• 5.Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. Смысл выходной статистической информации сервиса Регрессия. (10) стр 41
  • 6.Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам. (30) стр.24-25,
  • 7. Классическая парная регресионная модель. Спецификация модели. Теорема Гаусса-Маркова.
  • 8. Метод наименьших квадратов: алгоритм метода, условия применения.
  • 9.Идентификация отдельных уравнений системы одновременных уравнений: порядковое условие. (30)
  • Необходимое условие идентифицируемости
  • 10.Оценка параметров парной регрессионной модели методом наименьших квадратов. (10)
  • 11.Фиктивные переменные: определение, назначение, типы.
  • 12.Автокорреляция случайного возмущения. Причины. Последствия.
  • 13.Алгоритм проверки значимости регрессора в парной регрессионной модели.
  • 14.Интервальная оценка ожидаемого значения зависимой переменной в парной регрессионной модели.
  • 15. Тест Чоу на наличие структурных изменений в регрессионной модели. (20) стр. 59,60
  • 16. Алгоритм проверки адекватности парной регрессионной модели. (20) стр. 37, 79
  • 17. Коэффициент детерминации в парной регрессионной модели.
  • 18. Оценка параметров множественной регрессионной модели методом наименьших квадратов.
  • 20. Гетероскедастичность случайного возмущения. Причины. Последствия. Тест gq(20)
  • 21.Фиктивная переменная наклона: назначение; спецификация регрессионной модели с фиктивной переменной наклона; значение параметра при фиктивной переменной. (20) стр.65
  • 22..Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (20) стр 33
  • 23. Структурная и приведённая формы спецификации эконометрических моделей.
  • 24. Гетероскедастичность случайного возмущения. Причины. Последствия. Алгоритм теста Голдфельда-Квандта на наличие или отсутствие гетероскедастичности случайных возмущений.
  • Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений.
  • 25. Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам.
  • 26. Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов
  • 27.Проблема мультиколлинеарности в моделях множественной регрессии.Признаки мультиколлениарности.
  • 28.Что такое логит,тобит,пробит.
  • 29. Что такое Метод наибольшего правдоподобия стр. 62.
  • 30. Что такое стационарный процесс?
  • 31.Свойства временных рядов.
  • 32.Модели ar и var .
  • 33. Идентифицируемость системы.
  • 34. Настройка модели с системой одновременных уравнений.
  • 35.Что такое метод Монте-Карло стр 53
  • 36.Оценить качество модели по f, gq, dw (линейнные).Стр.33, 28-29
  • 37. Оценка погрешностей параметров эконометрической модели методом Монте-Карло.
  • 38. Отражение в модели влияния неучтённых факторов. Предпосылки теоремы Гаусса-Маркова.
  • 39.Модели временных рядов. Свойства рядов цен акций на бирже (20) с.93.
  • 40. Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение. (20) с.12-21
  • 41. Оценка параметров парной регрессионной модели методом наименьших квадратов с использованием сервиса Поиск решения.
  • 42. Проверка статистических гипотез, t-статистика Стьюдента, доверительная вероятность и доверительный интервал, критические значения статистики Стьюдента. Что такое “толстые хвосты”?
  • 43.Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
  • 44. Частные коэффициенты детерминации.
  • 46. Экономический смысл коэффициентов линейного и степенного уравнений регрессии.
  • 47.Оценка коэффициентов модели Самуэльсона-Хикса
  • 48. Ошибки от включения в модель незначимых переменных или исключения значимых.С.80
  • 49. Исследование множественной регрессионной модели с.74-79.
  • 50. Мультиколлинеарность: чем плоха, как обнаружить и как бороться.
  • 51. Признаки стационарности стохастического процесса. Что такое «Белый шум»? с.100
  • 52. Структурная и приведённая формы спецификации эконометрических моделей.
  • 53. Алгоритм проверки значимости регрессора в парной регрессионной модели. По t-статистике, по f-статистике.
  • 54.Свойства рядов цен на фондовом рынке. Принципы построения портфеля Марковица с.93,102
  • 55.Динамическая модель из одновременных линейных уравнений (привести пример) с.105.
  • 56. Метод наибольшего правдоподобия: принципы и целесообразность использования
  • 57. Этапы исследования модели множественной регрессии с.74-79.
  • 30. Что такое стационарный процесс?

    Стационарность - свойство процесса не менять свои характеристики со временем. Имеет смысл в нескольких разделах науки. Стационарность случайного процесса означает неизменность во времени его вероятностных закономерностей

    Временной ряд – это конечная реализация стохастического процесса: генерации набора случайных переменных Y(t).

    Стохастический процесс может быть стационарным и нестационарным. Процесс является стационарным, если

    1. Математическое ожидание значений переменных не меняется.

    2. Математическое ожидание дисперсий переменных не меняется.

    3. Нет периодических флуктуаций.

    Распознавание стационарности:

    1. График: систематический рост или убывание, волны и зоны высокой волатильности (дисперсии) в длинном ряде сразу видны.

    2. Автокорреляция (убывает при росте лага)

    3. Тесты тренда: проверка гипотезы о равенстве нулю коэффициента при t.

    4. Специальные тесты, включённые в пакеты компьютерных программ Stata,

    31.Свойства временных рядов.

    Эконометрическую модель можно построить, используя три типа исходных данных:

    Данные, характеризующие совокупность различных объек­тов в определенный момент (период) времени: cross sectional data , “пространственные”;

    Данные, характеризующие один объект за ряд последова­тельных моментов

    (периодов) времени: временные ряды, time series ;

      данные, характеризующие совокупность различных объек­тов за ряд последова­тельных моментов времени: panel data , “панельные”.

    Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов (периодов) времени. Он формируется под воздействием большого числа факторов, которые можно условно подразделить на три группы:

      факторы, формирующие тенденцию (тренд ) ряда;

      факторы, формирующие циклические колебания ряда, например сезонный, недельный; для рядов цен на фондовом рынке характерны непериодические колебания;

      случайные факторы.

    Модели, которые построены по данным, характеризующим один объект за ряд последовательных периодов, называются моделями временных рядов.

    Каждый уровень временного ряда может формироваться их трендовой (Т), циклической или сезонной компоненты (S), а также случайной (E) компоненты.

    Модели, где временной ряд представлен в виде суммы перечисленных компонентов называются аддитивными, если в виде произведения – мультипликативными моделями.

    Аддитивная модель имеет вид : Y=T+S+E

    Мультипликативная модель имеет вид : Y=T*S*E

    Построение модели временного ряда :

      производят выравнивание временного ряда (например методом скользящей средней); 2. Рассчитывают значения сезонной компоненты; 3. Устраняют сезонную компоненту и получают выровненный ряд; 4. Проводят аналитическое выравнивание уровней (T и E) и расчет значений Е с использованием полученного уравнения тренда; 5. Расчитывают значения Т и Е; 6. Расчитывают абсолютные и относительные ошибки.

    Построение аналитической функции при моделировании тренда в любой задаче по эконометрике на временные ряды называют аналитическим выравниванием временного ряда и в основном применяются функции: линейная, степенная, гиперболическая, параболическая и т.д.

    Параметры тренда определяются как и в случае линейной регрессии методом МНК, где в качестве независимой переменной выступает время, а в качестве зависимой переменной – уровни временного ряда. Критерием отбора наилучшей формы тренда служит наибольшее значение коэффициента детерминации, критерии Фишера и Стьюдента.

    Автокорреляция в остатках – корреляционная зависимость между значениями остатков за текущий и предыдущие моменты времени. Для определения автокорреляции остатков используется критерий Дарбина-Уотсона:

    Временной ряд – это датированная целочисленными моментами времени t экономическая переменная. Эта переменная служит количественной характеристикой некоторого экономического объекта, поэтому изменение этой переменной во времени определяется факторами, оказывающими воздействие на данный объект с ходом времени.

    Все факторы делятся на 3 класса. 1 класс: факторы («вековые» воздействия), результирующее влияние которых на данный объект на протяжении длительного отрезка времени не изменяют своего направления. Они порождают монотонную составляющую (тенденцию или тренд). 2 класс: факторы (циклические воздействия), результирующее влияние которых на объект совершает законченный круг в течение некоторого фиксированного промежутка времени T. 3 класс: факторы (случайные воздействия),результирующее влияние которых на объект с высокой скоростью меняет направление и интенсивность. 3 Класс факторов позволяют интерпретировать величину в каждый период времени как случайную переменную

    Определение [ | ]

    X t (⋅) : Ω → R , t ∈ T {\displaystyle X_{t}(\cdot)\colon \Omega \to \mathbb {R} ,\quad t\in T} ,

    где T {\displaystyle T} произвольное множество , называется случайной функцией .

    Терминология [ | ]

    Данная классификация нестрогая. В частности, термин «случайный процесс» часто используется как безусловный синоним термина «случайная функция».

    Классификация [ | ]

    • Случайный процесс X (t) {\displaystyle X(t)} называется процессом дискретным во времени , если система, в которой он протекает, меняет свои состояния только в моменты времени t 1 , t 2 , … {\displaystyle \;t_{1},t_{2},\ldots } , число которых конечно или счётно. Случайный процесс называется процессом с непрерывным временем , если переход из состояния в состояние может происходить в любой момент времени.
    • Случайный процесс называется процессом с непрерывными состояниями , если значением случайного процесса является непрерывная случайная величина. Случайный процесс называется случайным процессом с дискретными состояниями , если значением случайного процесса является дискретная случайная величина:
    • Случайный процесс называется стационарным , если все многомерные законы распределения зависят только от взаимного расположения моментов времени t 1 , t 2 , … , t n {\displaystyle \;t_{1},t_{2},\ldots ,t_{n}} , но не от самих значений этих величин. Другими словами, случайный процесс называется стационарным , если его вероятностные закономерности неизменны во времени. В противном случае, он называется нестационарным .
    • Случайная функция называется стационарной в широком смысле , если её математическое ожидание и дисперсия постоянны, а АКФ зависит только от разности моментов времени, для которых взяты ординаты случайной функции. Понятие ввёл А. Я. Хинчин .
    • Случайный процесс называется процессом со стационарными приращениями определённого порядка, если вероятностные закономерности такого приращения неизменны во времени. Такие процессы были рассмотрены Ягломом .
    • Если ординаты случайной функции подчиняются нормальному закону распределения , то и сама функция называется нормальной .
    • Случайные функции, закон распределения ординат которых в будущий момент времени полностью определяется значением ординаты процесса в настоящий момент времени и не зависит от значений ординат процесса в предыдущие моменты времени, называются марковскими .
    • Случайный процесс называется процессом с независимыми приращениями , если для любого набора t 1 , t 2 , … , t n {\displaystyle t_{1},t_{2},\ldots ,t_{n}} , где n > 2 {\displaystyle n>2} , а t 1 < t 2 < … < t n {\displaystyle t_{1}, случайные величины (X t 2 − X t 1) {\displaystyle (X_{t_{2}}-X_{t_{1}})} , (X t 3 − X t 2) {\displaystyle (X_{t_{3}}-X_{t_{2}})} , … {\displaystyle \ldots } , (X t n − X t n − 1) {\displaystyle (X_{t_{n}}-X_{t_{n-1}})} независимы в совокупности.
    • Если при определении моментных функций стационарного случайного процесса операцию усреднения по статистическому ансамблю можно заменить усреднением по времени, то такой стационарный случайный процесс называется эргодическим .
    • Среди случайных процессов выделяют импульсные случайные процессы .

    Траектория случайного процесса [ | ]

    Пусть дан случайный процесс { X t } t ∈ T {\displaystyle \{X_{t}\}_{t\in T}} . Тогда для каждого фиксированного t ∈ T {\displaystyle t\in T} X t {\displaystyle X_{t}} - случайная величина, называемая сечением . Если фиксирован элементарный исход ω ∈ Ω {\displaystyle \omega \in \Omega } , то X t: T → R {\displaystyle X_{t}\colon T\to \mathbb {R} } - детерминированная функция параметра t {\displaystyle t} . Такая функция называется траекто́рией или реализа́цией случайной функции { X t } {\displaystyle \{X_{t}\}} .

    Стационарным случайным процессом называется такой процесс, вероятностные характеристики которого не зависят от времени. Все плотности вероятностей не меняются при любом сдвиге рассматриваемого участка процесса во времени, т. е. при сохранении постоянной разности.

    Можно сказать, что стационарный случайный процесс в какой-то мере аналогичен обычным стационарным или установившимся процессам в автоматических системах. Например, при рассмотрении обычных установившихся периодических колебаний ничего не изменится, если перенести начало отсчета на какую-нибудь величину. При этом сохранят свои значения такие характеристики, как частота, амплитуда, среднеквадратичное значение и т. п.

    В стационарном случайном процессе закон распределения один и тот же для каждого момента времени, т. е. плотность вероятности не зависит от времени:

    Отсюда получаем вдоль всего случайного процесса. Следовательно, в стационарном случайном процессе средняя линия, в отличие от общего случая (см. рис. 11.12), будет прямая (рис. 11.13), подобно постоянному смещению средней линии обычных периодических

    колебаний. Рассеяние значений переменной х в стационарном случайном процессе, определяемое также будет все время одинаковым, подобно постоянному значению среднеквадратичного отклонения обычных установившихся колебаний от средней линии.

    Аналогичным образом и двумерная плотность вероятности также будет «дна и та же для одного и того же промежутка времени - между любыми (рис. 11.13), т. е.

    и также для -мерной плотности вероятности.

    Задание всех этих функций распределения плотности определяет случайный процесс. Однако более удобно иметь дело с некоторыми осредненными и характеристиками процесса.

    Прежде чем перейти к ним, отметим два важных для практики свойства.

    1. Ограничиваясь только стационарными случайными процессами, можно будет определить только установившиеся (стационарные) динамические ошибки автоматических систем при случайных воздействиях. Такой прием применялся и ранее при рассмотрении регулярных воздействий, когда определялись динамические свойства систем регулирования по величине динамических ошибок в установившемся периодическом режиме.

    2. Стационарные случайные процессы обладают замечательным свойством, которое известно под названием эргодической гипотезы.

    Для стационарного случайного процесса с вероятностью, равной единице (т. е. практически достоверно), всякое среднее по множеству равно соответствующему среднему по времени, в частности

    В самом деле, поскольку вероятностные характеристики стационарного случайного процесса с течением времени не меняются (например, то длительное наблюдение случайного процесса на одном объекте (среднее но времени) дает в среднем такую же картину, как и большое число наблюдений, сделанное в один и тот же момент времени на большом числе одинаковых объектов (среднее по множеству).

    Для многих случаев существует математическое доказательство этого свойства. Тогда оно сводится к эргодической теореме.

    Итак, среднее значение (математическое ожидание) для стационарного процесса будет

    Аналогичным образом могут быть записаны моменты более высоких порядков - дисперсия, среднеквадратичное отклонение и т. п.

    Эргодическая гипотеза позволяет сильно упрощать все расчеты и эксперименты. Она позволяет для определения вместо параллельного испытания многих однотипных систем в один и тот же момент времени, пользоваться одной кривой полученной при испытании одной системы в течение длительного времени.

    Таким образом, важное свойство стационарного случайного процесса состоит в том, что отдельная его реализация на бесконечном промежутке времени полностью определяет собой весь случайный процесс со всеми бесчисленными возможными его реализациями. Этим свойством не обладает никакой другой тип случайного процесса.

    Определение [ | ]

    X t (⋅) : Ω → R , t ∈ T {\displaystyle X_{t}(\cdot)\colon \Omega \to \mathbb {R} ,\quad t\in T} ,

    где T {\displaystyle T} произвольное множество , называется случайной функцией .

    Терминология [ | ]

    Данная классификация нестрогая. В частности, термин «случайный процесс» часто используется как безусловный синоним термина «случайная функция».

    Классификация [ | ]

    • Случайный процесс X (t) {\displaystyle X(t)} называется процессом дискретным во времени , если система, в которой он протекает, меняет свои состояния только в моменты времени t 1 , t 2 , … {\displaystyle \;t_{1},t_{2},\ldots } , число которых конечно или счётно. Случайный процесс называется процессом с непрерывным временем , если переход из состояния в состояние может происходить в любой момент времени.
    • Случайный процесс называется процессом с непрерывными состояниями , если значением случайного процесса является непрерывная случайная величина. Случайный процесс называется случайным процессом с дискретными состояниями , если значением случайного процесса является дискретная случайная величина:
    • Случайный процесс называется стационарным , если все многомерные законы распределения зависят только от взаимного расположения моментов времени t 1 , t 2 , … , t n {\displaystyle \;t_{1},t_{2},\ldots ,t_{n}} , но не от самих значений этих величин. Другими словами, случайный процесс называется стационарным , если его вероятностные закономерности неизменны во времени. В противном случае, он называется нестационарным .
    • Случайная функция называется стационарной в широком смысле , если её математическое ожидание и дисперсия постоянны, а АКФ зависит только от разности моментов времени, для которых взяты ординаты случайной функции. Понятие ввёл А. Я. Хинчин .
    • Случайный процесс называется процессом со стационарными приращениями определённого порядка, если вероятностные закономерности такого приращения неизменны во времени. Такие процессы были рассмотрены Ягломом .
    • Если ординаты случайной функции подчиняются нормальному закону распределения , то и сама функция называется нормальной .
    • Случайные функции, закон распределения ординат которых в будущий момент времени полностью определяется значением ординаты процесса в настоящий момент времени и не зависит от значений ординат процесса в предыдущие моменты времени, называются марковскими .
    • Случайный процесс называется процессом с независимыми приращениями , если для любого набора t 1 , t 2 , … , t n {\displaystyle t_{1},t_{2},\ldots ,t_{n}} , где n > 2 {\displaystyle n>2} , а t 1 < t 2 < … < t n {\displaystyle t_{1}, случайные величины (X t 2 − X t 1) {\displaystyle (X_{t_{2}}-X_{t_{1}})} , (X t 3 − X t 2) {\displaystyle (X_{t_{3}}-X_{t_{2}})} , … {\displaystyle \ldots } , (X t n − X t n − 1) {\displaystyle (X_{t_{n}}-X_{t_{n-1}})} независимы в совокупности.
    • Если при определении моментных функций стационарного случайного процесса операцию усреднения по статистическому ансамблю можно заменить усреднением по времени, то такой стационарный случайный процесс называется эргодическим .
    • Среди случайных процессов выделяют импульсные случайные процессы .

    Траектория случайного процесса [ | ]

    Пусть дан случайный процесс { X t } t ∈ T {\displaystyle \{X_{t}\}_{t\in T}} . Тогда для каждого фиксированного t ∈ T {\displaystyle t\in T} X t {\displaystyle X_{t}} - случайная величина, называемая сечением . Если фиксирован элементарный исход ω ∈ Ω {\displaystyle \omega \in \Omega } , то X t: T → R {\displaystyle X_{t}\colon T\to \mathbb {R} } - детерминированная функция параметра t {\displaystyle t} . Такая функция называется траекто́рией или реализа́цией случайной функции { X t } {\displaystyle \{X_{t}\}} | ]

    Важным классом случайных процессов являются стационарные случайные процессы, то есть, случайные процессы, не изменяющие свои характеристики с течением времени. Они имеют вид непрерывных случайных колебаний вокруг некоторого среднего значения. Таковыми являются: давление газа в газопроводе, колебания самолёта при «автополёте», колебания напряжения в электрической сети и т.д.

    Случайный процессназывается стационарным в широком смысле ,если его математическое ожидание
    есть постоянное число, а корреляционная функция
    зависит только от разности аргументов, т.е.

    Из этого определения следует, что корреляционная функция стационарного процесса есть функция одного аргумента: Это обстоятельство часто упрощает операции над стационарными случайными процессами.

    Случайный процесс называют стационарным в узком смысле , если его характеристики зависят не от значений аргументов, а лишь от их взаимного расположения. То есть, для функции распределения сечений процесса должно выполняться равенство:

    при любых

    Отметим, что из стационарности СП в узком смысле следует стационарность его в широком смысле, обратное утверждение неверно.

    В дальнейшем мы будем рассматривать только стационарные случайные процессы в широком смысле. Далее приведем основные свойства корреляционной функции случайного стационарного процесса (с.с.п.).

    1. Дисперсия с.с.п. постоянна и равна значению корреляционной функции в нуле, т.е.

    То есть в начале координат.

    2. Корреляционная функция с.с.п. является чётной функцией, т.е.

    3. Абсолютное значение корреляционной функции с.с.п. не превосходит её значение при
    , т.е.

    Нормированная корреляционна функция с.с.п. является неслучайная функция аргумента , т.е.

    при этом в соответствии свойство 3 имеет место неравенство

    Пример 6 . Задана случайная функция,

    равномерно распределённая случайная величина, в интервале

    Доказать, что

    Решение. Найдём математическое ожидание

    На основании определения м.о. получим (с учётом равномерной распределённости с.в. , по условию контроля
    )

    и

    Следовательно,

    Найдём корреляционную функцию. Учитывая, что центрированная и случайная функция равны (т.к.
    ), т.е., то согласно определению корреляционной функции (см.пункт 16.5) имеем

    ,

    поскольку ).

    Задание. Покажите, что в условиях нашего примера имеет место

    Итак, математическое ожидание с.в.
    есть постоянное число при всех значениях аргумента, и её корреляционная функция зависит только от разности аргументов. Следовательно,
    случайная стационарная функция.

    Отметим что, положив
    в корреляционной функции, найдём дисперсию

    Таким образом, дисперсия сохраняет постоянное значение при всех значениях аргумента, как и должно, быть при случайной стационарной функции.

    Большинство случайных стационарных процессов обладают важным для практики, так называемым, « эргодическим свойством» , сущность которого состоит в том, что по одной, достаточно длинной отдельной реализации данного процесса можно судить обо всех свойствах процесса также как по любому количеству реализаций.

    Другими словами, отдельные характеристики с.с.п.
    могут быть определены как соответствующие средние по времени для одной реализации достаточно большой продолжительности.

    Связь между классами стационарных и случайных эргодических процессов можно охарактеризовать, например, как на рисунке 61.

    Рис. 61 (Письм.).

    Достаточным условием эргодического с.п.
    относительно математического ожидания и корреляционной функции является стремление к нулю его корреляционной функции при
    .

    В качестве оценок характеристик эргодических с.с.п. принимают усреднённое по времени значение:

    Интегралы, в правых частях равенств, на практике вычисляют приближённо.

    Случайные процессы
    и
    называютсястационарно связанными , если их взаимно корреляционная функция
    зависит только от разности
    . В качестве примера стационарного процесса можно взять с.п.– гармоническое колебание. Можно показать, что
    а