Взаимодействие и строение ИРНК, ТРНК, РРНК — трех основных нуклеиновых кислот, рассматривает такая наука, как цитология. Она поможет выяснить, какова роль транспортной рибонуклеиновой кислоты (ТРНК) в клетках. Эта очень маленькая, но в то же время неоспоримо важная молекула принимает участие в процессе комбинирования белков, из которых состоит организм.

Каково строение ТРНК? Очень интересно рассмотреть «изнутри» это вещество, узнать его биохимию и биологическую роль. А также, как строение ТРНК и ее роль в синтезе белка взаимосвязаны?

Что такое ТРНК, как она устроена?

Транспортная рибонуклеиновая кислота участвует в построении новых белков. Почти 10 % всех рибонуклеиновых кислот — транспортные. Чтобы было понятно, из каких химических элементов образована молекула, расскажем строение вторичной структуры ТРНК. Вторичная структура рассматривает все основные химические связи между элементами.

Это макромолекула, состоящая из полинуклеотидной цепи. Азотистые основания в ней связаны водородными связями. Как и в ДНК, РНК имеет 4 азотистые основания: аденин, цитозин, гуанин, и урацил. В этих соединениях аденин всегда связан с урацилом, а гуанин, как обычно, с цитозином.

Почему нуклеотид имеет приставку рибо-? Просто все линейные полимеры, имеющие рибозу вместо пентозы в основании нуклеотида, называются рибонуклеиновыми. А транспортная РНК - это один из 3 видов именно такого, рибонуклеинового полимера.

Строение ТРНК: биохимия

Заглянем в самые глубокие слои строения молекулы. Эти нуклеотиды имеют 3 составляющие:

  1. Сахароза, во всех видах РНК участвует рибоза.
  2. Фосфорная кислота.
  3. Азотистые основания. Это пурины и пиримидины.

Азотистые основания соединяются между собой крепкими связями. Принято разделять основания на пуриновые и пиримидиновые.

Пурины - это аденин и гуанин. Аденину соответствует адениловый нуклеотид из 2 взаимосвязанных колец. А гуанину — соответствует такой же «однокольцовый» гуаниновый нуклеотид.

Пирамидины — это цитозин и урацил. Пиримидины имеют структуру из одного кольца. Тимина в РНК нет, так как его заменяет такой элемент, как урацил. Это важно понять, прежде чем обращать внимание на другие особенности строения ТРНК.

Виды РНК

Как видим, строение ТРНК кратко не описать. Нужно углубиться в биохимию, чтобы понять назначение молекулы и ее истинную структуру. Какие еще известны рибосомные нуклеотиды? Различают также матричную или информационную и рибосомную нуклеиновые кислоты. Сокращенно ИРНК и РРНК. Все 3 молекулы тесно сотрудничают в клетке друг с другом, чтобы организм получал правильно структурированные глобулы белка.

Невозможно представить работу одного полимера без помощи 2 других. Особенности строения ТРНК становятся более понятны, когда рассматриваются во взаимосвязи с функциями, которые напрямую связаны с работой рибосом.

Строение ИРНК, ТРНК, РРНК во многом похожи. Все имеют в основании рибозу. Однако структура и функции у них разные.

Открытие нуклеиновых кислот

Швейцарцем Иоганном Мишером были найдены в ядре клетки в 1868 году макромолекулы, названные нуклеинами впоследствии. Название «нуклеины» происходит от слова (nucleus) - ядро. Хотя немного позже было установлено, что у одноклеточных существ, не имеющих ядра, эти вещества также присутствуют. В середине XX века получена Нобелевская премия за открытие синтеза нуклеиновых кислот.

Функции ТРНК в синтезе белка

Само название — транспортная РНК говорит об основной функции молекулы. Эта нуклеиновая кислота «привозит» с собой необходимую аминокислоту, требуемую рибосомной РНК для создания конкретного белка.

У молекулы ТРНК функций немного. Первая — распознавание кодона ИРНК, вторая функция — это доставка строительных «кирпичиков» — аминокислот для синтеза белка. Еще некоторые специалисты выделяют акцепторную функцию. То есть присоединение по ковалентному принципу аминокислот. Помогает «прикрепить» эту аминокислоту такой фермент, как аминоцил-ТРНК-синтатаз.

Как строение ТРНК связано с ее функциями? Эта особенная рибонуклеиновая кислота устроена так, что на одной ее стороне имеются азотистые основания, которые всегда соединяются попарно. Это известные нам элементы — А, У, Ц, Г. Ровно 3 «буквы» или азотистые основания, составляют антикодон — обратный набор элементов, который взаимодействует с кодоном по принципу комплементарности.

Эта важная особенность строения ТРНК гарантирует, что ошибок при декодировании матричной нуклеиновой кислоты не будет. Ведь от точной последовательности аминокислот зависит правильно ли синтезируется нужный организму в настоящее время белок.

Особенности строения

Каковы особенности строения ТРНК и ее биологическая роль? Это очень древняя структура. Ее размеры где-то 73 - 93 нуклеотида. Молекулярная масса вещества - 25 000-30 000.

Строение вторичной структуры ТРНК можно разобрать, изучив 5 основных элементов молекулы. Итак, состоит эта нуклеиновая кислота из таких элементов:

  • петля для контакта с ферментом;
  • петля для контакта с рибосомой;
  • антикодоновая петля;
  • акцепторный стебель;
  • сам антикодон.

И также выделяют малую вариабельную петлю во вторичной структуре. Одно плечо у всех видов ТРНК одинаково — стебель из двух остатков цитозина и одного — аденозина. Именно в этом месте происходит связь с 1 из 20 имеющихся в наличии аминокислот. Для каждой аминокислоты предназначен отдельный фермент — свой аминоацил-тРНК.

Вся информация, которая шифрует строение всех нуклеиновых кислот содержится в самой ДНК. Строение ТРНК у всех живых существ на планете практически идентичное. Она будет выглядеть, как лист, если рассматривать ее в 2-D формате.

Однако если взглянуть объемно, то молекула напоминает L-образную геометрическую структуру. Это считается третичная структура ТРНК. Но для удобства изучения ее принято визуально «раскручивать». Третичная структура образуется вследствие взаимодействия элементов вторичной структуры, тех частей, которые взаимокомплиментарны.

Плечи ТРНК или кольца играют важную роль. Одно плечо, например, необходимо для химической связи с определенным ферментом.

Характерной особенностью нуклеотида является наличие огромного числа нуклеозидов. Этих минорных нуклеозидов более 60 видов.

Строение ТРНК и кодирование аминокислот

Мы знаем, что антикодон ТРНК составляет 3 молекулы. Каждому антикодону соответствует определенная, «личная» аминокислота. Эта аминокислота соединена с молекулой ТРНК с помощью специального фермента. Как только 2 аминокислоты объединяются, связи с ТРНК распадаются. Все химические соединения и ферменты нужны до необходимого времени. Именно так взаимосвязаны строение и функции ТРНК.

Всего в клетке присутствует 61 тип таких молекул. Математических вариаций может быть 64. Однако 3 вида ТРНК отсутствуют по причине того, что именно такое количество стопкодонов в ИРНК не имеет антикодонов.

Взаимодействие ИРНК и ТРНК

Рассмотрим взаимодействие вещества с ИРНК и РРНК, а также особенности строения ТРНК. Структура и назначение макромолекулы взаимосвязаны.

Структура ИРНК копирует информацию с отдельного участка ДНК. Сама ДНК слишком крупное соединение молекул, и она никогда не выходит из ядра. Поэтому нужна посредническая РНК — информационная.

На основе последовательности молекул, которые скопировала ИРНК, рибосома строит белок. Рибосома — это отдельная полинуклеотидная структура, строение которой нужно разъяснить.

Рибосомная ТРНК: взаимодействие

Рибосомная РНК это огромная органелла. Ее молекулярный вес 1 000 000 - 1 500 000. Почти 80 % всего количества РНК — именно рибосомные нуклеотиды.

Она как бы захватывает цепь ИРНК и ждет антикодонов, которые принесут с собой молекулы ТРНК. Состоит рибосомная РНК из 2 субъединиц: малой и большой.

Рибосому называют «фабрикой», поскольку в этой органелле и происходит весь синтез нужных для повседневной жизни веществ. Это также очень древняя структура клетки.

Как происходит синтез белка в рибосоме?

Строение ТРНК и ее роль в синтезе белка взаимосвязаны. Расположенный антикодон на одной из сторон рибонуклеиновой кислоты подходит по своей форме для основной функции — доставки аминокислот к рибосоме, где происходит поэтапное выстраивание белка. По сути, ТРНК выполняет роль посредника. Ее задача лишь принести необходимую аминокислоту.

Когда информация считывается с одной части ИРНК, рибосома движется дальше по цепи. Матрица нужна только для передачи кодированной информации о конфигурации и функции отдельно взятого белка. Далее подходит к рибосоме другая ТРНК со своими азотистыми основаниями. Она также декодирует следующую часть ИРНК.

Декодирование происходит следующим образом. Азотистые основания объединяются по принципу комплементарности точно так же, как в самой ДНК. Соответственно, ТРНК видит, куда ему нужно «причалить» и в какой «ангар» отправить аминокислоту.

Затем в рибосоме выбранные таким способом аминокислоты химически связываются, шаг за шагом формируется новая линейная макромолекула, которая после окончания синтеза закручивается в глобулу (шар). Использованные ТРНК и ИРНК, выполнив свою функцию, удаляются от «фабрики» белка.

Когда первая часть кодона соединяется с антикодоном, определяется рамка считывания. Впоследствии, если происходит по каким-то причинам сдвиг рамки, то какой-то признак белка будет бракован. Рибосома же не может вмешаться в этот процесс и решить проблему. Только после завершения процесса 2 субъединицы РРНК снова объединяются. В среднем на каждые 10 4 аминокислот приходится по 1 ошибке. На 25 уже собранных белков обязательно встречается хоть 1 ошибка репликации.

ТРНК как реликтовые молекулы

Так как ТРНК, возможно, существовали во времена зарождения жизни на земле, ее называют реликтовой молекулой. Считается, что РНК первейшая структура, которая существовала до ДНК, а затем эволюционировала. Гипотеза мира РНК — сформулирована в 1986 году лауреатом Уолтером Гильбертом. Однако доказать это пока сложно. В защиту теории выступают очевидные факты — молекулы ТРНК в состоянии хранить блоки информации и как-то реализовывать эти сведения, то есть выполнять работу.

Но противники теории утверждают - небольшой период жизни вещества не может гарантировать, что ТРНК хороший носитель любой биологической информации. Эти нуклеотиды быстро распадаются. Срок жизни ТРНК в клетках человека колеблется от нескольких минут до нескольких часов. Некоторые виды могут продержаться до суток. А если говорить о таких же нуклеотидах в бактериях, то тут сроки намного меньше — до нескольких часов. К тому же строение и функции ТРНК слишком сложны, чтобы молекула могла стать первичным элементом биосферы Земли.

Строение и функции РНК

РНК - полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение - некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК - нуклеотид (рибонуклеотид) - состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК - урацил, цитозин, пуриновые основания - аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК - иРНК (мРНК), 2) транспортная РНК - тРНК, 3) рибосомная РНК - рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса - 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон - три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса - 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы - органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Является синтез белковой молекулы на основе матричной РНК (трансляция). Однако в отличие от транскрипции нуклеотидная последовательность не может быть переведена в аминокислотную напрямую, так как эти соединения имеют разную химическую природу. Поэтому для осуществления трансляции требуется посредник в виде транспортной РНК (тРНК), функция которого состоит в переводе генетического кода на "язык" аминокислот.

Общая характеристика транспортной РНК

Транспортные РНК или тРНК - это небольшие молекулы, которые доставляют аминокислоты к месту синтеза белка (в рибосомы). Количество этого вида рибонуклеиновой кислоты в клетке составляет примерно 10 % от общего пула РНК.

Как и другие разновидности тРНК состоит из цепочки рибонуклеозидтрифосфатов. Длина нуклеотидной последовательности насчитывает 70-90 звеньев, и около 10 % состава молекулы приходится на минорные компоненты.

Из-за того, что каждой аминокислоте соответствует свой переносчик в виде тРНК, клетка синтезирует большое количество разновидностей этой молекулы. В зависимости от вида живого организма этот показатель варьирует от 80 до 100.

Функции тРНК

Транспортная РНК является поставщиком субстрата для белкового синтеза, который происходит в рибосомах. За счет уникальной способности связываться и с аминокислотами, и с матричной последовательностью тРНК выполняет функцию смыслового адаптера при переводе генетической информации из формы РНК в форму белка. Взаимодействие такого посредника с кодирующей матрицей, как в транскрипции, основано на принципе комплементарности азотистых оснований.

Главная функция тРНК заключается в акцептировании аминокислотных звеньев и их транспортировке в аппарат белкового синтеза. За этим техническим процессом стоит огромный биологический смысл - реализация генетического кода. Осуществление этого процесса основано на следующих особенностях:

  • все аминокислоты кодируются триплетами нуклеотидов;
  • для каждого триплета (или кодона) существует антикодон, входящий в состав тРНК;
  • каждая тРНК может связаться только с определенной аминокислотой.

Таким образом, аминокислотная последовательность белка определяется тем, какие тРНК и в каком порядке будут комплементарно взаимодействовать с матричной РНК в процессе трансляции. Это возможно благодаря наличию в транспортной РНК функциональных центров, один из которых отвечает за избирательное присоединение аминокислоты, а другой - за связывание с кодоном. Поэтому функции и тесно взаимосвязаны.

Строение транспортной РНК

Уникальность тРНК заключается в том, что ее молекулярная структура не линейна. Она включает в себя спиральные двуцепочечные участки, которые называют стеблями, и 3 одноцепочечные петли. По форме такая конформация напоминает клеверный лист.

В структуре тРНК различают следующие стебли:

  • акцепторный;
  • антикодоновый;
  • дигидроуридиловый;
  • псевдоуридиловый;
  • добавочный.

Двойные спирали стеблей содержат от 5 до 7 Уотсон-Криксоновских пар. На конце акцепторного стебля расположена небольшая цепочка неспаренных нуклеотидов, 3-гидроксил которой является местом прикрепления соответствующей молекулы аминокислоты.

Структурной областью для соединения с мРНК служит одна из петель тРНК. Она содержит антикодон, комплементарный смысловому триплету в Именно антикодон и акцептирующий конец обеспечивают адапторную функцию тРНК.

Третичная структура молекулы

"Клеверный лист" является вторичной структурой тРНК, однако за счет фолдинга молекула приобретает L-образную конформацию, которая скрепляется дополнительными водородными связями.

L-форма представляет собой третичную структуру тРНК и состоит из двух практически перпендикулярных А-РНК спиралей, имеющих длину 7 нм и толщину 2 нм. Такая форма молекулы имеет всего 2 конца, на одном из которых расположен антикодон, а на другом - акцепторный центр.

Особенности связывания тРНК с аминокислотой

Активацию аминокислот (их присоединение к транспортной РНК) осуществляет аминоацил-тРНК-синтетаза. Этот фермент одновременно выполняет 2 важных функции:

  • катализирует образования ковалентной связи между 3`-гидроксильной группой акцепторного стебля и аминокислотой;
  • обеспечивает принцип избирательного соответствия.

Для каждой из есть своя аминоацил-тРНК-синтетаза. Она может взаимодействовать только с соответствующим видом транспортной молекулы. Это означает, что антикодон последней должен быть комплементарен триплету, кодирующему именно эту аминокислоту. Например, синтетаза лейцина будет соединяться только с предназначеным для лейцина тРНК.

В молекуле аминоацил-тРНК-синтетазы есть три нуклеотид-связывающих кармана, конформация и заряд которых комплементарны нуклеотидам соответствующего антикодона в тРНК. Таким образом, фермент определяет нужную транспортную молекулу. Гораздо реже фрагментом опознавания служит нуклеотидная последовательность акцепторного стебля.

Данная статья является второй в серии автопубликаций, которую необходимо читать после ознакомления с первой статьёй Свойства генетического кода - след его возникновения . Крайне желательным для людей, плохо знакомым с основами молекулярной биологии, знакомство со статьёй О.О. Фаворовой " ". Важно понимать, для того, чтобы понять КАК возник генетический код , необходимо понять, КАК он функционирует в современных организмах. А для этого необходимо вникнуть в молекулярные механизмы кодируемого синтеза белка. Для понимания данной статьи важно понимать, как устроена молекула РНК, чем она отличается от молекулы ДНК.

Разобраться в теме о происхождении жизни вообще, и возникновении генетического кода, в частности, просто невозможно без понимания основных молекулярных механизмов в живых организмах, в первую очередь двух аспектов - воспроизведения наследственных молекул (нуклеиновых кислот) и синтеза белка. Поэтому данная статья посвящена в первую очередь изложению того минимума знания, с помощью которого можно понять богатый и довольно интересный материал, связанный с происхождением генетического кода (ГК).

Знакомство с молекулярными механизмами синтеза белка лучше всего начинать с изучения структуры одного из ключевых компонентов и одной из самых древних структур в живых организмах - молекулы транспортной РНК (или тРНК ). Молекула тРНК имеет необычайно консервативную структуру, которая сходна у всех живых организмах. Эта структура меняется в ходе эволюции настолько медленно, что позволяет нам извлечь немало информации о том, как могли выглядеть древнейшие белок-синтезирующие системы в период их начального формирования. Поэтому говорят, что молекула тРНК является молекулярным реликтом.

Молекулярный реликт , или молекулярное ископаемое - это абстракция, обозначающая древние механизмы и молекулярные и надмолекулярные структуры, встречающиеся в современных организмах, что позволяет нам извлекать информацию об устройстве древнейших живых систем. К молекулярным реликтам относятся молекулы рибосомной и транспортных РНК, аминоацил-тРНК -синтетаз, ДНК- и РНК-полимераз и сам генетический код , как способ кодирования, а также ряд других молекулярных структур и механизмов. Их анализ и является ключевым источником информации о том, как могла возникнуть жизнь, и генетический код , в частности. Рассмотрим подробнее структуру тРНК и те её участки, которые изменяются в ходе эволюции настолько медленно, что ещё содержат немало информации относительно древних тРНК , существовавших более 3,5 млрд. лет назад.

Молекула тРНК относительно небольшая, её длина варьирует от 74 до 95 нукелотидных остатков, наиболее часто - 76 нуклеотидов (см. рис. 1). В последовательности тРНК выделяют так называемые консервативные нуклеотидные остатки - это нуклеотидные остатки расположенные в строго определённых последовательностях почти у всех молекул тРНК . Кроме того выделяются полуконсервативные нуклеотидные остатки - это остатки, представленные только пуриновыми или пиримидиновыми основаниямив строго определённых последовательностях тРНК . Кроме того, различные участки тРНК изменяются с существенно различной скоростью.

До 25% всех нуклеотидных остатков представлены модифицированными нуклеозидами, часто называемых минорными . Минорных остатков описано уже больше 60. Они образуются врезультате модификации обычных нуклеозидных остатков с помощью специальных ферментов.

Среди модифицированных остатков часто встречаются псевдоуридин (5-рибофуранозилурацил, Ψ), 5,6- дигидроуридин (D ), 4-тиоуридил и инозин. Структура некоторых модифицированный оснований и частично их роль изложены в статье

Наряду с первичной структурой (это просто последовательность нуклеотидов), молекула тРНК обладает вторичной и третичной структурой.

Вторичная структура обусловлена образованием водородных связей между нуклеотидами. Ещё в школе учат про водородные связи при комплементарным спариванием между нуклеотидами (A-U и G-C такой вид спаривания нуклеотидов называют каноническим), но в молекулах тРНК также образуется немалое количество неканонических связей, в частности, между G и U, которые будет несколько слабее и энергетически менее выгодная ).

Рис. 1. Обобщённая вторичная структура тРНК (слева) и общепринятая нумерация нуклеотидов в тРНК (справа). Так она выглядит почти у всех живых организмов. На правом рисунке консервативные нуклеотиды выделены жирными кружочками.

Обозначения: N - любой нуклеотид, Т - тимин, D - дигидроуридин, Ψ - псевдоуридин, R - пуриновый нуклеотид.

В результате образуется так называемая структура клеверного листа. В структуре клеверного листа выделяют: акцепторный стебель и три ветви, или домена (arms ): антикокодоновую (состоит из антикодонового двуцепочечного стебля (stem ) и антикодоновой петли (loop ), дигидроуридиновую, или D -ветвь, или D -домен, (также из дигидроуридиновой петли и стебля) и TΨC -ветви, или просто Т-ветви, или Т-домена, (Т-петли и Т-стебля). В дополнение к трём петлям клеверного листа выделяется также так называемая дополнительная, или вариабельная, петля. Длина вариабельной петли варьирует от4 до 24 нуклеотидов.

Почему вторичная структура тРНК имеет Фому клеверного листа? Ответ на этот вопрос дал М.Эйген [Эйген М, Винклер Р. 1979] . Дело в том, что при длине РНКовой цепи 80 нуклеотидов со случайной последовательностью вторичная структура с 3-4 лепестками является наиболее вероятной. Хотя шпилька, имеющая только одну петлю имеет максимальное число спаренныхоснований, эта стуктура в случайных последовательностях является маловероятной. Именно поэтому разумно считать, что тРНК -подобные структуры (то есть структуры с 3-4 петлями) были наиболее распространёнными молекулами на стадии РНКовой и РНК-белковой жизни. Дополнительные доводы в пользу этого утверждения будут приведены в следующих статьях.

Третичная стуктура тРНК .

Третичная структура тРНК соответстует реальной пространственной структуре. Она получила название L -формы, из-за сходства третичной структуры с формой латинской заглавной буквы « L ». Третичная структура образуется благодаря взаимодействию элементов вторичной структуры. Веё формировании принимают участие стэкинг-взаимодействия оснований. За счёт стэкинга оснований акцепторный и Т-стебель клеверного листа образуют одну непрерывную двойную спираль, формирующую одну из «палочек» L -формы. Антикодоновый и D -стебли образуют другую «палочку» этой буквы, D - и T -петли оказываются в такой структуре сближенными и скрепляются между собой путём образования дополнительных, часто необычных пар оснований, которые, как правило, образованы консервативными или полуконсервативными остатками. В свете такого участия консервативных и полуконсервативных оснований в образовании L -формы становится ясным их присутствие в T - и D -петлях. Формирование L-образной структуры и её взаимодействие с АРСаз ой схематически приведено на рис. 2.


Рис. 2. Схема образования пространственной L -образной стуктуры тРНК и взаимодействия её с АРСаз ой.

Стрелкой обозначено место присоединения аминокислоты при аминоацилировании тРНК синтетазой. Красным цветом выделен акцепторный домен тРНК , синим - антикодоновый домен. Овалами обозначены домены АРСаз ы: зелёный - каталитический домен, содержащий домен связывания и аминоацилирования акцепторной области тРНК , жёлтым и оранжевым - вариабельныйдомен АРСаз ы. В зависимости от размера этого домена, АРСаз а распознаёт вариабельным доменом антикодоновую область (домен обозначен жёлтым цветом), или не распознаёт (домен обозначен оранжевым цветом).

Основания антикодона обращены внутрь L -образной молекулы.

Транспортные РНК во всех живых организмах последовательно выполняют три фукнции, необходимые для осуществления синтеза белка:

1) акцепторную - с помощью белковых ферментов (аминоацил-тРНК -синтатаз) ковалентно присоединяет к аминоацильному остатку строго определённую аминокислоту (для каждой аминокислоты - строго своя одна или иногда несколько разных тРНК ); 2) транспортную - транспортирует аминокислоту к специфическому месту на рибосоме; 3) адапторную - в комплексе с рибосомой способен специфически узнавать триплет генетического кода на матричной РНК, после чего присоединённая к тРНК аминокислота включается в растущую полипептидную цепь на рибосоме.

Статьи, связанные с темой:

Строение транспортных РНК и их функция на первом (предрибосомном) этапе биосинтеза белков

В цитоплазме клеток содержатся три основных функциональных вида РНК:

  • матричные РНК (мРНК), выполняющие функции матриц белкового синтеза;
  • рибосомные РНК (рРНК), выполняющие роль структурных компо­нентов рибосом;
  • транспортные РНК (тРНК), участвующие в трансляции (переводе) информации мРНК в последовательность аминокислот молекулы белка.

В ядре клеток обнаруживают ядерную РНК, составляющую от 4 до 10% от суммарной клеточной РНК. Основная масса ядерной РНК представлена высо­комолекулярными предшественниками рибосомных и транспортных РНК. Предшественники высокомолекулярных рРНК (28 S, 18 S и 5 S РНК) в основ­ном локализуются в ядрышке.

РНК является основным генетическим материалом у некоторых вирусов животных и растений (геномные РНК). Для большинства РНК вирусов харак­терна обратная транскрипция их РНК генома, направляемая обратной транскриптазой.

Все рибонуклеиновые кислоты представляют собой полимеры рибонуклеотидов, соединенных, как в молекуле ДНК, 3",5"-фосфорнодиэфирными свя­зями. В отличие от ДНК, имеющей двухцепочечную структуру, РНК представ­ляет собой одноцепочечные линейные полимерные молекулы.

Строение мРНК. мРНК - наиболее гетерогенный в отно­шении размеров и стабильности класс РНК. Содержание мРНК в клетках со­ставляет 2-6% от общего количества РНК. мРНК состоят из участков - цистронов, определяющих последовательность аминокислот в кодируемых ими белках.

Строение тРНК . Транспортные РНК выполняют функ­ции посредников (адаптеров) в ходе трансляции мРНК. На их долю приходится примерно 15% суммарной кле­точной РНК. Каждой из 20 протеиногенных аминокислот соответствует своя тРНК. Для некоторых аминокис­лот, кодируемых двумя и более кодонами, существуют несколько тРНК. тРНК представляют собой сравнительно небольшие одноцепочечные мо­лекулы, состоящие из 70-93 нуклеотидов. Их молекулярная масса составляет (2,4-3,1) .104 кДа.

Вторичная структура тРНК формируется за счет образования максималь­ного числа водородных связей между внутримолекулярными комплементар­ными парами азотистых оснований. В результате образования этих связей полинуклеотидная цепь тРНК закручивается с образованием спирализованных ветвей, заканчивающихся петлями из неспаренных нуклеотидов. Пространст­венное изображение вторичных структур всех тРНК имеет форму клеверного листа.

В «клеверном листе» различают четыре обязательные ветви , более длин­ные тРНК, кроме того, содержат короткую пятую (дополнительную) ветвь . Адапторную функцию тРНК обеспечивают акцепторная ветвь, к 3"-концу которой присоединяется эфирной связью аминокислотный остаток, и про­тивостоящая акцепторной ветви антикодоновая ветвь, на вершине которой находится петля, содержащая антикодон. Антикодон представляет собой спе­цифический триплет нуклеотидов, который комплементарен в антипарал­лельном направлении кодону мРНК, кодирующему соответствующую амино­кислоту.

Т-Ветвь, несущая петлю псевдоуридина (ТyС-петлю), обеспечивает взаи­модействие тРНК с рибосомами.

Д-ветвь, несущая дегидроуридиновую пет­лю, обеспечивает взаимодействие тРНК с соответствующей аминоацил-тРНК-синтетазой.

Вторичная структура тРНК

Функции пятой дополнительной ветви пока мало исследованы, вероятнее всего она уравнивает длину разных молекул тРНК.

Третичная структура тРНК очень компактна и образуется путем сбли­жения отдельных ветвей клеверного листа за счет дополнительных водород­ных связей с образованием L-образной структуры «локтевого сгиба» . При этом акцепторное плечо, связывающее ами­нокислоту, оказывается расположенным на одном конце молекулы, а анти­кодон - на другом.

Третичная структура тРНК (по А.С. Спирину)

Строение рРНК и рибосом . Рибосомные РНК формируют основу, с которой связываются специфические белки при образовании рибо­сом. Рибосомы - это нуклеопротеиновые органеллы, обеспечивающие синтез белка на мРНК. Число рибосом в клет­ке очень велико: от 104 у прокариот до 106 у эукариот. Локализуются рибосомы главным об­разом в цитоплазме, у эукариот, кроме того, в ядрышке, в матриксе митохондрий и строме хлоропластов. Рибосомы состоят из двух субчас­тиц: большой и малой. По размерам и молеку­лярной массе все изученные рибосо­мы делят на 3 группы - 70S рибосомы прокариот (S-коэффициент седиментации), состоящие из малой 30S и большой 50S субчас­тиц; 80S рибосомы эукариот, состоящие из 40S малой и 60S большой субчастиц.

Малая субчастица 80S рибосом образована одной молекулой рРНК (18S) и 33 молекулами различных белков. Большая субчастица обра­зована тремя молекулами рРНК (5S, 5,8S и 28S) и примерно 50 белками.

Вторичная структура рРНК образуется за счет коротких двуспиральных участков молекулы - шпилек (около 2/3 рРНК), 1/3 - представлена однотяжевыми участками , богаты­ми пуриновыми нуклеотидами.