Поле действительных чисел обладает свойством упорядоченности (п. 6, стр. 35): для любых чисел а, b имеет место одно и только одно из трех соотношений: или . При этом запись а > b означает, что разность положительна, а запись разность отрицательна. В отличие от поля действительных чисел, поле комплексных чисел не упорядочивается: для комплексных чисел понятия «больше» и «меньше» не определяются; поэтому в данной главе рассматриваются только действительные числа.

Соотношения назовем неравенствами, числа а и b - членами (или частями) неравенства, знаки > (больше) и Неравенства а > b и с > d называются неравенствами одинакового (или одного и того же) смысла; неравенства а > b и с Из определения неравенства сразу следует, что

1) любое положительное число больше нуля;

2) любое отрицательное число меньше нуля;

3) любое положительное число больше любого отрицательного числа;

4) из двух отрицательных чисел больше то, абсолютная величина которого меньше.

Все эти утверждения допускают простое геометрическое истолкование. Пусть положительное направление числовой оси идет вправо от начальной точки; тогда, каковы бы ни были знаки чисел, большее из них изображается точкой, лежащей правее точки, изображающей меньшее число.

Неравенства обладают следующими основными свойствами.

1. Несимметричность (необратимость): если , то , и обратно.

Действительно, если разность положительна, то разность отрицательна. Говорят, что при перестановке членов неравенства надо смысл неравенства изменить на противоположный.

2. Транзитивность: если , то . Действительно, из положительности разностей следует и положительность

Кроме знаков неравенства применяют также знаки неравенства и Они определяются следующим образом: запись означает, что либо либо Поэтому, например, можно писать , а также . Обычно неравенства, записанные с помощью знаков называют строгими неравенствами, а записанные с помощью знаков нестрогими неравенствами. Соответственно и сами знаки называют знаками строгого или нестрогого неравенства. Свойства 1 и 2, рассмотренные выше, верны и для нестрогих неравенств.

Рассмотрим теперь действия, которые можно производить над одним или несколькими неравенствами.

3. От прибавления к членам неравенства одного и того же числа смысл неравенства не изменяется.

Доказательство. Пусть даны неравенство и произвольное число . По определению разность положительна. Прибавим к этому числу два противоположных числа от чего оно не изменится, т. е.

Это равенство можно переписать так:

Из этого следует, что разность положительна, т. е. что

а это и надо было доказать.

На этом основана возможность перекоса любого члена неравенства из одной его части в другую с противоположным знаком. Например, из неравенства

следует, что

4. При умножении членов неравенства на одно и то же положительное число смысл неравенства не изменяется; при умножении членов неравенства на одно и то же отрицательное число смысл неравенства изменяется на противоположный.

Доказательство. Пусть тогда Если то так как произведение положительных чисел положительно. Раскрыв скобки в левой части последнего неравенства, получим , т. е. . Аналогичным образом рассматривается случай .

Точно такой же вывод можно сделать и относительно деления частей неравенства на какое-либо отличное от нуля число, так как деление на число равносильно умножению на число а числа имеют одинаковые знаки.

5. Пусть члены неравенства положительны. Тогда при возведении его членов в одну и ту же положительную степень смысл неравенства не изменяется.

Доказательство. Пусть этом случае по свойству транзитивности и . Тогда в силу монотонного возрастания степенной функции при и положительном будем иметь

В частности, если где -натуральное число, то получим

т. е. при извлечении корня из обеих частей неравенства с положительными членами смысл неравенства не изменяется.

Пусть члены неравенства отрицательны. Тогда нетрудно доказать, что при возведении его членов в нечетную натуральную степень смысл неравенства не изменится, а при возведении в четную натуральную степень изменится на противоположный. Из неравенств с отрицательными членами можно также извлекать корень нечетной степени.

Пусть, далее, члены неравенства имеют разные знаки. Тогда при возведении его в нечетную степень смысл неравенства не изменится, а при возведении в четную степень о смысле получающегося неравенства ничего определенного в общем случае сказать нельзя. В самом деле, при возведении числа в нечетную степень знак числа сохраняется и поэтому смысл неравенства не изменяется. При возведении же неравенства в четную степень образуется неравенство с положительными членами, и его смысл будет зависеть от абсолютных величин членов исходного неравенства может получиться неравенство того же смысла, что и исходное, неравенство противоположного смысла и даже равенство!

Все сказанное о возведении неравенств в степень полезно проверить на следующем примере.

Пример 1. Возвести в указанную степень следующие неравенства, изменив в случае необходимости знак неравенства на противоположный или на знак равенства.

а) 3 > 2 в степень 4; б) в степень 3;

в) в степень 3; г) в степень 2;

д) в степень 5; е) в степень 4;

ж) 2 > -3 в степень 2; з) в степень 2,

6. От неравенства можно перейти к неравенству между если члены неравенства оба положительны или оба отрицательны, то между их обратными величинами имеется неравенство противоположного смысла:

Доказательство. Если а и b - одного знака, то их произведение положительно. Разделим на неравенство

т. е. , что и требовалось получить.

Если члены неравенства имеют противоположные знаки, то неравенство между их обратными величинами имеет тот же смысл, так как знаки обратных величин те же, что и знаки самих величин.

Пример 2. Проверить последнее свойство 6 на следующих неравенствах:

7. Логарифмирование неравенств можно производить лишь в случае, когда члены неравенств положительны (отрицательные числа и нуль логарифмов не имеют).

Пусть . Тогда при будет

а при будет

Правильность этих утверждений основана на монотонности логарифмической функции, которая возрастает, если основание и убывает при

Итак, при логарифмировании неравенства, состоящего из положительных членов, по основанию, большему единицы, образуется неравенство того же смысла, что и данное, а при логарифмировании его по положительному основанию, меньшему единицы, - неравенство противоположного смысла.

8. Если , то если , но , то .

Это сразу следует из свойств монотонности показательной функции (п. 42), которая возрастает в случае и убывает, если

При почленном сложении неравенств одного и того же смысла образуется неравенство того же смысла, что и данные.

Доказательство. Докажем это утверждение для двух неравенств, хотя оно верно для любого количества складываемых неравенств. Пусть даны неравенства

По определению числа будут положительными; тогда положительной оказывается и их сумма, т. е.

Группируя иначе слагаемые, получим

и, следовательно,

а это и надо было доказать.

Нельзя сказать Ничего определенного в общем случае о смысле неравенства, получающегося при сложении двух или нескольких неравенств разного смысла.

10. Если из одного неравенства почленно вычесть другое неравенство противоположного смысла, то образуется неравенство того же смысла, что и первое.

Доказательство. Пусть даны два неравенства разного смысла. Второе из них по свойству необратимости можно переписать так: d > с. Сложим теперь два неравенства одинакового смысла и получим неравенство

того же смысла. Из последнего находим

а это и надо было доказать.

Нельзя сказать ничего определенного в общем случае о смысле неравенства, получающегося при вычитании из одного неравенства другого неравенства того же смысла.

Представлены основные виды неравенств, включая неравенства Бернулли, Коши - Буняковского, Минковского, Чебышева. Рассмотрены свойства неравенств и действия над ними. Даны основные методы решения неравенств.

Формулы основных неравенств

Формулы универсальных неравенств

Универсальные неравенства выполняются при любых значениях входящих в них величин. Ниже перечислены основные виды универсальных неравенств.

1) | a ± b | ≤ |a| + |b| ; | a 1 ± a 2 ± ... ± a n | ≤ |a 1 | + |a 2 | + ... + |a n |

2) |a| + |b| ≥ | a - b | ≥ | |a| - |b| |

3)
Равенство имеет место только при a 1 = a 2 = ... = a n .

4) Неравенство Коши - Буняковского

Равенство имеет место тогда и только тогда, когда α a k = β b k для всех k = 1, 2, ..., n и некоторых α, β, |α| + |β| > 0 .

5) Неравенство Минковского , при p ≥ 1

Формулы выполнимых неравенств

Выполнимые неравенства выполняются при определенных значениях входящих в них величин.

1) Неравенство Бернулли:
.
В более общем виде:
,
где , числа одного знака и больше, чем -1 : .
Лемма Бернулли:
.
См. «Доказательства неравенств и леммы Бернулли ».

2)
при a i ≥ 0 (i = 1, 2, ..., n) .

3) Неравенство Чебышева
при 0 < a 1 ≤ a 2 ≤ ... ≤ a n и 0 < b 1 ≤ b 2 ≤ ... ≤ b n
.
При 0 < a 1 ≤ a 2 ≤ ... ≤ a n и b 1 ≥ b 2 ≥ ... ≥ b n > 0
.

4) Обобщенные неравенства Чебышева
при 0 < a 1 ≤ a 2 ≤ ... ≤ a n и 0 < b 1 ≤ b 2 ≤ ... ≤ b n и k натуральном
.
При 0 < a 1 ≤ a 2 ≤ ... ≤ a n и b 1 ≥ b 2 ≥ ... ≥ b n > 0
.

Свойства неравенств

Свойства неравенств - это набор тех правил, которые выполняются при их преобразовании. Ниже представлены свойства неравенств. Подразумевается, что исходные неравенства выполняются при значениях x i (i = 1, 2, 3, 4) , принадлежащих некоторому, заранее определенному, интервалу.

1) При изменении порядка следования сторон, знак неравенства меняется на противоположный.
Если x 1 < x 2 , то x 2 > x 1 .
Если x 1 ≤ x 2 , то x 2 ≥ x 1 .
Если x 1 ≥ x 2 , то x 2 ≤ x 1 .
Если x 1 > x 2 , то x 2 < x 1 .

2) Одно равенство эквивалентно двум нестрогим неравенствам разного знака.
Если x 1 = x 2 , то x 1 ≤ x 2 и x 1 ≥ x 2 .
Если x 1 ≤ x 2 и x 1 ≥ x 2 , то x 1 = x 2 .

3) Свойство транзитивности
Если x 1 < x 2 и x 2 < x 3 , то x 1 < x 3 .
Если x 1 < x 2 и x 2 ≤ x 3 , то x 1 < x 3 .
Если x 1 ≤ x 2 и x 2 < x 3 , то x 1 < x 3 .
Если x 1 ≤ x 2 и x 2 ≤ x 3 , то x 1 ≤ x 3 .

4) К обеим частям неравенства можно прибавить (вычесть) одно и то же число.
Если x 1 < x 2 , то x 1 + A < x 2 + A .
Если x 1 ≤ x 2 , то x 1 + A ≤ x 2 + A .
Если x 1 ≥ x 2 , то x 1 + A ≥ x 2 + A .
Если x 1 > x 2 , то x 1 + A > x 2 + A .

5) Если есть два или более неравенств со знаком одного направления, то их левые и правые части можно сложить.
Если x 1 < x 2 , x 3 < x 4 , то x 1 + x 3 < x 2 + x 4 .
Если x 1 < x 2 , x 3 ≤ x 4 , то x 1 + x 3 < x 2 + x 4 .
Если x 1 ≤ x 2 , x 3 < x 4 , то x 1 + x 3 < x 2 + x 4 .
Если x 1 ≤ x 2 , x 3 ≤ x 4 , то x 1 + x 3 ≤ x 2 + x 4 .
Аналогичные выражения имеют место для знаков ≥, >.
Если в исходных неравенствах имеются знаки не строгих неравенств и хотя бы одно строгое неравенство (но все знаки имеют одинаковое направление), то при сложении получается строгое неравенство.

6) Обе части неравенства можно умножить (разделить) на положительное число.
Если x 1 < x 2 и A > 0 , то A · x 1 < A · x 2 .
Если x 1 ≤ x 2 и A > 0 , то A · x 1 ≤ A · x 2 .
Если x 1 ≥ x 2 и A > 0 , то A · x 1 ≥ A · x 2 .
Если x 1 > x 2 и A > 0 , то A · x 1 > A · x 2 .

7) Обе части неравенства можно умножить (разделить) на отрицательное число. При этом знак неравенства изменится на противоположный.
Если x 1 < x 2 и A < 0 , то A · x 1 > A · x 2 .
Если x 1 ≤ x 2 и A < 0 , то A · x 1 ≥ A · x 2 .
Если x 1 ≥ x 2 и A < 0 , то A · x 1 ≤ A · x 2 .
Если x 1 > x 2 и A < 0 , то A · x 1 < A · x 2 .

8) Если есть два или более неравенств с положительными членами, со знаком одного направления, то их левые и правые части можно умножить друг на друга.
Если x 1 < x 2 , x 3 < x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 < x 2 · x 4 .
Если x 1 < x 2 , x 3 ≤ x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 < x 2 · x 4 .
Если x 1 ≤ x 2 , x 3 < x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 < x 2 · x 4 .
Если x 1 ≤ x 2 , x 3 ≤ x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 ≤ x 2 · x 4 .
Аналогичные выражения имеют место для знаков ≥, >.
Если в исходных неравенствах имеются знаки не строгих неравенств и хотя бы одно строгое неравенство (но все знаки имеют одинаковое направление), то при умножении получается строгое неравенство.

9) Пусть f(x) - монотонно возрастающая функция. То есть при любых x 1 > x 2 , f(x 1) > f(x 2) . Тогда к обеим частям неравенства можно применить эту функцию, от чего знак неравенства не изменится.
Если x 1 < x 2 , то f(x 1) < f(x 2) .
Если x 1 ≤ x 2 , то f(x 1) ≤ f(x 2) .
Если x 1 ≥ x 2 , то f(x 1) ≥ f(x 2) .
Если x 1 > x 2 , то f(x 1) > f(x 2) .

10) Пусть f(x) - монотонно убывающая функция, То есть при любых x 1 > x 2 , f(x 1) < f(x 2) . Тогда к обеим частям неравенства можно применить эту функцию, от чего знак неравенства изменится на противоположный.
Если x 1 < x 2 , то f(x 1) > f(x 2) .
Если x 1 ≤ x 2 , то f(x 1) ≥ f(x 2) .
Если x 1 ≥ x 2 , то f(x 1) ≤ f(x 2) .
Если x 1 > x 2 , то f(x 1) < f(x 2) .

Методы решения неравенств

Решение неравенств методом интервалов

Метод интервалов применим, если в неравенство входит одна переменная, которую обозначим как x , и оно имеет вид:
f(x) > 0
где f(x) - непрерывная функция, имеющая конечное число точек разрывов. Знак неравенства может быть любым: >, ≥, <, ≤ .

Метод интервалов заключается в следующем.

1) Находим область определения функции f(x) и отмечаем ее интервалами на числовой оси.

2) Находим точки разрыва функции f(x) . Например, если это дробь, то находим точки, в которых знаменатель обращается в нуль. Отмечаем эти точки на числовой оси.

3) Решаем уравнение
f(x) = 0 .
Корни этого уравнения отмечаем на числовой оси.

4) В результате числовая ось окажется разбитой точками на интервалы (отрезки). Внутри каждого интервала, входящего в область определения, выбираем любую точку и в этой точке вычисляем значение функции. Если это значение больше нуля, то над отрезком (интервалом) ставим знак „+“ . Если это значение меньше нуля, то над отрезком (интервалом) ставим знак „-“ .

5) Если неравенство имеет вид: f(x) > 0 , то выбираем интервалы с знаком „+“ . Решением неравенства будет объединение этих интервалов, в которые не входят их границы.
Если неравенство имеет вид: f(x) ≥ 0 , то к решению добавляем точки, в которых f(x) = 0 . То есть часть интервалов, возможно, будут иметь закрытые границы (граница принадлежит интервалу). другая часть может иметь открытые границы (граница не принадлежит интервалу).
Аналогично, если неравенство имеет вид: f(x) < 0 , то выбираем интервалы с знаком „-“ . Решением неравенства будет объединение этих интервалов, в которые не входят их границы.
Если неравенство имеет вид: f(x) ≤ 0 , то к решению добавляем точки, в которых f(x) = 0 .

Решение неравенств, применяя их свойства

Этот метод применим для неравенств любой сложности. Он состоит в том, чтобы, применяя свойства (представленные выше), привести неравенства к более простому виду и получить решение. Вполне возможно, что при этом получится не одно, а система неравенств. Это универсальный метод. Он применим для любых неравенств.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Урок и презентация на тему: "Основные свойства числовых неравенств и способы их решения."

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Комбинаторика и теория вероятностей Уравнения и неравенства

Введение в числовые неравенства

Ребята, с неравенствами мы уже сталкивались, например, когда начинали знакомиться с понятием корня квадратного . Интуитивно понятно, что с помощью неравенств можно оценить, какое из данных чисел больше или меньше. Для математического описания достаточно добавить специальный символ, который будет означать либо больше, либо меньше.

Запись выражения $a>b$ на математическом языка означает, что число $a$ больше числа $b$. В свою очередь, это значит, что $a-b$ - положительное число.
Запись выражения $a

Как и практически все математические объекты неравенства имеют некоторые свойства. Изучением этих свойств мы и займемся на этом уроке.

Свойство 1.
Если $a>b$ и $b>c$, то $a>c$.

Доказательство.
Очевидно, что $10>5$, и $5>2$, и конечно $10>2$. Но математика любит строгие доказательства для самого общего случая.
Если $a>b$, то $a-b$ - положительное число. Если $b>c$, то $b-c$ - положительное число. Давайте сложим два полученных положительных числа.
$a-b+b-c=a-c$.
Сумма двух положительных чисел есть положительное число, но тогда $a-c$ также положительное число. Из чего следует, что $a>c$. Свойство доказано.

Более наглядно данное свойство можно показать, используя числовую прямую. Если $a>b$, то число $a$ на числовой прямой будет лежать правее $b$. Соответственно, если $b>c$, то число $b$ будет лежать правее числа $с$.
Как видно из рисунка точка $a$ в нашем случае находится правее точки $c$, а это означает, что $a>c$.

Свойство 2.
Если $a>b$, то $a+c>b+c$.
Иначе говоря, если число $a$ больше числа $b$, то какое бы мы число не прибавили (положительное или отрицательное) к этим числам, знак неравенства будет также сохраняться. Доказывается данное свойство очень легко. Нужно выполнить вычитание. Та переменная, которую прибавляли, исчезнет и получится верное исходное неравенство.

Свойство 3.
а) Если обе части неравенства умножить на положительное число, то знак неравенства сохраняется.
Если $a>b$ и $c>0$, тогда $ac>bc$.
б) Если обе части неравенства умножить на отрицательное число, то знак неравенства следует поменять на противоположный.
Если $a>b$ и $c Если $abc$.

При делении следует действовать тем же образом (делим на положительное число - знак сохраняется, делим на отрицательно число - знак меняется).

Свойство 4.
Если $a>b$ и $c>d$, то $a+c>b+d$.

Доказательство.
Из условия: $a-b$ - положительное число и $c-d$ - положительное число.
Тогда сумма $(a-b)+(c-d)$ - тоже положительное число.
Поменяем местами некоторые слагаемые $(a+с)-(b+d)$.
От перемены мест слагаемых сумма не изменяется.
Значит $(a+с)-(b+d)$ - положительное число и $a+c>b+d$.
Свойство доказано.

Свойство 5.
Если $a, b ,c, d$ - положительные числа и $a>b$, $c>d$, то $ac>bd$.

Доказательство.
Так как $a>b$ и $c>0$, то, используя свойство 3, имеем $ac>bc$.
Так как $c>d$ и $b>0$, то, используя свойство 3, имеем $cb>bd$.
Итак, $ac>bc$ и $bc >bd$.
Тогда, используя свойство 1, получаем $ac>bd$. Что и требовалось доказать.

Определение.
Неравенства вида $a>b$ и $c>d$ ($a Неравенства вида $a>b$ и $cd$) называются неравенствами противоположного смысла.

Тогда свойство 5 можно перефразировать. При умножение неравенств одного смысла, у которых левые и правые части положительные, получается неравенство того же смысла.

Свойство 6.
Если $a>b$ ($a>0$, $b>0$), то $a^n>b^n$, где $n$ – любое натуральное число.
Если обе части неравенства положительные числа и их возвести в одну и ту же натуральную степень, то получится неравенство того же смысла.
Заметим: если $n$ – нечетное число, то для любых по знаку чисел $a$ и $b$ свойство 6 выполняется.

Свойство 7.
Если $a>b$ ($a>0$, $b>0$), то $\frac{1}{a}

Доказательство.
Чтобы доказать данное свойство, необходимо при вычитании $\frac{1}{a}-\frac{1}{b}$ получить отрицательное число.
$\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab}=\frac{-(a-b)}{ab}$.

Мы знаем, что $a-b$ - положительное число, и произведение двух положительных чисел - тоже положительное число, т.е. $ab>0$.
Тогда $\frac{-(a-b)}{ab}$ - отрицательное число. Свойство доказано.

Свойство 8.
Если $a>0$, то выполняется неравенство: $a+\frac{1}{a}≥2$.

Доказательство.
Рассмотрим разность.
$a+\frac{1}{a}-2=\frac{a^2-2a+1}{a}=\frac{(a-1)^2}{a}$ - неотрицательное число.
Свойство доказано.

Свойство 9. Неравенство Коши (среднее арифметическое больше либо равно среднего геометрического).
Если $a$ и $b$ - неотрицательные числа, то выполняется неравенство: $\frac{a+b}{2}≥\sqrt{ab}$.

Доказательство.
Рассмотрим разность:
$\frac{a+b}{2}-\sqrt{ab}=\frac{a-2\sqrt{ab}+b}{2}=\frac{(\sqrt{a}-\sqrt{b})^2}{2}$ - неотрицательное число.
Свойство доказано.

Примеры решения неравенств

Пример 1.
Известно, что $-1.5 а) $3a$.
б) $-2b$.
в) $a+b$.
г) $a-b$.
д) $b^2$.
е) $a^3$.
ж) $\frac{1}{b}$.

Решение.
а) Воспользуемся свойством 3. Умножим на положительное число, значит знак неравенства не меняется.
$-1.5*3 $-4.5<3a<6.3$.

Б) Воспользуемся свойством 3. Умножим на отрицательное число, значит знак неравенства меняется.
$-2*3.1>-2*b>-2*5.3$.
$-10.3
в) Сложив неравенства одинакового смысла, получим неравенство того же смысла.
$-1.5+3.1 $1.6

Г) Умножим все части неравенства $3.1 $-5.3<-b<-3.1$.
Теперь выполним операцию сложения.
$-1.5-5.3 $-6.8

Д) Все части неравенства положительны, возведя их в квадрат, получим неравенство того же смысла.
${3.1}^2 $9.61

Е) Степень неравенства нечетная, тогда можно смело возводить в степень и не менять знак.
${(-1.5)}^3 $-3.375

Ж) Воспользуемся свойством 7.
$\frac{1}{5.3}<\frac{1}{b}<\frac{1}{3.1}$.
$\frac{10}{53}<\frac{1}{b}<\frac{10}{31}$.

Пример 2.
Сравните числа:
а) $\sqrt{5}+\sqrt{7}$ и $2+\sqrt{8}$.
б) $π+\sqrt{8}$ и $4+\sqrt{10}$.

Решение.
а) Возведем каждое из чисел в квадрат.
$(\sqrt{5}+\sqrt{7})^2=5+2\sqrt{35}+7=12+\sqrt{140}$.
$(2+\sqrt{8})^2=4+4\sqrt{8}+8=12+\sqrt{128}$.
Вычислим разность квадратов этих квадратов.
$(\sqrt{5}+\sqrt{7})^2-(2+\sqrt{8})^2=12+\sqrt{140}-12-\sqrt{128}=\sqrt{140}-\sqrt{128}$.
Очевидно, получили положительное число, что означает:
$(\sqrt{5}+\sqrt{7})^2>(2+\sqrt{8})^2$.
Так как оба числа положительных, то:
$\sqrt{5}+\sqrt{7}>2+\sqrt{8}$.

Задачи для самостоятельного решения

1. Известно, что $-2.2Найти оценки чисел.
а) $4a$.
б) $-3b$.
в) $a+b$.
г) $a-b$.
д) $b^4$.
е) $a^3$.
ж) $\frac{1}{b}$.
2. Сравните числа:
а) $\sqrt{6}+\sqrt{10}$ и $3+\sqrt{7}$.
б) $π+\sqrt{5}$ и $2+\sqrt{3}$.

1) Основное понятие неравенства

2) Основные свойства числовых неравенств. Неравенства содержащие переменную.

3) Графическое решение неравенств второй степени

4) Системы неравенств. Неравенства и системы неравенств с двумя переменными.

5) Решение рациональных неравенств методом интервалов

6) Решение неравенств, содержащих переменную под знаком модуля

1. Основное понятие неравенства

Неравенство — соотношение между числами (или любыми математическими выражениями, способными принимать численное значение), указывающее, какое из них больше или меньше другого. Над этими выражениями можно по определенным правилам производить следующие действия: сложение, вычитание, умножение и деление (причем при умножении или делении Н. на отрицательное число смысл его меняется на противоположный). Одно из основных понятий линейного программирования линейные неравенства вида

a 1 x 1 + a 2 x 2 +... + a n x n * b ,

где a 1 ,..., a n , b — постоянные и знак * — один из знаков неравенства, напр. ≥,

· алгебраические

· трансцендентные

Алгебраические неравенства подразделяются на неравенства первой, второй, и т. д. степени.

Неравенство - алгебраическое, второй степени.

Неравенство - трансцендентное.

2. Основные свойства числовых неравенств . Неравенства содержащие переменную

1) Графиком квадратичной функции y = ах 2 +bх + с является парабола с ветвями, направленными вверх, если а > 0 , и вниз, если а (иногда говорят, что парабола направлена выпуклостью вниз, если а > 0 и выпуклостью вверх, если а). При этом возможны три случая:

2) Парабола пересекает ось 0х (т. е. уравнение ах 2 + bх + с = 0 имеет два различных корня). То есть, если а

y = ах 2 +bх + с a>0 D>0 y = ах 2 +bх + с a D >0,

Парабола имеет вершину на оси 0х (т. е. уравнение ах 2 + х + с = 0 имеет один корень, так называемый двукратный корень) То есть, если d=0, то при a>0 решением неравенства служит вся числовая прямая, а при a ах 2 + х + с

y = ах 2 +bх + с a>0 D = 0 y = ах 2 +bх + с a D =0,

3) Если d0 и ниже ее при a

y = ах 2 +bх + с a>0 D 0 y = ах 2 +bх + с a D0,

4) Решить неравенство графическим способом

1. Пусть f(x) = 3х 2 -4х - 7 тогда найдем такие х при которых f(x) ;

2. Найдем нули функции.

f(x) при х .

Ответ f(x) при х .

Пусть f(x)=х 2 +4х +5 тогда Найдем такие х при которых f(x)>0,

D=-4 Нет нулей.

4. Системы неравенств. Неравенства и системы неравенств с двумя переменными

1) Множество решений системы неравенств есть пересечение множеств решений входящих в нее неравенств.

2) Множество решений неравенства f(х;у)>0 можно графически изобразить на координатной плоскости. Обычно линия, заданная уравнением f(х;у)=0 ,разбивает плоскость на 2 части, одна из которых является решением неравенства. Чтобы определить, какая из частей, надо подставить координаты произвольной точки М(х0;у0) , не лежащей на линии f(х;у)=0, в неравенство. Если f(х0;у0) > 0 , то решением неравенства является часть плоскости, содержащая точку М0. если f(х0;у0)

3) Множество решений системы неравенств есть пересечение множеств решений входящих в нее неравенств. Пусть, например, задана система неравенств:

Для первого неравенства множество решений есть круг радиусом 2 и с центром в начале координат, а для второго- полуплоскость, расположенная над прямой 2х+3у=0. Множеством решений данной системы служит пересечение указанных множеств, т.е. полукруг.

4) Пример. Решить систему неравенств:

Решением 1-го неравенства служит множество , 2-го множество (2;7) и третьего - множество .

Пересечением указанных множеств является промежуток(2;3], который и есть множество решений системы неравенств.

5. Решение рациональных неравенств методом интервалов

В основе метода интервалов лежит следующее свойство двучлена (х-а ): точка х=α делит числовую ось на две части — справа от точки α двучлен (х‑α)>0 , а слева от точки α (х-α) .

Пусть требуется решить неравенство (x-α 1)(x-α 2)...(x-α n)>0 , где α 1 , α 2 ...α n-1 , α n — фиксированные числа, среди которых нет равных, причем такие, что α 1 (x-α 1)(x-α 2)...(x‑α n)>0 методом интервалов поступают следующим образом: на числовую ось наносят числа α 1 , α 2 ...α n-1 , α n ; в промежутке справа от наибольшего из них, т.е. числа α n , ставят знак «плюс», в следующем за ним справа налево интервале ставят знак «минус», затем — знак «плюс», затем знак «минус» и т.д. Тогда множество всех решений неравенства (x-α 1)(x‑α 2)...(x-α n)>0 будет объединение всех промежутков, в которых поставлен знак «плюс», а множество решений неравенства (x-α 1)(x-α 2)...(x‑α n) будет объединение всех промежутков, в которых поставлен знак «минус».

1) Решение рациональных неравенств (т.е неравенств вида P(x) Q(x) где - многочлены) основано на следующем свойстве непрерывной функции: если непрерывная функция обращается в нуль в точках х1 и х2 (х1;х2) и между этими точками не имеет других корней, то в промежутках(х1;х2) функция сохраняет свой знак.

Поэтому для нахождения промежутков знакопостоянства функции y=f(x) на числовой прямой отмечают все точки, в которых функция f(x) обращается в нуль или терпит разрыв. Эти точки разбивают числовую прямую на несколько промежутков, внутри каждого из которых функция f(x) непрерывна и не обращается в нуль, т.е. сохраняет знак. Чтобы определить этот знак, достаточно найти знак функции в какой либо точке рассматриваемого промежутка числовой прямой.

2) Для определения интервалов знакопостоянства рациональной функции, т.е. Для решения рационального неравенства, отмечаем на числовой прямой корни числителя и корни знаменателя, которые как и являются корнями и точками разрыва рациональной функции.

Решение неравенств методом интервалов

Решение . Область допустимых значений определяется системой неравенств:

Для функции f(x) = - 20. Находим f(x) :

откуда x = 29 и x = 13.

f (30) = - 20 = 0,3 > 0,

f (5) = - 1 - 20 = - 10

Ответ: }