1. Средние величины: сущность, значение, виды

Важный вклад в обоснование и развитие теории средних величин внес крупный ученый XIX века Адольф Кетле (1796-1874), член Бельгийской академии наук, член-корреспондент Петербургской академии наук.

Средняя величина - обобщающая характеристика изучаемого признака в исследуемой совокупности. Она определяет его типичный уровень в расчёте на единицу совокупности в конкретных условиях места и времени.

Средняя величина всегда именованная, имеет ту же размерность (единицу измерения), что и признак у отдельных единиц совокупности.

Основным условием научного использования средней величины является качественная однородность совокупности, по которой исчислена средняя.

    степенные (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая, средняя кубическая);

    структурные (мода, медиана).

Степенная средняя – корень степени k из средней всех вариантов, взятых в k –й степени, имеет следующий вид:

где – признак, по которому находится средняя, называется осредняемым признаком,

х i или (х 1 , х 2 …х n ) – величина осредняемого признака у каждой единицы совокупности,

f i – повторяемость индивидуального значения признака.

В зависимости от степени k получаются различные виды степенных средних, формулы расчета которых показаны ниже в таблице 1.

Таблица 1 – Виды степенных средних

Значение k

Наименование средней

Формулы средней

взвешенная

Средняя гармоническая

, w i = x i · f i

Средняя геометрическая

Средняя арифметическая

=

=

Средняя квадратическая

=

=

f i частота повторения индивидуального значения признака (его вес)

Весом может быть и частотость, т.е. отношение частоты повторения индивидуального значения признака к сумме частот:

Выбор вида средней величины:

Средняя арифметическая простая применяется в случае, если индивидуальное значение признака у единиц совокупности на повторяется или встречается одни раз или одинаковое число раз, т.е. когда средняя рассчитывается по несгруппированным данным.

Когда отдельное значение изучаемого признака встречается несколько раз у единиц изучаемой совокупности, тогда частота повторения индивидуальных значений признака (вес) присутствует в расчетных формулах степенных средних. В этом случае они называются формулами взвешенных средних .

Если по условию задачи необходимо, чтобы неизменной оставалась при осреднении суммы величин, обратных, индивидуальным значениям признака, то средняя величина является гармонической средней .

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменным произведение индивидуальных величин, то следует применить среднюю геометрическую . Средняя геометрическая используется для расчета средних темпов роста в анализе рядов динамики.

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходных величин, то средняя будет являться квадратической средней величиной . Средняя квадратическая используется для расчета среднего квадратического отклонения при анализе вариации признака в рядах распределения.

Степенные средние разных видов, исчисленные по одной и той же совокупности, имеют различные количественные и чем больше показатель степени k , тем больше и величина соответствующей средней, если все исходные значения признака равны, то и все средние равны этой постоянной:

Гарм. ≤ геом. ≤ арифм. ≤ кв. ≤ куб.

Это свойство степенных средних возрастать с повышением показателя степени определяющей функции называется мажорантностью средних .

Структурные средние применяют в том случае, когда расчет степенных средних невозможен или нецелесообразен.

К структурным средним относят: моду и медиану .

Мода – это наиболее часто встречающееся значение признака у единиц данной совокупности. При наличии вариантов и частот в ряду распределения величина моды соответствует значению признака у наибольшего числа единиц (наибольшей частоте), т.е. для дискретного вариационного ряда мода находится по определению.

Медиана – значение признака у единицы совокупности в середине ранжированного ряда распределения, когда все индивидуальные значения признака изучаемых единиц расположены в порядке их возрастания или убывания.

В случае нечетного числа наблюдений медиана находится по определению, т.е. вариант (где n – число наблюдений). При четном числе наблюдений медиана определяется по формуле:

Для интервального ряда распределения величина моды и медианы рассчитываются по следующим формулам:
;
,

где: - нижняя граница модального или медианного интервала;

Величина интервала;

и
- частоты, предшествующие и следующие за модальным интервалом;

- частота модального или медианного интервала;

- сумма накопленных частот в интервалах, предшествующих медианному.

Расчет медианы по несгруппированным данным производится следующим образом:

1. Индивидуальные значения признака располагаются в возрастающем порядке. 2. Определяется порядковый номер медианы № Ме = (n +1) / 2

    Показатели вариации, сущность, значение, виды. Законы вариации

Для измерения вариации признака применяются различные абсолютные и относительные показатели.

К абсолютным показателям (мера) вариации относятся: размах колебаний, среднее абсолютное отклонение, дисперсия, среднее квадратическое отклонение.

Размах вариации – это разность между максимальным и минимальным значениями признака:
.

Размах вариации показывает, в каких пределах колеблется размер признака, образующего ряд распределения

Среднее абсолютное отклонение (САО) - средняя из абсолютных значений отклонений отдельных вариант от средней.

(простая),
(взвешенная)

Дисперсия- средняя из квадратов отклонений вариантов значений признака от их средней величины:

(простая),
(взвешенная)

Дисперсия может быть разложена на составные элементы, позволяющих оценить влияние различных факторов, обуславливающих вариацию признака

т.е. дисперсия равна разности между средним квадратом значений признака и квадратом средней.

Свойства дисперсии, позволяющие упростить способ ее вычисления:

    Дисперсия постоянной величины равна 0.

    Если все варианты значений признака уменьшить на одно и то же число раз, то дисперсия не уменьшится.

    Если все варианты значений признака уменьшить в одно и то же число раз (k раз), то дисперсия уменьшится в k 2 раз.

Среднее квадратическое отклонение (СКО) представляет собой корень квадратный из дисперсии, показывает насколько в среднем колеблется величина признака у единиц изучаемой совокупности: =

СКО является мерилом надежности. Чем меньше СКО, тем лучше средняя арифметическая отражает собой всю представляемую совокупность.

Размах вариации, САО, СКО являются величинами именованными, т.е. имеют те же единицы измерения, что и индивидуальные значения признака.

Существуют 4 вида дисперсии: общая, межгрупповая, внутригрупповая, групповая.

Дисперсию, вычисляемую для всей совокупности в целом называют общей дисперсией. Она измеряет колеблемость зависимого признака (результатного), вызванную действием на него всех без исключения факторов.

Общая дисперсия равна сумме средней из внутригрупповой и межгрупповой дисперсии:

Если совокупность разбита на группы, то для каждой группы может быть определена своя дисперсия, характеризующая вариацию внутри группы. Групповая дисперсия – средние квадратические отклонения от групповой средней, т.е. от средней величины признака в данной группе.

где j – порядковый номер x и f в пределах группы.

Групповая дисперсия характеризует вариацию признака в пределах группы за счет всех прочих факторов, кроме положенного в основании группировки.

Измерение вариации по совокупности в целом, исчисляем как среднюю из внутригрупповых дисперсии:

где – групповые дисперсии,

n j – число единиц в группах.

Групповые средние отличаются одна от другой и от общей средней, т.е. варьируют. Их вариацию называют межгрупповой вариацией. Для ее характеристики исчисляют средний квадрат отклонений групповых средних от общей средней:

где j групповые средние, – общая средняя, n j – число единиц в группе.

Межгрупповая дисперсия (дисперсия групповых средних) измеряет вариацию результатного признака за счет факторного признака, положенного в основании группировки.

При сравнении колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях с различной величиной средней арифметической пользуются относительными показателями вариации.

Эти показатели вычисляются как отношение абсолютных показателей вариации к средней арифметической (или медиане)

Коэффициент вариации

Относительное линейное отклонение

Коэффициент осцилляции

Наиболее часто применяемый показатель относительной колеблемости – коэффициент вариации , который показывает среднее отклонение от среднего значения признака в процентах.

Его используют для: сравнительной оценки вариации; характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%, т.е. меньше 33%.

Законы вариации .

Закон вариации индивидуальных значений признака или «правило трех сигм». Бельгийский статистик А.Кетле обнаружил, что вариации некоторых массовых явлений подчиняются закону распределения ошибок, открытому К.Гауссом и П. Лапласом почти одновременно. Кривая, отображающая это распределение, имеет вид колокола (рис.2).

По нормальному закону (термин предложен английским статистиком К.Пирсоном) распределения колеблемость индивидуальных значений признака находится в пределах
(правило трех сигм).

Нормальному закону распределения подчиняются естественные свойства человека (рост, вес, физическая сила), характеристики промышленных изделий (размер, вес, электрическое сопротивление, упругость и т.п.). В сфере быстроизменяющихся общественных явлений действие этого закона проявляется сравнительно редко. Однако, в ряде случаев, использование правила трех сигм практически возможно.

Закон вариации средних величин . Вариация средних величин меньше вариации индивидуальных значений признака. Средние значения признака изменяются в пределах:
, где n – число единиц.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле:

где х 0 – нижняя граница интервала;

h – величина интервала;

fm – частота интервала;

f – число членов ряда;

?m- 1 – сумма накопленных членов ряда, предшествующих данному.

    Понятие вариации и её значение. Основные показатели вариации, их достоинства и значение.

Вариация - колеблемость, изменяемость величины признака у единиц совокупности. Отдельные числовые значения признака, встречающиеся в изу­чаемой совокупности, называют вариантами значений. Недостаточность средней величины для полной характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Наличие вариации обусловлено влиянием большого числа факторов на формирование уровня признака. Эти факторы действуют с неодинаковой силой и в разных направлениях. Для описания меры изменчивости признаков используют показатели вариации. Задачи статистического изучения вариации: 1) изучение характера и степени вариации признаков у отдельных единиц совокупности; 2) определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. В статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых изме­ряется вариация. Исследование вариаций имеет важное значение. Измерение вариаций необходимо при проведении выборочного наблюдения, корреляционном и дисперсионном анализе и т. д. По степени вариации можно судить об однородности совокупности, об устойчивости отдельных значений признаков и типичности средней. На их основе разрабатываются показатели тесноты связи между признаками, показатели оценки точности выборочного наблюдения. Различают вариацию в пространстве и вариацию во времени . Под вариацией в пространстве понимают колеблемость значений признака у единиц совокупности, представляющих отдельные территории. Под вариацией во времени подразумевают изменение значений признака в различные периоды времени. Для изучения вариации в рядах распределения проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. Самыми простыми признаками вариации являются минимум и максимум - самое наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения (fi). Частоты удобно заменять частостями – wi. Частость - относительный показатель частоты, который может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Выражается формулой: Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся размах вариации, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение. К относительным показателям колеблемости относят коэффициент осцилляции, относительное линейное отклонение, коэффициент вариации.

    Виды дисперсий и правило их сложения. Коэффициент детерминации и эмпирическое корреляционное отношение: экономическое значение и их расчёт.

Показатели вариации

Одних только средних недостаточно для оценки тех или иных явлений, так как средние уравнивают, сглаживают индивидуальные особенности отдельных единиц совокупности, показывают типичный для данных условий уровень варьирующих признаков, и тем самым могут затушевывать различные тенденции в развитии. В этом случае исчисляют показатели вариации ,характеризующие средние отклонения каждой единицы совокупности от среднего значения признака в целом .

Вариация имеет объективный характер и помогает познать сущность изучаемого явления.

Для измерения вариации в статистике применяют несколько способов, описательная характеристика которых представлена в табл. 5.6.

Дисперсия имеет ряд математических свойств, упрощающих технику ее расчета.

1. Если из всех вариант отнять какое-то постоянное число А , то дисперсия от этого не изменится.

2. Если все значения вариант разделить на какое-то постоянное число h , то дисперсия уменьшится от этого в h 2 раз, а среднее квадратическое отклонение – в h раз.

Таблица 5.6.

Показатели вариации

Название показателя

Обозначение и методика расчета

Сущностная храктеристика

по несгруппированным данным

по сгруппированным данным

Размах вариации

Улавливает только крайние отклонения значений признака, но не отражает отклонений от средней всех вариант в ряду. Чем больше размах вариации, тем менее однородна исследуемая совокупность

Среднее линейное отклонение

Представляет собой среднее арифметическое значение абсолютных отклонений признака от его среднего уровня. Чем меньше среднее линейное отклонение, тем более однородны значения признака изучаемого явления

Дисперсия

Представляет собой средний квадрат отклонений значений признака от его среднего уровня

Среднее квадратическое отклонение

Является абсолютной мерой вариации и зависит не только от степени вариации признака, но и от абсолютных уровней вариант и средней, что не позволяет непосредственно сравнивать средние квадратические отклонения вариационных рядов с разными уровнями. Оно выражается в тех именованных числах, в которых выражены варианта и средняя

Коэффициент вариации

Является относительной мерой вариации. Чем больше его величина, тем больше разброс значений признака вокруг средней, тем менее однородна совокупность по своему составу и тем менее представительна (типична) средняя

Методика расчета показателя дисперсии упрощенными способами показана на рис. 5.4. Отметим, что способ моментов применим в том случае, если задан интервальный ряд с равными интервалами , а способ разности применяется в любых рядах распределения : дискретных и интервальных с равными и неравными интервалами.

Вариация признака определяется различными факторами, в результате чего различают общую дисперсию, межгрупповую дисперсию и внутригрупповую дисперсию.

Общая дисперсия (σ 2 ) измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Вместе с тем, благодаря методу группировок можно выделить и измерить вариацию, обусловленную группировочным признаком, и вариацию, возникающую под влиянием неучтенных факторов.

Межгрупповая дисперсия (σ 2 м.гр ) характеризует систематическую вариацию, т. е. различия в величине изучаемого признака, возникающие под влиянием признака – фактора, положенного в основание группировки.

Рис.5.4. Упрощенные способы расчета дисперсии

,

где k – количество групп, на которые разбита вся совокупность;

m j – количество объектов, наблюдений, включенных в группу j ;

–среднее значение признака по группе j ;

–общее среднее значение признака.

Внутригрупповая дисперсия (σ 2 j,вн.гр ) отражает случайную вариацию, т.е. часть вариации, возникающую под влиянием неучтенных факторов и независящую от признака фактора, положенного в основание группировки.

, или, на основе метода разностей ,

где x ij – значение i -ой варианты в группе j .

Если в сформированных группах отдельные данные встречаются не один раз, то для расчета внутригрупповой дисперсии используется формула средней арифметической взвешенной.

Среднее значение внутригрупповых дисперсий рассчитывается по формуле:

.

Существует закон согласно которому, общая дисперсия, возникающая под воздействием всех факторов, равна сумме дисперсии, возникающей за счет группировочного признака и дисперсии, появляющейся под влиянием всех прочих факторов. Этот закон связывает три вида дисперсии.

Правило сложения дисперсий : .

Правило сложения дисперсии широко применяется при исчислении тесноты связей между признаками (факторным и результативным). Для этого определяют эмпирический коэффициент детерминации и эмпирическое корреляционное отношение.

Эмпирический коэффициент детерминации (η 2) показывает, какая доля всей вариации признака обусловлена признаком, положенным в основание группировки . (η – греческая буква «эта»).

Эмпирическое корреляционное отношение (η ) показывает тесноту связи между признаками - группировочным и результативным.

Оно изменяется в пределах от 0 до 1. Если η = 0, то группировочный признак не оказывает влияния на результативный, если η =1,то результативный признак изменяется только в зависимости от признака, положенного в основание группировки, а влияние прочих факторов равно нулю. Характеристика связи между признаками при соответствующих значениях эмпирического корреляционного отношения приведена в табл. 5.7.

Таблица 5.7

Качественная оценка связи между признаками

  1. Понятие и классификация рядов динамики. Сопоставимость уровней и смыкание рядов динамики.

Динамика – процесс развития движения соц.эк. явлений во времени. Для её отображения строят ряды динамики. Ряд динамики представл. Собой ряд расположенных в хронологической последовательности знач. Стат. показателей, характер. развитие явления Анализ рядов динамики позволяет выявить тенденции и закономерности соц.эк развития. Ряд динамики состоит из 2-ух элементов: 1)показатели времени (t) – либо определенные даты, либо отдельные периоды (годы, кварталы и тд.) 2)Уровни ряда (y) – они отображают количественную оценку развития во времени изучаемого явления. Виды рядов динамики : 1. По времени отражаемому в динамич. Рядах они делятся на: -моментальные отображают состояние изучаемых явлений на опр даты (моменты времени) С помощью моментных рядов изучают: численность населения, стоимость осн средств, товар запасы. Уровни мом. Рядов динамики суммировать не имеет смысла, т.к. мож. Возникнуть повторный счет – интервальные – отображают итоги развития изучаемого явления за отдельные периоды (интервалы времени) : ряды динамики произ-ва прод-ции, инвестиций, затраченных средств. Уровни интервального ряда динамики абсолют. Величин мож суммировать, т.к. их можно рассматривать как итог за более длительный период времени. 2. В зависимости от способа выражения уровней ряда динамики различают ряды: - абсолютных величин, - относительных, - средних величин. 3. В зависимости от расстояния м/у уровнями различ. ряды динамики с равностоящими и не равностоящими уровнями во времени. Основ условием для получения правильных выводов при анализе ряда динамики явл-ся сопоставимость его уровней. Условия сопоставимости уров. Ряда динамики. 1)Долж. Быть обеспечена одинаковая полнота охвата различных частей явления. Уровни динамического ряда за отдельные периоды времени долж харка-вать размер явления по одному и тому же кругу, входящий в его состав частей. 2)При определении сравниваемых уровней ряда динамики необх. Использовать единую методологию их расчета. 3)Равенство периодов, за к-рые приводятся данные. 4)Необходимо использовать одинаковые единицы измерения. При харак-ки стоимостных показателей во времени долж. б. устранено влияние изменение цен необх. оценка изучаемого показ-ля в ценах одного периода (в сопоставимых ценах) 5)Исходя из цели исследов-ия данные по тер-риям, границы которые изменились долж. б. пересчитаны в старых пределах. Для приведения уровней ряда дин-ки к сопоставимому виду использ. Прием, который наз-ся Смыкание рядов динамики. Смыкание- объединение в один ряд двух или нескольких рядов динам., уровни которых исчислены по разной методике или разными территориальными границами. Чтобы произвести смыкание рядов необх, чтобы для одного из периодов (переходного) имелись данные, рассчитанные по разной методике или в разных границах.

    Показатели интенсивности изменения уровня ряда динамики. Цепной и базисный способы расчёта.

Для качественной оценки динамики, изучаемых явлений применяется ряд стат. показателей получаемых в результате сравнения уровней м/у собой. При этом сравниваемый уров. Наз-ся отчетный, а уров., с которым происх. Сравнение базисным. К основ. показателям динамики относятся абсолют. Прирост, темп роста, темп прироста, абсолют. Значение одного % прироста. В зависимости от применяемого способа сопоставления показатели динамики мог. вычисляться с постоянной и переменной базой сравнения y 1← y 2← y 3← y 4← y 5 Абсолютный прирост характ. размер увеличения или уменьшения уровня ряда динамики за определенный период времени и определ-ся как разность м/у 2-мя уровнями ряда. ∆y ц = y i – y i - 1 ∆ y б = y i – y 0 м/у цепным и базисными абсолютными приростами сущ-ет взаимосвязь: сумма ценных абсол-ых приростов равна базисному абсол-му приросту последнего периода ряда динамики. ∑∆y ц = ∆ y бп Темп роста характеризует интенсивность изменения уравнения ряда и показывает во сколько раз уров. текущего периода больше или меньше уровня предыдущего (базисного) периода или сколько % он составляет по отношению к предыдущему периоду Трц = y i /y i-1 * 100% Трб = y i /y 0 * 100% м/у цепными и базис темпами роста имеется взаимосвязь: произведение последовательных цепных коэффициентов роста равно базисному коэффициенту роста последнего периода ряда динамики. П Крц = Крб Темп прироста показывает на сколько % - ов уров. данного периода больше или меньше уровня принятого за базу сравнения: Он мож б рассчитан 2 способами: а) как отношение абсол.-го прироста к уровню, принятому за базу сравнения Тпрц = ∆ y i / y i-1 * 100% Тпрб = ∆ y i / y 0 * 100% б) как разность м/у темпом роста и 100%-ми Тпр = Тр – 100% Абсолютное значение 1% присрота показывает какая абсло-ая величина содержится в относ-ном показателе – одном % прироста. Это отношение абсло-ого прироста к темпу прироста, выраженному в %-ах. Данный показатель рассчитывается по цепным данным А % =∆ y i / Тпр % = ∆ y i / (∆ y i / y i-1)*100 = y i-1 / 100 Для получения обобщающих показателей динамики соц.эк. явлений определяют средние величины: ср уровень ряда, сред абсол-ый прирост, след темп роста, сред темп прироста. Средний уровень ряда динамики дает общую характ-ку уровня явлен. За весь период. Методы его расчета зависят от вида ряда динамики. а) для моментных рядов для ровно стоящими расчит сред. уров. ряда осущ-ся по форм. средней хронологич-кой. y` = (½ y 1 + y 2 + y 3 + ….½y n)/n-1 n – число уровней ряда. б)для моментных рядов с не равностоящими уров-ми предварительно находятся значения уровней в серединах интервалов y` 1 = y 1 + y 2 /2 ; y 2 = y 2 + y 3 /2,……..,y` n = y n-1 + y n /2 Затем определяется общий сред уров. ряда по формуле средней арифм-ой взвешенной: y` = ∑y` i * t i / ∑t i y` I – сред уровни в интервалах м/у датами, ti – длительность интервала времени м/у уровнями. в) Для интервальных рядов с равностоящими уровн-ми во времени, сред уров расситыв-ся по формуле средней арифм-кой простой y` = ∑ y i /n Средний абсолютгый прирост показывает на сколько в среднем за единицу времени увеличивается (уменьшается) уровень ряда. ∆ y i = ∑ y iц / n-1 или ∆ y i = y n – y 1 /n-1

y1 – начальный уровень ряда динамики yn – конечный уровень ряда динамики. Средний темп роста показывает во сколько раз в среднем за единицу времени изменился уровень ряда динамик. Он опред-ся по форм. средней геометрической из цепных коэф-тов роста. Т`р = n – 1 √К ц р 1 * К ц р 2 *……*К ц р n – 1 = n – 1 √ ПКр ц = n -1 √Крб = n – 1 √ y n /y 1 * x 100%

Средний темп прироста показ-ет на сколько % в среднем за единицу времени увеличился (уменьшился) уровень ряда Т`пр = Т` - 100%.

    Средние показатели ряда динамики, их расчёт.

Каждый ряд динамики можно рассматривать как некую совокупность n меняющихся во времени показателей, которые можно обобщать в виде средних величин. Такие обобщенные (средние) показатели особенно необходимы при сравнении изменений того или иного показателя в разные периоды, в разных странах и т.д.

Обобщенной характеристикой ряда динамики может служить прежде всего средний уровень ряда . Способ расчета среднего уровня зависит от того, моментный ряд или интервальный (периодный).

В случае интервального ряда его средний уровень определяется по формуле простой средней арифметической величины из уровней ряда, т.е.

Если имеетсямоментный ряд, содержащий n уровней (y1, y2, …, yn ) с равными промежутками между датами (моментами времени), то такой ряд легко преобразовать в ряд средних величин. При этом показатель (уровень) на начало каждого периода одновременно является показателем на конец предыдущего периода. Тогда средняя величина показателя для каждого периода (промежутка между датами) может быть рассчитана как полусумма значений у на начало и конец периода, т.е. как . Количество таких средних будет. Как указывалось ранее, для рядов средних величин средний уровень рассчитывается по средней арифметической. Следовательно, можно записать. После преобразования числителя получаем,

где Y1 и Yn - первый и последний уровни ряда; Yi - промежуточные уровни.

Эта средняя известна в статистике каксредняя хронологическая для моментных рядов. Такое название она получила от слова «cronos» (время, лат.), так как рассчитывается из меняющихся во времени показателей.

В случае неравных промежутков между датами среднюю хронологическую для моментного ряда можно рассчитать как среднюю арифметическую из средних значений уровней на каждую пару моментов, взвешенных по величине расстояний (отрезков времени) между датами, т.е. . В данном случае предполагается, что в промежутках между датами уровни принмали разные значения, и мы из двух известных (yi и yi+1 ) определяем средние, из которых затем уже рассчитываем общую среднюю для всего анализируемого периода. Если же предполагается, что каждое значение yi остается неизменным до следующего (i+ 1)- го момента, т.е. известна точная дата изменения уровней, то расчет можно осуществлять по формуле средней арифметической взвешенной: ,

где – время, в течение которого уровеньоставался неизменным.

Кроме среднего уровня в рядах динамики рассчитываются и другие средние показатели – среднее изменение уровней ряда (базисным и цепным способами), средний темп изменения .

Базисное среднее абсолютное изменение представляет собой частное от деления последнего базисного абсолютного изменения на количество изменений. То есть

Цепное среднее абсолютное изменение уровней ряда представляет собой частное от деления суммы всех цепных абсолютных изменений на количество изменений, то есть

По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность.

Из правила контроля базисных и цепных абсолютных изменений следует, что базисное и цепное среднее изменение должны быть равными.

Наряду со средними абсолютным изменением рассчитывается и среднее относительное тоже базисным и цепным способами.

Базисное среднее относительное изменение определяется по формуле

Цепное среднее относительное изменение определяется по формуле

Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность. Вычитанием 1 из базисного или цепного среднего относительного изменения образуется соответствующий среднийтемп изменения , по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики.

    Методы анализа основной тенденции в рядах динамики.

Измените уровней ряда динамики обуславливается на изучаемое явление определяющее влияние и формируют в рядах динамики основную тенденцию развития (тренд) Воздействие факторов действующих периодически вызывает повторяемые во времени колебания уровней ряда динамики. Действие разовых факторов отображается случайными (кратковременных) изменениями уровней ряда дин-ки. Т.т ряд дин-ки вкл след основ. компоненты: 1)основ тенденция (тренд) 2)циклические (периодические колебания) 3)Случайные колебания Основной тенденцией развития (трендом) наз-ся плавное и устойчивое изменения уровня явлений во времени свободное от случ. Колебний. Выявление основ тенденции изменения уровней ряда предполагает её количественное выражение в некоторой мере свободное от случайных воздействий. Для выявления тренда испо-ся различные способы сглаживания (выравнивания ряда) : 1)Метод укрепления интервалов – заключ-ся в том что первоначальный ряд динамики преобразуется в ряд более продолжительных периодов (Напр. ряд, содержащий данные в месячном выпуске продукции преобразуется в ряд квартальных данных) 2)Метод скользящей средней. Состоит в том сто исходные уровни ряда заменяются средними величинами, к-рые получают из данного уровня и нескольких симметрично его окружающих. Число уровней, поск-ым рассчитываются сред. значение наз-ся интервалом сглаживания, он мож. четным и нечетным. Расчет средних ведется способом скольжения, т.е. постепенным исключением их принятого периода скольжения. 1-ого уровня и включением следующего. Нахождение скользящей средней по четному числу уровней осложняется тем, что средняя мож быть отнесена толь. к середине укрупненного интер-ла. Поэт. для определения сглаженных уровней производится центрирование, т.е. нахождение средней из двух смежных скользящих средних для отнесения полученного уровня к определенной дате. 3)Аналитическое выравнивание. Суть метода заключается в подборе матем. Функции, к-рая наилучшим образом характеризует исходные уровни ряда динамики. Эмпирические (фактические) уровни ряда динамики заменяют на плавно изменяющиеся теоретические уровни, рассчитанные по какой-либо функц. Зависимости отклонение исходных уровней ряда от уровней, соответ-щих общей тенденции объясняется действием случайных или периодических факторов. Для выравнивания используют след. матем. Функции: а) линейная y t =a 0 +a 1 t

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака. Для выяснения сущности средней величины необходимо рассмотреть особенности формирования значений признаков тех явлений, по данным которых исчисляют среднюю величину.

Известно, что единицы каждого массового явления обладают многочисленными признаками. Какой бы из этих признаков мы ни взяли, его значения у отдельных единиц будут различными, они изменяются, или, как говорят в статистике , варьируют от одной единицы к другой. Так, например, заработная плата работника определяется его квалификацией, характером труда, стажем работы и целым рядом других факторов, поэтому изменяется в весьма широких пределах. Совокупное влияние всех факторов определяет размер заработка каждого работника, тем не менее можно говорить о среднемесячной заработной плате работников разных отраслей экономики . Здесь мы оперируем типичным, характерным значением варьирующего признака, отнесенным к единице многочисленной совокупности.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень (или размер) любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Они действуют в обратном направлении, обусловливают различия между количественными признаками отдельных единиц совокупности, стремясь изменить постоянную величину изучаемых признаков. Действие индивидуальных признаков погашается в средней величине. В совокупном влиянии типичных и индивидуальных факторов, которое уравновешивается и взаимно погашается в обобщающих характеристиках, проявляется в общем виде известный из математической статистики фундаментальный закон больших чисел.

В совокупности индивидуальные значения признаков сливаются в общую массу и как бы растворяются. Отсюда и средняя величина выступает как «обезличенная», которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.

Однако для того, чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться не для любых совокупностей, а только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений. Следовательно, средняя величина - это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

Определяя, таким образом, сущность средних величин, необходимо подчеркнуть, что правильное исчисление любой средней величины предполагает выполнение следующих требований:

  • качественная однородность совокупности, по которой вычислена средняя величина. Это означает, что исчисление средних величин должно основываться на методе группировок, обеспечивающем выделение однородных, однотипных явлений;
  • исключение влияния на вычисление средней величины случайных, сугубо индивидуальных причин и факторов. Это достигается в том случае, когда вычисление средней основывается на достаточно массовом материале, в котором проявляется действие закона больших чисел, и все случайности взаимно погашаются;
  • при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показа-телъ (свойство), на который она должна быть ориентирована.

Определяющий показатель может выступать в виде суммы значений осредняемого признака, суммы его обратных значений, произведения его значений и т. п. Связь между определяющим показателем и средней величиной выражается в следующем: если все значения осредняемого признака заменить средним значением, то их сумма или произведение в этом случае не изменит определяющего показателя. На основе этой связи определяющего показателя со средней величиной строят исходное количественное отношение для непосредственного расчета средней величины. Способность средних величин сохранять свойства статистических совокупностей называют определяющим свойством.

Средняя величина, рассчитанная в целом по совокупности, называется общей средней; средние величины, рассчитанные для каждой группы, - групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику явления, складывающуюся в конкретных условиях данной группы.

Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины, основными из которых являются средняя арифметическая, средняя гармоническая и средняя геометрическая.

В экономическом анализе использование средних величин является основным инструментом для оценки результатов научно-технического прогресса, социальных мероприятий, поиска резервов развития экономики. В то же время следует помнить о том, что чрезмерное увлечение средними показателями может привести к необъективным выводам при проведении экономико-статистического анализа. Это связано с тем, что средние величины, будучи обобщающими показателями, погашают, игнорируют те различия в количественных признаках отдельных единиц совокупности, которые реально существуют и могут представлять самостоятельный интерес.

Виды средних величин

В статистике используют различные виды средних величин, которые делятся на два больших класса:

  • степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадра-тическая, средняя кубическая);
  • структурные средние (мода, медиана).

Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения, поэтому их называют структурными, позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Самый распространенный вид средней величины - средняя арифметическая. Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. Вычисление данной величины сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй - 7, третий - 4, четвертый - 10, пятый- 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз, для определения средней выработки одного рабочего следует применить формулу простой средней арифметической:

т. е. в нашем примере средняя выработка одного рабочего равна

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек , возраст которых варьируется от 18 до 22 лет, где xi - варианты осредняемого признака, fi - частота, которая показывает, сколько раз встречается i-е значение в совокупности (табл. 5.1).

Таблица 5.1

Средний возраст студентов

Применяя формулу средней арифметической взвешенной, получаем:


Для выбора средней арифметической взвешенной существует определенное правило: если имеется ряд данных по двум показателям, для одного из которых надо вычислить

среднюю величину, и при этом известны численные значения знаменателя ее логической формулы, а значения числителя неизвестны, но могут быть найдены как произведение этих показателей, то средняя величина должна высчитывать-ся по формуле средней арифметической взвешенной.

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысл и единственным обобщающим показателем может служить только другой вид средней величины - средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя неизвестны, но могут быть найдены как частное деление одного показателя на другой, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Например, пусть известно, что автомобиль прошел первые 210 км со скоростью 70 км/ч, а оставшиеся 150 км со скоростью 75 км/ч. Определить среднюю скорость автомобиля на протяжении всего пути в 360 км, используя формулу средней арифметической, нельзя. Так как вариантами являются скорости на отдельных участках xj = 70 км/ч и Х2 = 75 км/ч, а весами (fi) считаются соответствующие отрезки пути, то произведения вариантов на веса не будут иметь ни физического, ни экономического смысла. В данном случае смысл приобретают частные от деления отрезков пути на соответствующие скорости (варианты xi), т. е. затраты времени на прохождение отдельных участков пути (fi/ xi). Если отрезки пути обозначить через fi, то весь путь выразиться как Σfi, а время, затраченное на весь путь, - как Σ fi/ xi , Тогда средняя скорость может быть найдена как частное от деления всего пути на общие затраты времени:

В нашем примере получим:

Если при использовании средней гармонической веса всех вариантов (f) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

где xi - отдельные варианты; n - число вариантов осредняемого признака. В примере со скоростью простую среднюю гармоническую можно было бы применить, если бы были равны отрезки пути, пройденные с разной скоростью.

Любая средняя величина должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялась величина некоторого итогового, обобщающего показателя, который связан с осредняемым показателем. Так, при замене фактических скоростей на отдельных отрезках пути их средней величиной (средней скоростью) не должно измениться общее расстояние.

Форма (формула) средней величины определяется характером (механизмом) взаимосвязи этого итогового показателя с осредняемым, поэтому итоговый показатель, величина которого не должна изменяться при замене вариантов их средней величиной, называется определяющим показателем. Для вывода формулы средней нужно составить и решить уравнение, используя взаимосвязь осредняемого показателя с определяющим. Это уравнение строится путем замены вариантов осредняемого признака (показателя) их средней величиной.

Кроме средней арифметической и средней гармонической в статистике используются и другие виды (формы) средней величины. Все они являются частными случаями степенной средней. Если рассчитывать все виды степенных средних величин для одних и тех же данных, то значения

их окажутся одинаковыми, здесь действует правило мажо-рантности средних. С увеличением показателя степени средних увеличивается и сама средняя величина. Наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в табл. 5.2.

Таблица 5.2


Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая - при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и вычисляется по формуле

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и вычисляется по формуле

средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где - средняя величина; - индивидуальное значение; n - число единиц изучаемой совокупности; k - показатель степени, определяющий вид средней.

При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому кроме рассмотренных средних в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные, или описательные, средние - мода (Мо) и медиана (Ме).

Мода - величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Мода может применяться при определении магазинов, которые чаще посещаются, наиболее распространенной цены на какой-либо товар. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле

где х0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; fm_ 1 - частота предшествующего интервала; fm+ 1 - частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой - больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (п +1) / 2 с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле

где X0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; f - число членов ряда;

∫m-1 - сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на 4 равные части, а децили - на 10 равных частей. Квартилей насчитывается три, а децилей - девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти, не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.

Показатели вариации

Целью статистического исследования является выявление основных свойств и закономерностей изучаемой статистической совокупности. В процессе сводной обработки данных статистического наблюдения строят ряды распределения. Различают два типа рядов распределения - атрибутивные и вариационные, в зависимости от того, является ли признак, взятый за основу группировки, качественным или количественным.

Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности не постоянны, более или менее различаются между собой. Такое различие в величине признака носит название вариации. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Наличие вариации у отдельных единиц совокупности обусловлено влиянием большого числа факторов на формирование уровня признака. Изучение характера и степени вариации признаков у отдельных единиц совокупности является важнейшим вопросом всякого статистического исследования. Для описания меры изменчивости признаков используют показатели вариации.

Другой важной задачей статистического исследования является определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. Для решения такой задачи в статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация. В практике исследователь сталкивается с достаточно большим количеством вариантов значений признака, что не дает представления о распределении единиц по величине признака в совокупности. Для этого проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. Ранжированный ряд сразу дает общее представление о значениях, которые принимает признак в совокупности.

Недостаточность средней величины для исчерпывающей характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Использование этих показателей вариации дает возможность сделать статистический анализ более полным и содержательным и тем самым глубже понять сущность изучаемых общественных явлений.

Самыми простыми признаками вариации являются минимум и максимум - это наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения. Обозначим частоту повторения значения признака fi, сумма частот, равная объему изучаемой совокупности будет:

где k - число вариантов значений признака. Частоты удобно заменять частостями - wi. Частость - относительный показатель частоты - может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Формально имеем:

Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся среднее линейное отклонение, размах вариации, дисперсия, среднее квадратическое отклонение.

Размах вариации (R) представляет собой разность между максимальным и минимальным значениями признака в изучаемой совокупности: R = Xmax - Xmin. Этот показатель дает лишь самое общее представление о колеблемости изучаемого признака, так как показывает разницу только между предельными значениями вариантов. Он совершенно не связан с частотами в вариационном ряду, т. е. с характером распределения, а его зависимость может придавать ему неустойчивый, случайный характер только от крайних значений признака. Размах вариации не дает никакой информации об особенностях исследуемых совокупностей и не позволяет оценить степень типичности полученных средних величин. Область применения этого показателя ограничена достаточно однородными совокупностями, точнее, характеризует вариацию признака показатель, основанный на учете изменчивости всех значений признака.

Для характеристики вариации признака нужно обобщить отклонения всех значений от какой-либо типичной для изучаемой совокупности величины. Такие показатели

вариации, как среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, основаны на рассмотрении отклонений значений признака отдельных единиц совокупности от средней арифметической.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных значений отклонений отдельных вариантов от их средней арифметической:


Абсолютное значение (модуль) отклонения варианта от средней арифметической; f- частота.

Первая формула применяется, если каждый из вариантов встречается в совокупности только один раз, а вторая - в рядах с неравными частотами.

Существует и другой способ усреднения отклонений вариантов от средней арифметической. Этот очень распространенный в статистике способ сводится к расчету квадратов отклонений вариантов от средней величины с их последующим усреднением. При этом мы получаем новый показатель вариации - дисперсию.

Дисперсия (σ 2) - средняя из квадратов отклонений вариантов значений признака от их средней величины:

Вторая формула применяется при наличии у вариантов своих весов (или частот вариационного ряда).

В экономико-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения. Среднее квадратическое отклонение (σ) представляет собой корень квадратный из дисперсии:

Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности, и выражаются в тех же единицах измерения, что и варианты.

В статистической практике часто возникает необходимость сравнения вариации различных признаков. Например, большой интерес представляет сравнение вариаций возраста персонала и его квалификации, стажа работы и размера заработной платы и т. д. Для подобных сопоставлений показатели абсолютной колеблемости признаков - среднее линейное и среднее квадртическое отклонение - не пригодны. Нельзя, в самом деле, сравнивать колеблемость стажа работы, выражаемую в годах, с колеблемостью заработной платы, выражаемой в рублях и копейках.

При сравнении изменчивости различных признаков в совокупности удобно применять относительные показатели вариации. Эти показатели вычисляются как отношение абсолютных показателей к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, получают относительные показатели колеблемости:


Наиболее часто применяемый показатель относительной колеблемости, характеризующий однородность совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33 % для распределений, близких к нормальному.

В прошлом уроке, и поняли, что она знает многое, кто не понял, забыл или прошел мимо, может перейти по ссылке и освежить свои знания)). Но в теории статистики есть еще одно очень интересное изречение. В мире есть три вида лжи – ложь, наглая ложь и… СТАТИСТИКА!!!

Совершенно противоречивое утверждение другое – статистика знает все . Но отчасти в нем есть доля правды. Все дело в данных, которые были собраны для обработки.

Но об этом поговорим позже…

Однако вернемся к статистическим категориям. Категории или основные статистические термины важная часть науки. И дело здесь в том, что эти термины регулярно употребляются в процессе обработки и анализа данных. Именно в этом кроется их такая важность для статистической науки.

Статистическая совокупность – это группа социально-экономических объектов или явлений общественной жизни объединенных общей связью, но отличающихся друг от друга отдельными признаками. Это наиболее часто встречающее определение совокупности. Включает в себя ее особенности, и что очень важно и другие статистические категории. Попытаемся упростить или понять, что же такое совокупность на примере.
Совокупность это некоторое объединение элементов или явлений или людей и т.п. Мало того что в совокупности как правило много частей или элементом (всегда больше одного), так еще все они в чем-то похожи. Так вот эта похожесть и есть признак, по которому объединили эти элементы. Общее у элементов одно, и масса других характеристик отличающихся.



Вот небольшой такой пример. На картинке у нас изображены условно люди. Это совокупность людей – по этому признаку их и объединили в совокупность. Однако все мы разные и у нас масса признаков, которые отличают нас друг от друга – пол, возраст, образование, семейное положение, уровень доходов, место жительства и так далее.
Вообще в совокупность можно объединить разные элементы, лишь бы было что изучать:
— совокупность школьников – общее учатся в школе, а различия пол, возраст, класс, место учебы и многое другое;
— совокупность деревьев в лесу – общее это деревья, различия возраст, разновидность дерева, высота и т.п.;
— совокупность предприятий – общее предприятия, различия, отрасль, число работников, объем выпуска, объем прибыли и др.
И таких примеров можно привести огромное количество.

Задание. Предположим на картинке представлена совокупность студентов. Опишите ее, почему она является совокупностью, какие есть признаки у студентов. Нет ли на картинке лишних элементов, не относящихся к данной совокупности?

И последний очень важный термин вариация!
Вариация – это колебания признака статистической совокупности. В статистике говорят – признак колеблется или ВАРЬИРУЕТСЯ.
Вариация признака это основа статистической науке. Не было бы вариации, не было бы статистики. Именно потому что признаки изменяются и происходит их изучении. Если не было бы изменений и отличий и все было одинаковым, то изучать было бы нечего и статистики не было.

А дальше мы перейдем к . Но прежде домашние задания.

Контрольное задание. Приведите примеры двух трех совокупностей, выделите в них единицы совокупности и охарактеризуйте их признаками. Приведите пример статистических показателей и вариации признака.

Доклад – Органы государственной статистики в РФ – функции, задачи, структура. – Федеральная служба государственной статистики — http://www.gks.ru/

Понятие вариационного ряда. Первым шагом систематизации материалов статистического наблюдения является подсчет числа единиц, обладающих тем или иным признаком. Расположив единицы в порядке возрастания или убывания их количественного признака и подсчитав число единиц с конкретным значением признака, получаем вариационный ряд. Вариационный ряд характеризует распределение единиц определенной статистической совокупности по какому–либо количественному признаку.

Вариационный ряд представляет собой две колонки, в левой колонке приводятся значения варьирующего признака, именуемые вариантами и обозначаемые (x), а в правой – абсолютные числа, показывающие, сколько раз встречается каждый вариант. Показатели этой колонки называются частотами и обозначаются (f).

Схематично вариационный ряд можно представить в виде табл.5.1:

Таблица 5.1

Вид вариационного ряда

Варианты (x)

Частоты (f)

В правой колонке могут использоваться и относительные показатели, характеризующие долю частоты отдельных вариантов в общей сумме частот. Эти относительные показатели именуют частостями и условно обозначают через , т.е. . Сумма всех частостей равна единице. Частости могут быть выражены и в процентах, и тогда их сумма будет равна 100%.

Варьирующие признаки могут носить разный характер. Варианты одних признаков выражаются в целых числах, например, число комнат в квартире, число изданных книг и т.д. Эти признаки именуют прерывными, или дискретными. Варианты других признаков могут принимать любые значения в определенных пределах, как, например, выполнение плановых заданий, заработная плата и др. Эти признаки называют непрерывными.

Дискретный вариационный ряд. Если варианты вариационного ряда выражены в виде дискретных величин, то такой вариационный ряд называют дискретным, его внешний вид представлен в табл. 5.2:

Таблица 5.2

Распределение студентов по оценкам, полученным на экзамене

Оценки (х)

Количество студентов (f)

В % к итогу ()

Характер распределения в дискретных рядах изображается графически в виде полигона распределения, рис.5.1.

Рис. 5.1. Распределение студентов по оценкам, полученным на экзамене.

Интервальный вариационный ряд. Для непрерывных признаков вариационные ряды строятся интервальные, т.е. значения признака в них выражаются в виде интервалов «от и до». При этом минимальное значение признака в таком интервале именуют нижней границей интервала, а максимальное – верхней границей интервала.

Интервальные вариационные ряды строят как для прерывных признаков (дискретных), так и для варьирующих в большом диапазоне. Интервальные ряды могут быть с равными и неравными интервалами. В экономической практике в большинстве своем применяются неравные интервалы, прогрессивно возрастающие или убывающие. Такая необходимость возникает особенно в тех случаях, когда колеблемость признака осуществляется неравномерно и в больших пределах.

Рассмотрим вид интервального ряда с равными интервалами, табл. 5.3:

Таблица 5.3

Распределение рабочих по выработке

Выработка, т.р. (х)

Число рабочих (f)

Кумулятивная частота (f´)

Интервальный ряд распределения графически изображается в виде гистограммы, рис.5.2.

Рис.5.2. Распределение рабочих по выработке

Накопленная (кумулятивная) частота. В практике возникает потребность в преобразовании рядов распределения в кумулятивные ряды, строящиеся по накопленным частотам. С их помощью можно определить структурные средние, которые облегчают анализ данных ряда распределения.

Накопленные частоты определяются путем последовательного прибавления к частотам (или частостям) первой группы этих показателей последующих групп ряда распределения. Для иллюстрации рядов распределения используются кумуляты и огивы. Для их построения на оси абсцисс отмечаются значения дискретного признака (или концы интервалов), а на оси ординат – нарастающие итоги частот (кумулята), рис.5.3.

Рис. 5.3. Кумулята распределения рабочих по выработке

Если шкалы частот и вариантов поменять местами, т.е. на оси абсцисс отражать накопленные частоты, а на оси ординат – значения вариантов, то кривая, характеризующая изменение частот от группы к группе, будет носит название огивы распределения, рис.5.4.

Рис. 5.4. Огива распределения рабочих по выработке

Вариационные ряды с равными интервалами обеспечивают одно из важнейших требований, предъявляемых к статистическим рядам распределения, обеспечение сравнимости их во времени и пространстве.

Плотность распределения. Однако частоты отдельных неравных интервалов в названных рядах непосредственно не сопоставимы. В подобных случаях для обеспечения необходимой сравнимости исчисляют плотность распределения, т.е. определяют, сколько единиц в каждой группе приходится на единицу величины интервала.

При построении графика распределения вариационного ряда с неравными интервалами высоту прямоугольников определяют пропорционально не частотам, а показателям плотности распределения значений изучаемого признака в соответствующих интервалах.

Составление вариационного ряда и его графическое изображение является первым шагом обработки исходных данных и первой ступенью анализа изучаемой совокупности. Следующим шагом в анализе вариационных рядов является определение основных обобщающих показателей, именуемых характеристиками ряда. Эти характеристики должны дать представление о среднем значении признака у единиц совокупности.

Средняя величина . Средняя величина представляет собой обобщенную характеристику изучаемого признака в исследуемой совокупности, отражающая ее типический уровень в расчете на единицу совокупности в конкретных условиях места и времени.

Средняя величина всегда именованная, имеет ту же размерность, что и признак у отдельных единиц совокупности.

Перед вычислением средних величин необходимо произвести группировку единиц исследуемой совокупности, выделив качественно однородные группы.

Средняя, рассчитанная по совокупности в целом называется общей средней, а для каждой группы – групповыми средними.

Существуют две разновидности средних величин: степенные (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая); структурные (мода, медиана, квартили, децили).

Выбор средней для расчета зависит от цели.

Виды степенных средних и методы их расчета. В практике статистической обработки собранного материала возникают различные задачи, для решения которых требуются различные средние.

Математическая статистика выводит различные средние из формул степенной средней:

где средняя величина; x – отдельные варианты (значения признаков); z – показатель степени (при z = 1 – средняя арифметическая, z = 0 средняя геометрическая, z = - 1 – средняя гармоническая, z = 2 – средняя квадратическая).

Однако вопрос о том, какой вид средней необходимо применить в каждом отдельном случае, разрешается путем конкретного анализа изучаемой совокупности.

Наиболее часто встречающимся в статистике видом средних величин является средняя арифметическая . Она исчисляется в тех случаях, когда объем осредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

В зависимости от характера исходных данных средняя арифметическая определяется различными способами:

Если данные несгруппированные, то расчет ведется по формуле простой средней величины

Расчет средней арифметической в дискретном ряду происходит по формуле 3.4.

Расчет средней арифметической в интервальном ряду. В интервальном вариационном ряду, где за величину признака в каждой группе условно принимается середина интервала, средняя арифметическая может отличаться от средней, рассчитанной по несгруппированным данным. Причем, чем больше величина интервала в группах, тем больше возможные отклонения средней, вычисленной по сгруппированным данным, от средней, рассчитанной по несгруппированным данным.

При расчете средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам. А затем рассчитывают среднюю величину по формуле средней арифметической взвешенной.

Свойства средней арифметической. Средняя арифметическая обладает некоторыми свойствами, которые позволяют упрощать вычисления, рассмотрим их.

1. Средняя арифметическая из постоянных чисел равна этому постоянному числу.

Если х = а. Тогда .

2. Если веса всех вариантов пропорционально изменить, т.е. увеличить или уменьшить в одно и то же число раз, то средняя арифметическая нового ряда от этого не изменится.

Если все веса f уменьшить в k раз, то .

3. Сумма положительных и отрицательных отклонений отдельных вариантов от средней, умноженных на веса, равна нулю, т.е.

Если , то . Отсюда .

Если все варианты уменьшить или увеличить на какое- либо число, то средняя арифметическая нового ряда уменьшится или увеличится на столько же.

Уменьшим все варианты x на a , т.е. x ´ = x a.

Тогда

Среднюю арифметическую первоначального ряда можно получить, прибавляя к уменьшенной средней ранее вычтенное из вариантов числа a , т.е. .

5. Если все варианты уменьшить или увеличить в k раз, то средняя арифметическая нового ряда уменьшится или увеличится во столько же, т.е. в k раз.

Пусть , тогда .

Отсюда , т.е. для получения средней первоначального ряда среднюю арифметическую нового ряда (с уменьшенными вариантами) надо увеличить в k раз.

Средняя гармоническая. Средняя гармоническая это величина обратная средней арифметической. Ее используют, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение (М= xf). Средняя гармоническая будет рассчитываться по формуле 3.5

Практическое применение средней гармонической – для расчета некоторых индексов, в частности, индекса цен.

Средняя геометрическая. При применении средней геометрической индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста.

Средняя геометрическая величина используется также для определения равноудаленной величины от максимального и минимального значений признака. Например, страховая компания заключает договоры на оказание услуг автострахования. В зависимости конкретного страхового случая страховая выплата может колебаться от 10000 до 100000 долл. в год. Средняя сумма выплат по страховке составит долл.

Средняя геометрическая это величина, используемая как средняя из отношений или в рядах распределения, представленных в виде геометрической прогрессии, когда z = 0. Этой средней удобно пользоваться, когда уделяется внимание не абсолютным разностям, а отношениям двух чисел.

Формулы для расчета следующие

где – варианты осредняемого признака; – произведение вариантов; f – частота вариантов.

Средняя геометрическая используется в расчетах среднегодовых темпов роста.

Средняя квадратическая. Формула средней квадратической используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения. Так, при расчете показателей вариации среднюю вычисляют из квадратов отклонений индивидуальных значений признака от средней арифметической величины.

Средняя квадратическая величина рассчитывается по формуле

В экономических исследованиях средняя квадратическая в измененном виде широко используется при расчете показателей вариации признака, таких как дисперсия, среднее квадратическое отклонение.

Правило мажорантности. Между степенными средними существует следующая зависимость – чем больше показатель степени, тем больше значение средней, табл.5.4:

Таблица 5.4

Соотношение между средними величинами

Значение z

Соотношение между средними

Это соотношение называется правилом мажорантности.

Структурные средние величины. Для характеристики структуры совокупности применяются особые показатели, которые можно назвать структурными средними. К таким показателям относятся мода, медиана, квартили и децили.

Мода. Модой (Мо) называется наиболее часто встречающееся значение признака у единиц совокупности. Модой называется то значение признака, которое соответствует максимальной точке теоретической кривой распределения.

Мода широко используется в коммерческой практике при изучении покупательского спроса (при определении размеров одежды и обуви, которые пользуются широким спросом), регистрации цен. Мод в совокупности может быть несколько.

Расчет моды в дискретном ряду. В дискретном ряду мода – это варианта с наибольшей частотой. Рассмотрим нахождение моды в дискретном ряду.

Расчет моды в интервальном ряду. В интервальном вариационном ряду модой приближенно считают центральный вариант модального интервала, т.е. того интервала, который имеет наибольшую частоту (частость). В пределах интервала надо найти то значение признака, которое является модой. Для интервального ряда мода будет определяться формулой

где – нижняя граница модального интервала; – величина модального интервала; – частота, соответствующая модальному интервалу; – частота, предшествующая модальному интервалу; – частота интервала, следующего за модальным.

Медиана. Медианой () называется значение признака у средней единицы ранжированного ряда. Ранжированный ряд – это ряд, у которого значения признака записаны в порядке возрастания или убывания. Или медиана это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значение варьирующего признака меньшие, чем средний вариант, а другая – большие.

Чтобы найти медиану, сначала определяется ее порядковый номер. Для этого при нечетном числе единиц к сумме всех частот прибавляется единица и все делится на два. При четном числе единиц медиана отыскивается как значение признака у единицы, порядковый номер который определяется по общей сумме частот, деленной на два. Зная порядковый номер медианы, легко по накопленным частотам найти ее значение.

Расчет медианы в дискретном ряду. По данным выборочного обследования получены данные о распределении семей по числу детей, табл. 5.5. Для определения медианы сначала определим ее порядковый номер

В этих семьях количество детей равно 2, следовательно, = 2. Таким образом, в 50% семей число детей не превышает 2.

–частота накопленная, предшествующая медианному интервалу;

С одной стороны, это весьма положительное свойство т.к. в этом случае учитывается действие всех причин, воздействующих на все единицы изучаемой совокупности. С другой стороны, даже одно наблюдение, попавшее в исходные данные случайно, может существенным образом исказить представление об уровне развития изучаемого признака в рассматриваемой совокупности (особенно в коротких рядах).

Квартили и децили. По аналогии с нахождением медианы в вариационных рядах можно отыскать значение признака у любой по порядку единицы ранжированного ряда. Так, в частности, можно найти значение признака у единиц, делящих ряд на 4 равные части, на 10 и т.п.

Квартили. Варианты, которые делят ранжированный ряд на четыре равные части, называют квартилями.

При этом различают: нижний (или первый) квартиль (Q1) – значение признака у единицы ранжированного ряда, делящей совокупность в соотношении ¼ к ¾ и верхний (или третий) квартиль(Q3) – значение признака у единицы ранжированного ряда, делящий совокупность в соотношении ¾ к ¼.

– частоты квартильных интервалов (нижнего и верхнего)

Интервалы, в которых содержатся Q1 и Q3 определяют по накопленным частотам (или частостям).

Децили. Кроме квартилей рассчитывают децили – варианты, делящие ранжированный ряд на 10 равных частей.

Обозначаются они через D, первый дециль D1 делит ряд в соотношении 1/10 и 9/10, второй D2 – 2/10 и 8/10 и т.д. Вычисляются они по той же схеме, что и медиана и квартили.

И медиана, и квартили, и децили принадлежат к так называемым порядковым статистикам, под которым понимают вариант, занимающий определенное порядковое место в ранжированном ряду.