популярной. И доказала, что эволюция в биологии - это детерминированный и необратимый процесс развития как отдельных видов, так и целых их сообществ - популяций. Он происходит в биосфере Земли, затрагивая все его оболочки. Данная статья будет посвящена как изучению концепций биологического вида, так и

История развития эволюционных взглядов

Наука прошла сложный путь формирования мировоззренческих представлений о механизмах, лежащих в основе природы нашей планеты. Он начинался с идей креационизма, высказанных К. Линнеем, Ж. Кювье, Ч. Лайелеем. Первая эволюционная гипотеза была изложена французским ученым Ламарком в работе «Философия зоологии». Английский исследователь Чарльз Дарвин первым в науке высказал мысль о том, что эволюция в биологии - это процесс, базирующийся на наследственной изменчивости и естественном отборе. Его основой является борьба за существование.

Дарвин считал, что появление непрерывных изменений биологических видов является результатом их приспособления к постоянной смене факторов внешней среды. Борьба за существование, по мнению ученого, это совокупность взаимосвязей организма с окружающей природой. А её причина лежит в стремлении живых существ к увеличению своей численности и расширению мест обитания. Все вышеперечисленные факторы и включает в себя эволюция. Биология, 9 класс которую изучает на уроках, рассматривает процессы наследственной изменчивости и естественного отбора в разделе «Эволюционное учение».

Синтетическая гипотеза развития органического мира

Еще при жизни Чарльза Дарвина его идеи были раскритикованы рядом таких известных ученых, как Ф. Дженкин и Г. Спенсер. В 20 веке, в связи с бурными генетическими исследованиями и постулированием законов наследственности Менделя, стало возможным создание синтетической гипотезы эволюции. В своих трудах ее описывали такие как С. Четвериков, Д. Холдейн и С. Райд. Они утверждали, что эволюция в биологии - это явление биологического прогресса, имеющего вид ароморфозов, идиоадаптаций, затрагивающих популяции различных видов.

Согласно этой гипотезе, эволюционными факторами являются волны жизни, и изоляция. Формы исторического развития природы проявляются в таких процессах, как видообразование, микроэволюция и макроэволюция. Вышеизложенные научные взгляды можно представить, как суммацию знаний о мутациях, являющихся источником наследственной изменчивости. А также представлений о популяции, как структурной единицы исторического развития биологического вида.

Что такое эволюционная среда?

Под этим термином понимают биогеоценотический В ней происходят микроэволюционные процессы, затрагивающие популяции одного вида. В результате становится возможным возникновение подвидов и новых биологических видов. Здесь же наблюдаются процессы, приводящие к появлению таксонов - родов, семейств, классов. Они относятся к макроэволюции. Научные исследования В. Вернадского, доказывающие тесную взаимосвязь всех уровней организации живой материи в биосфере, подтверждают тот факт, что биогеоценоз - это среда эволюционных процессов.

В климаксных, то есть стабильных экосистемах, в которых наблюдается большое разнообразие популяции многих классов, изменения происходят вследствие когерентной эволюции. в таких стабильных биогеоценозах называются ценофильными. А в системах с нестабильными условиями, происходит несогласованная эволюция среди экологически пластичных, так называемых ценофобных видов. Миграции особей различных популяций одного и того же вида изменяют их генофонды, нарушая частоту встречаемости различных генов. Так считает современная биология. Эволюция органического мира, которая будет рассмотрена нами ниже, подтверждает этот факт.

Этапы развития природы

Такие ученые, как С. Разумовский и В. Красилов доказали, что темпы эволюции, лежащие в основе развития природы, неравномерны. Они представляют собой медленные и практически незаметные изменения в стабильных биогеоценозах. Они резко ускоряются в периоды экологических кризисов: техногенных катастроф, таяния ледников и т. д. В современной биосфере обитает около 3-х миллионов видов живых существ. Наиболее важных из них для жизнедеятельности человека изучает биология (7 класс). Эволюция Простейших, Кишечнополостных, Членистоногих, Хордовых представляет собой постепенное усложнение кровеносной, дыхательной, нервной систем этих животных.

Первые остатки живых организмов обнаруживаются в архейских осадочных породах. Их возраст около 2,5 миллиарда лет. Первые эукариоты появились в начале Возможные варианты происхождения многоклеточных организмов объясняют научные гипотезы фагоцителлы И. Мечникова и гастреи Э. Гетелля. Эволюция в биологии - это путь развития живой природы от первых архейских форм жизни до многообразия флоры и фауны современной кайнозойской эры.

Современные представления о факторах эволюции

Они представляют собой условия, вызывающие адаптивные изменения организмов. Их генотип наиболее защищен от внешних влияний (консервативность генофонда биологического вида). Наследственная информация все же может изменяться под действием генных Именно таким путем - приобретением новых признаков и свойств - происходила эволюция животных. Биология изучает её в таких разделах, как сравнительная анатомия, биогеография и генетика. Размножение, как фактор эволюции, имеет исключительное значение. Оно обеспечивает смену поколений и непрерывность жизни.

Человек и биосфера

Процессы возникновения оболочек Земли и геохимическую деятельность живых организмов изучает биология. Эволюция биосферы нашей планеты имеет продолжительную геологическую историю. Она была разработана В. Вернадским в его учении. Он же ввел термин «ноосфера», понимая под ним влияние сознательной (умственной) деятельности человека на природу. Живое вещество, входящее во все оболочки планеты, изменяет их и определяет круговорот веществ и энергии.

Потомство живых существ очень похоже на родителей. Однако если среда обитания живых организмов меняется, они тоже могут существенно измениться. К примеру, если климат постепенно становится холоднее, то некоторые виды могут от поколения к поколению обрастать все более густой шерстью. Этот процесс называется эволюцией . За миллионы лет эволюции мелкие изменения, накапливаясь, могут приводить к возникновению новых видов растений и животных, резко отличающихся от своих предков.

Как происходит эволюция?

В основе эволюции лежит естественный отбор. Он происходит так. Все животные или растения, принадлежащие к одному виду, все же слегка отличаются друг от друга. Некоторые из этих отличий позволяют их обладателям лучше приспосабливаться к условиям жизни, нежели их сородичам. Например, у какого-то оленя особенно быстрые ноги, и ему каждый раз удается убежать от хищника. У такого оленя больше шансов выжить и обзавестись потомством, а способность быстро бегать может передаться его детенышам, или, как говорят, унаследоваться ими.

Эволюция создала бесчисленное множество способов приспособления к трудностям и опасностям жизни на Земле. Например, семена конского каштана со временем приобрели оболочку, покрытую острыми колючками. Колючки защищают семя, когда оно падает с дерева на землю.

Какова скорость эволюции?


Прежде у этих бабочек были светлые крылышки. Они прятались от врагов на стволах деревьев с такой же светлой корой. Однако около 1% этих бабочек имели темные крылышки. Естественно, птицы сразу их замечали и, как правило, съедали раньше других

Обычно эволюция протекает очень медленно. Но бывают случаи, когда какой-либо вид животных претерпевает стремительные изменения и затрачивает на это не тысячи и миллионы лет, а гораздо меньше. К примеру, некоторые бабочки за последние двести лет изменили свою окраску, чтобы приспособиться к новы условиям жизни в тех районах Европы, где возникло множество промышленных предприятий.

Около двухсот лет назад в Западной Европе начали строить заводы, работающие на угле. Дым из заводских труб содержал сажу, которая оседала на стволах деревьев, и они чернели. Теперь оказались заметнее светлые бабочки. А немногие прежде бабочки с темной окраской крылышек выжили, ибо птицы их уже не замечали. От них произошли другие бабочки с такими же темными крылышками. И теперь большинство бабочек этого вида, обитающих в промышленных районах, имеют темные крылышки.

Почему некоторые виды животных вымирают?

Некоторые живые существа неспособны эволюционировать, когда среда их обитания резко изменяется, и в результате вымирают. Скажем, огромные волосатые животные, похожие на слонов — мамонты, скорее всего, вымерли оттого, что климат на Земле в ту пору стал контрастнее: летом слишком жарко, а зимой слишком холодно. К тому же их численность сократилась из-за усиленной охоты на них первобытного человека. А вслед за мамонтами вымерли и саблезубые тигры — ведь их громадные клыки были приспособлены к охоте лишь на крупных животных вроде мамонтов. Более мелкие животные были для саблезубых тигров недоступны, и, оставшись без добычи, они исчезли с лица нашей планеты.

Откуда мы знаем, что человек тоже эволюционировал?

Большинство ученых полагает, что человек произошел от живших на деревьях животных, похожих на современных обезьян. Доказательством этой теории служат некоторые черты строения наших тел, позволяющие, в частности, предположить, что когда-то наши предки были вегетарианцами и питались только плодами, кореньями и стеблями растений.

У основания вашего позвоночника есть костное образование — копчик. Это все, что осталось от хвоста. Большая часть волос, покрывающих ваше тело, представляет собой лишь мягкий пушок, но у наших предков волосяной покров был гораздо гуще. Каждый волосок снабжен специальным мускулом и встает дыбом, когда вы мерзнете. Так же и у всех млекопитающих с волосатой шкурой: она удерживает воздух, который не дает теплу животного уйти.

У многих взрослых людей есть широкие крайние зубы — их называют «зубы мудрости». Теперь в этих зубах нет никакой необходимости, но в свое время наши предки пережевывали ими жесткую растительную пищу, которой питались. Аппендикс представляет собой маленькую трубочку-отросток, связанную с кишечником. Наши отдаленные предки с его помощью переваривали растительную пищу, плохо усваиваемую организмом. Теперь он больше не нужен и постепенно становится все меньше и меньше. У многих травоядных животных — к примеру, кроликов — аппендикс развит очень хорошо.

Могут ли люди управлять эволюцией?

Люди управляют эволюцией некоторых животных вот уже более 10000 лет. Например, многие современные породы собак, по всей вероятности, произошли от волков, стаи которых бродили около стойбищ древних людей. Постепенно те из них, что стали жить вместе с людьми, эволюционировали в новый вид животных, то есть стали собаками. Затем люди начали специально выращивать собак для определенных целей. Это называется селекцией. В результате сегодня в мире насчитывается свыше 150 различных пород собак.

  • Собак, которых можно было обучить разным командам, вроде этой английской овчарки, выращивали для того, чтобы пасти скот.
  • Собак, которые умели быстро бегать, использовали для преследования дичи. У этой борзой мощные ноги, и она бежит огромными прыжками.
  • Собак с хорошим нюхом выводили специально для выслеживания дичи. Эта гладкошерстная такса может разрывать кроличьи норы.

Через естественный отбор, как правило, протекает очень медленно. Селективный отбор позволяет резко ускорить ее.

Что такое генная инженерия?

В 70-е гг. XX в. ученые изобрели способ изменения свойств живых организмов вмешательством в их генетический код. Эту технологию называют генной инженерией. Гены несут в себе своеобразный биологический шифр, содержащийся в каждой живой клетке. Он и определяет размеры и внешний вид каждого живого существа. С помощью генной инженерии можно выводить растения и животных, которые, скажем, быстрее растут или менее восприимчивы к какому-либо заболеванию