Галактикой называют крупные формирования звезд, газа, пыли, которые удерживаются вместе силой гравитации. Эти крупнейшие соединения во Вселенной могут различаться формой и размерами. Большая часть космических объектов входит в состав определенной галактики. Это звезды, планеты, спутники, туманности, черные дыры и астероиды. Некоторые из галактик обладают большим количеством невидимой темной энергии. Из-за того, что галактики разделяет пустое космическое пространство, их образно называют оазисами в космической пустыне..

Эллиптическая галактика Спиральная галактика Неправильная галактика
Сфероидальный компонент Галактика целиком Есть Очень слаб
Звёздный диск Нет или слабо выражен Основной компонент Основной компонент
Газопылевой диск Нет Есть Есть
Спиральные ветви Нет или только вблизи ядра Есть Нет
Активные ядра Встречаются Встречаются Нет
20% 55% 5%

Наша галактика

Ближайшая к нам звезда Солнце относится к миллиарду звезд в галактике Млечный путь. Посмотрев на ночное звездное небо, тяжело не заметить широкую полосу, усыпанную звездами. Скопление этих звезд древние греки назвали Галактикой.

Если бы у нас была возможность посмотреть на эту звездную систему со стороны, мы бы заметили сплюснутый шар, в котором насчитывается свыше 150 млрд. звезд. Наша галактика имеет такие размеры, которые тяжело представить в своем воображении. Луч света путешествует с одной ее стороны на другую сотню тысяч земных лет! Центр нашей Галактики занимает ядро, от которого отходят огромные спиральные ветви, заполненные звездами. Расстояние от Солнца до ядра Галактики составляет 30 тысяч световых лет. Солнечная система расположена на окраине Млечного пути.

Звезды в Галактике несмотря на огромное скопление космических тел встречаются редко. Например, расстояние между ближайшими звездами в десятки миллионов раз превышает их диаметры. Нельзя сказать, что звезды разбросаны во Вселенной хаотично. Их местоположение зависит от сил гравитации, которые удерживают небесное тело в определенной плоскости. Звездные системы со своими гравитационными полями и называют галактиками. Кроме звезд, в состав галактики входит газ и межзвездная пыль.

Состав галактик.

Вселенную составляет также множество других галактик. Наиболее приближенные к нам отдалены на расстояние 150 тыс. световых лет. Их можно увидеть на небе южного полушария в виде маленьких туманных пятнышек. Их впервые описал участник Магеллановой экспедиции вокруг мира Пигафетт. В науку они вошли под названием Большого и Малого Магеллановых Облаков.

Ближе всего к нам расположена галактика под названием Туманность Андромеды. Она имеет очень большие размеры, поэтому видна с Земли в обычный бинокль, а в ясную погоду – даже невооруженным глазом.

Само строение галактики напоминает гигантскую выпуклую в пространстве спираль. На одном из спиральных рукавов за ¾ расстояния от центра находится Солнечная система. Все в галактике кружится вокруг центрального ядра и подчиняется силе его гравитации. В 1962 году астрономом Эдвином Хабблом была проведена классификация галактик в зависимости от их формы. Все галактики ученый разделил на эллиптические, спиральные, неправильные и галактики с перемычкой.

В части Вселенной, доступной для астрономических исследований, расположены миллиарды галактик. В совокупности их астрономы называют Метагалактикой.

Галактики Вселенной

Галактики представлены крупными группировками звезд, газа, пыли, удерживаемых вместе гравитацией. Они могут существенно отличаться по форме и размерам. Большинство космических объектов относятся к какой-либо галактике. Это черные дыры, астероиды, звезды со спутниками и планетами, туманности, нейтронные спутники.

Большинство галактик Вселенной включают огромное количество невидимой темной энергии. Так как пространство между различными галактиками считается пустотным, то их нередко называют оазисами в пустоте космоса. Например, звезда по имени Солнце – одни из миллиардов звезд в галактике «Млечный Путь», находящейся в нашей Вселенной. В ¾ расстояния от центра данной спирали находится Солнечная система. В этой галактике все беспрерывно движется вокруг центрального ядра, которое подчиняется его гравитации. Однако и ядро тоже движется вместе с галактикой. При этом все галактики двигаются на сверхскоростях.
Астроном Эдвин Хаббл в 1962 году провел логическую классификацию галактик Вселенной с учетом их формы. Сейчас галактики разделяются на 4 основные группы: эллиптические, спиральные, галактики с баром (перемычкой) и неправильные.
Какая самая большая галактика в нашей Вселенной?
Наиболее крупной галактикой во Вселенной является линзовидная галактика сверхгиганских размеров, находящаяся в скоплении Abell 2029.

Спиральные галактики

Они представляют собой галактики, которые по своей форме напоминают плоский спиралевидный диск с ярким центром (ядром). Млечный Путь – типичная спиральная галактика. Спиральные галактики принято называть с буквы S, они разделяются на 4 подгруппы: Sa, Sо, Sc и Sb. Галактики, относящиеся к группе Sо, отличаются светлыми ядрами, которые не имеют спиральных рукавов. Что касается галактик Sа, то они отличаются плотными спиральными рукавами, плотно обмотанными вокруг центрального ядра. Рукава галактик Sc и Sb редко окружают ядро.

Спиральные галактики каталога Мессье

Галактики с перемычкой

Галактики с баром (перемычкой) похожи на спиральные галактики, но все же имеют одно отличие. В таких галактиках спирали начинаются не от ядра, а от перемычек. Около 1/3 всех галактик входят в эту категорию. Их принято обозначать буквами SB. В свою очередь, они разделяются на 3 подгруппы Sbc, SBb, SBa. Разница между этими тремя группами определяется формой и длиной перемычек, откуда, собственно, и начинаются рукава спиралей.

Спиральные галактики с перемычкой каталога Мессье

Эллиптические галактики

Форма галактик может варьироваться от идеально круглой до вытянутого овала. Их отличительной чертой является отсутствие центрального яркого ядра. Они обозначаются буквой Е и разделяются на 6 подгрупп (по форме). Такие формы обознаются от Е0 до Е7. Первые имеют почти круглую форму, тогда как Е7 характеризуются чрезвычайно вытянутой формой.

Эллиптические галактики каталога Мессье

Неправильные галактики

Они не имеют какой-либо выраженной структуры или формы. Неправильные галактики принято разделять на 2 класса: IO и Im. Наиболее распространенным является Im класс галактик (он имеет только незначительный намек на структуру). В некоторых случаях прослеживаются спиральные остатки. IO относится к классу галактик, хаотических по форме. Малые и Большие Магеллановы Облака – яркий пример Im класса.

Неправильные галактики каталога Мессье

Таблица характеристик основных видов галактик

Эллиптическая галактика Спиральная галактика Неправильная галактика
Сфероидальный компонент Галактика целиком Есть Очень слаб
Звёздный диск Нет или слабо выражен Основной компонент Основной компонент
Газопылевой диск Нет Есть Есть
Спиральные ветви Нет или только вблизи ядра Есть Нет
Активные ядра Встречаются Встречаются нет
Процент от общего числа галактик 20% 55% 5%

Большой портрет галактик

Не так давно астрономы начали работать над совместным проектом для выявления расположения галактик во всей Вселенной. Их задача – получить более детальную картину общей структуры и формы Вселенной в больших масштабах. К сожалению, масштабы Вселенной сложно оценить для понимания многими людьми. Взять хотя бы нашу галактику, состоящую более чем из ста миллиардов звезд. Во Вселенной существуют еще миллиарды галактик. Обнаружены дальние галактики, но мы видим их свет таким, который был практически 9 млрд лет назад (нас разделяет такое большое расстояние).

Астрономам стало известно, что большинство галактик относятся к определенной группе (ее стали называть «кластер»). Млечный путь – часть кластера, который, в свою очередь, состоит из сорока известных галактик. Как правило, большинство таких кластеров представлены частью еще большей группировки, которую называют сверхскоплениями.

Наш кластер – часть сверхскопления, которое принято называть скоплением Девы. Такой массивный кластер состоит больше чем из 2 тыс. галактик. В то время, когда астрономы создали карту расположения данных галактик, сверхскопления начали принимать конкретную форму. Большие сверхскопления собрались вокруг того, что представляется как бы гигантскими пузырями или пустотами. Что это за структура, никто еще не знает. Мы не понимаем, что может находиться внутри этих пустот. По предположению, они могут быть заполнены определенным типом неизвестной ученым темной материи или же иметь внутри пустое пространство. Перед тем как мы узнаем природу таких пустот, пройдет много времени.

Галактические вычисления

Эдвин Хаббл является основоположником галактических исследований. Он первый, кому удалось определить, как можно вычислить точное расстояние до галактики. В своих исследованиях он опирался на метод пульсирующих звезд, которые более известны как цефеиды. Ученый смог заметить связь между периодом, который нужен для завершения одной пульсации яркости, и той энергией, которую выделяет звезда. Результаты его исследований стали серьезным прорывом в области галактических исследований. Помимо этого, он обнаружил, что есть корреляция между красным спектром, излучаемым галактикой, и расстоянием до нее (постоянная Хаббла).

В наше время астрономы могут измерять расстояние и скорости галактики посредством измерения количества красного смещения в спектре. Известно, что все галактики Вселенной движутся друг от друга. Чем дальше галактика находится от Земли, тем больше ее скорость движения.

Чтобы визуализировать данную теорию, достаточно представить себя за рулем авто, который двигается на скорости 50 км в час. Перед Вами едет авто быстрее на 50 км в час, что говорит о том, что скорость его передвижения составляет 100 км в час. Перед ним есть еще одно авто, которое движется быстрее еще на 50 км в час. Несмотря на то что скорость всех 3 машин будет разной на 50 км в час, первый автомобиль на самом деле движется от Вас на 100 км в час быстрее. Поскольку красный спектр говорит о скорости движения галактики от нас, получается следующее: чем больше красное смещение, тем, соответственно, галактика быстрее движется и тем большее ее расстояние от нас.

Сейчас мы располагаем новыми инструментами, помогающими ученым в поисках новых галактик. Благодаря космическому телескопу Хаббла ученым удалось увидеть то, о чем раньше оставалось только мечтать. Высокая мощность этого телескопа обеспечивает хорошую видимость даже мелких деталей в ближних галактиках и позволяет изучать более дальние, которые никому еще не были известны. В настоящее время новые инструменты наблюдения космоса находятся в стадии разработки, а в скором будущем они помогут получить более глубокое понимание структуры Вселенной.

Типы галактик

  • Спиральные галактики. По форме напоминают плоский спиралевидный диск с ярко выраженным центром, так называемым ядром. Наша галактика Млечный путь относится к этой категории. В данном разделе портала сайт Вы встретите много различных статей с описанием космических объектов нашей Галактики.
  • Галактики с перемычкой. Напоминают спиральные, только от них они отличаются одним существенным отличием. Спирали отходят не от ядра, а от так называемых перемычек. К этой категории можно отнести треть всех галактик Вселенной.
  • Эллиптические галактики обладают различными формами: от досконально круглой до овально вытянутой. Сравнительно со спиральными, у них отсутствует центральное ярко выраженное ядро.
  • Неправильные галактики не обладают характерной формой или структурой. Их нельзя отнести к какому-либо из перечисленных выше типов. Неправильных галактик насчитывается куда меньшее количество на просторах Вселенной.

Астрономы в последнее время запустили совместный проект по выявлению расположения всех галактик во Вселенной. Ученые надеются получить более наглядную картину ее структуры в большом масштабе. Размер Вселенной тяжело оценить человеческому мышлению и пониманию. Одна только наша галактика – это соединение сотней миллиардов звезд. А таких галактик насчитываются миллиарды. Мы можем видеть свет от обнаруженных дальних галактик, но не подразумевать даже того, что смотрим в прошлое, ведь световой луч доходит до нас за десятки миллиардов лет, настолько великое расстояние нас разделяет.

Астрономы также привязывают большинство галактик к определенным группам, которые называют кластерами. Наш Млечный путь относится к кластеру, который состоит из 40 разведанных галактик. Такие кластеры объединяют в большие группировки, называющиеся сверхскоплениями. Кластер с нашей галактикой входит в сверхскопление Девы. В составе этого гигантского кластера находится более 2 тысяч галактик. После того как ученые начали рисовать карту размещения данных галактик, сверхскопления получили определенные формы. Большинство галактических сверхскоплений окружали гигантские пустоты. Никто не знает, что может быть внутри этих пустот: космическое пространство наподобие межпланетного или же новая форма материи. Понадобится много времени, чтобы раскрыть эту загадку.

Взаимодействие галактик

Не менее интересным для взора ученых представляется вопрос о взаимодействии галактик как компонентов космических систем. Не секрет, что космические объекты находятся в постоянном движении. Галактики не исключение из этого правила. Некоторые из видов галактик могли бы стать причиной столкновения или слияния двух космических систем. Если вникнуть, какими представляются данные космические объекты, более понятными становятся масштабные изменения как результат их взаимодействия. Во время столкновения двух космических систем выплескивается гигантское количество энергии. Встреча двух галактик на просторах Вселенной – даже более вероятное событие, чем столкновение двух звезд. Не всегда столкновение галактик заканчивается взрывом. Небольшая космическая система может свободно пройти мимо своего более крупного аналога, изменив только незначительно его структуру.

Таким образом, происходит образование формирований, схожих внешним видом на вытянутые коридоры. В их составе выделяются звезды и газовые зоны, часто формируются новые светила. Бывают случаи, что галактики не ударяются, а только слегка соприкасаются друг с другом. Однако даже такое взаимодействие запускает цепочку необратимых процессов, которые приводят к огромным изменениям в структуре обеих галактик.

Какое будущее ожидает нашу галактику?

Как предполагают ученые, не исключено, что в далеком будущем Млечный путь сумеет поглотить крохотную по космическим размерам систему-спутник, которая расположена от нас на расстоянии 50 световых лет. Исследования показывают, что этот спутник имеет продолжительный жизненный потенциал, но при столкновении с гигантским соседом, вероятнее всего, закончит отдельное существование. Также астрономы предрекают столкновение Млечного пути и Туманности Андромеды. Галактики движутся друг другу навстречу со скоростью света. До вероятного столкновения ждать примерно три миллиарда земных лет. Однако будет ли оно на самом деле сейчас – тяжело рассуждать из-за нехватки данных о движении обеих космических систем.

Описание галактик на Kvant . Space

Портал сайт перенесет Вас в мир интересного и увлекательного космоса. Вы узнаете природу построения Вселенной, ознакомитесь со структурой известных больших галактик, их составляющими. Читая статьи о нашей галактике, нам становятся более понятными некоторые из явлений, которые можно наблюдать в ночном небе.

Все галактики от Земли находятся на огромном расстоянии. Невооруженным глазом можно увидеть только три галактики: Большое и малое Магеллановы облака и Туманность Андромеды. Все галактики сосчитать нереально. Ученые предполагают, что их количество составляет около 100 миллиардов. Пространственное расположение галактик неравномерно – одна область может содержать огромное их количество, во второй вовсе не будет ни одной даже маленькой галактики. Отделить изображение галактик от отдельных звезд астрономам не удавалось до начала 90-х годов. В это время насчитывалось около 30 галактик с отдельными звездами. Всех их причисляли к Местной группе. В 1990 году состоялось величественное событие в развитии астрономии как науки – на орбиту Земли был запущен телескоп Хаббла. Именно эта техника, а также новые наземные 10-метровые телескопы дали возможность увидеть значительно большее число разрешенных галактик.

На сегодняшний день «астрономические умы» мира ломают голову о роли темной материи в построении галактик, которая проявляет себя лишь в гравитационном взаимодействии. Например, в некоторых больших галактиках она составляет около 90% общей массы, в то время как карликовые галактики могут вовсе ее не содержать.

Эволюция галактик

Ученые считают, что возникновение галактик – это естественный этап эволюции Вселенной, который проходил под воздействием сил гравитации. Приблизительно 14 млрд. лет тому назад началось формирование протоскоплений в первичном веществе. Далее, под воздействием различных динамических процессов состоялось выделение галактических групп. Изобилие форм галактик объясняется разнообразием начальных условий в их формировании.

На сжатие галактики уходит около 3 млрд. лет. За данный период времени газовое облако превращается в звездную систему. Образование звезд происходит под воздействием гравитационного сжатия газовых облаков. После достижения в центре облака определенной температуры и плотности, достаточной для начала термоядерных реакций, образуется новая звезда. Массивные звезды образованы из термоядерных химических элементов, по массе превосходящих гелий. Данные элементы создают первичную гелиево-водородную среду. Во время грандиозных взрывов сверхновых звезд образуются элементы, тяжелее железа. Из этого следует, что галактика состоит из двух поколений звезд. Первое поколение – это наиболее старые звезды, состоящие из гелия, водорода и очень небольшого количества тяжелых элементов. Звезды второго поколения обладают более заметной примесью тяжелых элементов, поскольку они формируются из первичного газа, обогащенного тяжелыми элементами.

В современной астрономии галактикам как космическим структурам отводится отдельное место. В деталях изучаются виды галактик, особенности их взаимодействия, сходства и отличия, делается прогноз их будущего. Эта область содержит еще много непонятного, того, что требует дополнительного изучения. Современная наука решила много вопросов относительно видов построения галактик, но осталось также много белых пятен, связанных с образованием этих космических систем. Современные темпы модернизации исследовательской техники, разработка новых методологий исследования космических тел дают надежды на значительный прорыв в будущем. Так или иначе, галактики всегда будут в центре научных исследований. И основано это не только на человеческом любопытстве. Получив данные о закономерностях развития космических систем, мы сможем спрогнозировать будущее нашей галактики под названием Млечный путь.

Самые интересные новости, научные, авторские статьи об изучении галактик Вам предоставит портал сайт. Здесь Вы сможете найти захватывающие видео, качественные снимки со спутников и телескопов, которые не оставляют равнодушными. Погружайтесь в мир неизведанного космоса вместе с нами!

В глухих областях космического пространства недавно был обнаружен новый вид галактик, который условно назвали «супер спирали». Они имеют поистине исполинские размеры, по всем параметрам превосходят наш Млечный Путь и могут конкурировать размерами и яркостью с самыми большими галактиками, которые только были обнаружены во Вселенной.

Суперспиральные галактики, как оказалось, долгое время находились на виду у астрономов - они попросту удачно мимикрировали под типичные спиральные галактики. Новое исследование проводилось с использованием архивных данных НАСА и оно показало, что эти, на первый взгляд, близкие к нам галактики на самом деле находятся очень далеко, а кажутся близкими, потому что имеют исполинские размеры. Тут же перед исследователями встал новый вопрос: как вообще возможно существование таких спиральных галактик.

«Мы обнаружили ранее неизвестный класс спиральных галактик, которые такие же огромные и яркие как самые крупные галактики, известные нам. Если говорить понятным языком, то это то же самое, как если бы мы обнаружили на Земле новое неизвестное существо размерами со слона, но до сих пор неизвестное зоологам», - Патрик Огл из Калифорнийского технологического института, ведущий автор статьи, опубликованной в издании The Astrophysical Journal.

Одна из трёх галактик с двумя ядрами, её наименование 2MASX J08542169+0449308. Источник: SDSS

Огл и его коллеги совершенно случайно наткнулись на эти супер спирали, когда занимались поисками чрезвычайно ярких, массивных галактик в недрах архива NED (NASA/IPAC Extragalactic Database). Этот архив представляет собой онлайн-репозиторий, содержащий информацию о более чем ста миллионах галактик. NED объединяет в себе данные из многих разнообразных проектов, включая ультрафиолетовые наблюдения орбитального аппарата GALEX, наземного Слоановского цифрового обзора неба, обзора 2MASS и отдельных аппаратов «Спитцер» и WISE.

«Это удивительное открытие класса гигантских спиральных галактик состоялось только благодаря рутинному анализу базы данных галактик NED. Таким образом, можно сказать, что рутинная, систематическая и последовательная работа с обобщёнными по всем проектам архивами тоже приносит плоды. Мы уверены, что в недрах архива содержится информация о ещё многих таких самородках. Осталось нам лишь научиться задавать правильные вопросы», - Джордж Хелоу, соавтор исследований и руководитель архива.

Первоначально Огл, Хелоу и их коллеги справедливо полагали, что огромные, зрелые галактики, относящиеся к классу эллиптических из-за их необычной формы, будут доминирующими элементами в исследованной архивной информации. Но как оказалось, учёных ожидало огромное удивление. Из общей базы данных было выбрано примерно 800000 галактик, находящиеся от нас на расстоянии не более 3.5 миллиарда световых лет. Удивительным оказалось то, что у 53 из самых ярких галактик была форма спирали, а не эллипса. Исследователи перепроверили расстояния до этих галактик, оказалось, что они расположились ещё на 1.2 миллиарда световых лет дальше, чем первоначально предполагалось. Получив правильную оценку расстояний, и были выявлены ошеломляющие размеры и свойства этого новооткрытого класса спиральных галактик.

Ещё одна галактика, которую можно отнести к суперспиральным. Её имя 2MASX J16014061+2718161, она также имеет два ядра. Источник: SDSS

Как сейчас удалось установить, суперспиральные галактики могут иметь яркость, большую яркости Млечного Пути от 8 до 14 раз, они в десять раз массивнее нашей Галактики. Их яркие диски, заполненные звездами, имеют диаметр в 2–4 раза больше нашего, а самая большая известная спиральная галактика на сегодняшний день имеет 440000 световых лет в диаметре. Суперспиральные галактики испускают сильное ультрафиолетовое и среднее инфракрасное излучения. Это означает, что в их недрах активно протекают процессы образования новых звёзд, темп их рождения примерно в 30 раз выше, опять же по сравнению с нашей Галактикой.

Согласно нынешней астрофизической теории, спиральные галактики не могут никаким образом быть в состоянии достигнуть любой из этих удивительных особенностей, не говоря уже о том, чтобы обладать всеми этими свойствами сразу. Дело в том, что спиральные галактики растут посредством захвата холодного газа из межгалактического вещества. В какой-то момент масса обычной спиральной галактики достигает таких больших значений, вследствие чего захваченный газ начинает передвигаться внутрь неё очень быстро. Из-за этого образуется трение вещества и происходит нагрев, а повышение температуры начинает тормозить последующие процессы рождения новых звёзд. Но, как мы теперь все узнали, оказывается, что спиральные галактики не подчиняются этому закону.

Одна из самых больших суперспиральных галактик SDSS J094700.08+254045.7. Диаметр её диска составляет порядка 320000 световых лет.

Ядро - крайне малая область в центре галактики. Когда речь заходит о ядрах галактик, то чаще всего говорят об активных ядрах галактик, где процессы нельзя объяснить свойствами сконцентрированных в них звёзд.

Диск - относительно тонкий слой, в котором сконцентрировано большинство объектов галактики. Подразделяется на газопылевой диск и звёздный диск. галактика ядро межзвёздный гравитационный

Балдж (англ.. bulge - вздутие) - наиболее яркая внутренняя часть сфероидального компонента.

Гало -- внешний сфероидальный компонент. Граница между балджем и гало размыта и достаточно условна.

Другие возможные элементы.

Полярное кольцо - редкий компонент. В классическом случае галактика с полярным кольцом имеет два диска, вращающихся в перпендикулярных плоскостях. Центры этих дисков в классическом случае совпадают. Причина возникновения полярных колец до конца не ясна.

Сфероидальный компонент - сфероподобное распределение звёзд.

Спиральная ветвь (спиральный рукав) - уплотнение из межзвёздного газа и преимущественно молодых звёзд в виде спирали. Скорее всего, являются волнами плотности, вызванными различными причинами, однако вопрос об их происхождении до сих пор окончательно не решён.

Бар (перемычка) - выглядит как плотное вытянутое образование, состоящее из звёзд и межзвёздного газа. По расчётам, главный поставщик межзвёздного газа к центру галактики. Однако почти все теоретические построения основываются на факте, что толщина диска много меньше его размеров, иными словами, диск плоский, и почти все модели - упрощённые двумерные модели, расчётов трёхмерных моделей дисков крайне мало. А трёхмерный расчёт галактики с баром и газом в известной литературе всего один. По данным автора данного расчёта, газ не попадает в центр галактики, а проходит довольно далеко.

Эволюция галактик

Эволюцией галактики называется изменение её интегральных характеристик со временем: спектра, цвета, химического состава, поля скоростей. Описать жизнь галактики непросто: на эволюцию галактики влияют не только эволюция отдельных её частей, но также и её внешнее окружение. Вкратце процессы, влияющие на эволюцию галактики, можно представить следующей схемой.


Эволюция протекает на лет быстрее при протогалактическое сжатие, большом мёрджинге (слияние галактик), давлении горячего межгалактического газа.

Эволюция протекает медленнее на лет при продолжительности аккреции на диске, малом слиянии, приливном взаимодействии галактик. А также, если эволюция вызвана неустойчивостью бара, темным гало, черной дырой, спиральными ветвями, галактическими ветрами и фонтанами.

На протяжении эволюционного развития возникают другие процессы важные для галактики: формирование звезд, обогащение металлами, обратная связь через сверхновые и активные ядра, возобновление газа.

> Спиральные галактики

На фото Хаббла отображена М71, напоминающая насколько удивительными и фотогеничными бывают спиральные галактики. Практически 70% соседей Млечного Пути принадлежать к этому типу (2 апреля 2013 год).

Изучите, как выглядит спиральная галактика : описание и характеристика с фото, классификация, роль Эдвина Хаббла, тип Млечного Пути, рождение и развитие.

Несложно догадаться, что спиральные галактики получили название из-за наблюдаемой формы. Это закрученные коллекции газа и звезд (горячие и молодые), иногда поражающие внешним видом.

Характеристика и классификация спиральных галактик

Следует разобраться в том, как выглядит строение спиральных галактик. Большая часть галактик спирального типа, вроде Млечного Пути, располагает центральной выпуклостью (ядро), вокруг которой вращается плоский звездный диск. Галактический центр наполнен более старыми и тусклыми звездами, а также вмещает сверхмассивную (хотя найти ее не всегда удается из-за пыли и газа). Тусклый свет древних звезд усложняет определение выпуклости, а есть спирали, которые вообще не обладают подобной особенностью.

Именно диск позволяет легко отличить этот тип галактик от других (важный элемент спиральной галактики). В нем есть спиральные рукава с молодыми звездами, пылью и газом. Именно яркие звезды делают рукава такими выразительными и заметными.

Точная схема формирования спиральных рукавов все еще остается загадкой. Если бы они были постоянными галактическими свойствами, то должны были исчезнуть в течение миллиарда лет. Исследователи полагают, что они могут быть результатом волн плотности, распространяющихся по внешнему диску. Сами волны могли образоваться в процессе столкновения. При слиянии масса одной влияет на изменение структуры второй.

Примерно 2/3 спиральных галактик содержат бар в центре. также имеет подобную структуру, но ее сложно разглядеть. Поэтому до 2005 года его наличие не удавалось подтвердить. Классификация галактик появилась в 1926 году благодаря Эдвину Хабблу. Ее называют «камертон Хаббла» и принцип организации строится на галактической форме. Спиральные распределяются по тому, насколько сильно закручены их рукава, а также по присутствию или отсутствию бара.

Среди всего массива наблюдаемых галактик к спиральным относится 77%. Но не нужно думать, что они доминируют. Все-таки эта честь принадлежит эллиптическим, которые в итоге являются следующей формой трансформации для спиральных. Эллиптические галактики представлены старыми и тусклыми звездами, поэтому их сложнее найти.

История и формирование спиральных галактик

Спиральные галактики наполнены пылью и газом, из-за чего создаются отличные условия для формирования звезд. Считается, что они моложе эллиптических. Можно обнаружить совершенно разные формы. Около 60% из них располагают несколькими рукавами, 10% – двумя, а у 30% нельзя подсчитать, так как со временем они меняли внешний вид.

Эти галактики от миллиарда до триллиона раз массивнее Солнца. Видимый диск в ширину простирается на 10-300 тысяч световых лет. Наиболее крупная спиральная галактика – NGC 6872, которая вытягивается на 522000 световых лет.

В ранней Вселенной галактики часто сталкивались и контактировали, поэтому форма древних гигантов быстро искажалась. Древнейшая из наблюдаемых спиральных галактик – BX442 (10.7 миллиардов лет). Из-за корреляции между дистанцией и временем, исследователям удается рассмотреть ее лишь через 3 миллиарда лет после Большого Взрыва.

Когда спиральная галактика израсходует весь газ и пыль, то звезды прекращают формироваться, а спиральная форма распадается, и они трансформируются в эллиптические. Посмотрите видео про галактики, чтобы узнать больше о рождении звезд, создании спиралей и рукавов.

Эволюция дисковых галактик

Астрофизик Ольга Сильченко о рождении звезд, моделировании галактик и аккреции внешнего холодного газа:

Спиральный узор галактик

Астроном Алексей Расторгуев о причинах спирального узора, теории волн плотности и трудностях в изучении нашей Галактики:

СПИРАЛЬНЫЕ ГАЛАКТИКИ

- галактики, в к-рых заметны спиральныеветви; наиб. многочисл. тип наблюдаемых галактик. К С. г. относится, вчастности, Галактика, ближайшими к нам С. г. являются М 31 (туманностьАндромеды) и М 33 (туманность Треугольника).

Структура и состав спиральных галактик. В состав С. г. входятзвёзды с разл. возрастом и хим. составом, межзвёздный газ и межзвёзднаяпыль. Общая структура С. г. показана на рис. Плоская составляющая (1 )включает молодые звёзды и газопылевую среду и образует слой толщиной неск. 2)такжепринадлежат плоской составляющей. Диск (3 )содержит осн. массу звёздС. г. Изменение сглаженной плотности диска с радиусом r и координатой z, перпендикулярной его плоскости, r мин < r < r макс обычно следует закону:

Здесь - плотность в центре диска,r 0 2-5 кпк - радиальная шкала (характерный размер) диска, z 0 0,3-1кпк - нолутолщина диска; z 0 зависит от дисперсии скоростей звёздвдоль оси z. Закон описывает распределение плотности в изотермич. самогравитирующем диске. r. В нек-рых С. г. на наблюдается «обрыв» - резкое падение яркости (плотности) диска. Балдж (4)- внутренняя наиб. яркая часть сферической (сфероидальной) составляющейС. г., содержащей старые звёзды с вытянутыми орбитами. Гало (5) - внеш. Вращение галактик, Скрытая масса). Ядерная область (6) - выделяющаясяпо яркости или структурным особенностям центр. часть С. г. (см. также Ядрагалактик). Спектр обычно содержит эмиссионные линии. В ядерной областичасто концентрируются молекулярный газ и связанные с ним области звездообразования. Ок. 1% С. г. обладают активными ядрами ( сейфе ртовские галактики). Эти ядра имеют широкие эмиссионные линии, свидетельствующие о быстрыхдвижениях газа, со скоростями в тысячи км/с, высокую светимость (обычнонеск. % от интегральной светимости С. г.), нетепловой непрерывный спектри переменность на разл. масштабах времени.

Содержание газа и звездообразование. Осн. масса межзвёздногогаза в С. г. присутствует в двух формах: нейтрального газа (HI) и молекулярногогаза (Н 2). В большинстве С. г. почти весь газ сосредоточен впределах оптич. диаметра диска, однако имеется ряд примеров существованияпротяжённой газовой оболочки вокруг галактик (М81, М83). Масса газа поотношению к интегральной массе С. г. в ср. падает от галактик типа Sc кSa. Под действием УФ-излучения горячих звёзд газ ионизуется, образуя протяжённые зоныНИ, хорошо заметные на фотографиях С. г. Поскольку горячие звёзды высокойсветимости являются короткоживущими, светимость С. г. в эмиссионных линияхслужит критерием интенсивности звездообразования. Др. наиб. часто используемымииндикаторами интенсивности звездообразования являются: показатели цвета(см. Астрофотометрия )С. г., исправленные за межзвёздное покраснение(см. Межзвёздное поглощение), светимость С. г. в УФ-области спектраили в далёкой ИК-области (= 10-10 3 мкм), где излучает пыль, нагреваемая молодыми звёздами. 0,01- 10/год( кГ). В расчётена единицу массы интенсивность звездообразования уменьшается от галактикSc к Sa - в соответствии с относит. содержанием газа в этих С. г. Областизвездообразования образуют комплексы с характерным размером 0,5 кпк. В осн. они сосредоточены в спиральных ветвях С. г.

Спиральные ветви. Наблюдаемые свойства. Спиральные ветви (СВ)представляют области концентрации молодых звёзд и звёздных комплексов, 10 -5 -10 -6 Гс). На фоне звёздного диска СВ выделяются повышенной яркостью и болееголубым цветом. Пыль часто образует длинные неровные прожилки, идущие вдольвнутр. кромки СВ, что интерпретируется как результат существования ударныхфронтов в межзвёздной среде. За редким исключением СВ являются закручивающимися,

Различают СВ флокуллентные и регулярные. Первые представляют собой совокупностьотдельных много-числ. коротких дуг, не продолжающих одна другую. Вторыепрослеживаются на большом протяжении, нередко более одного оборота. В этомслучае чаще всего наблюдаются две ветви. Обычно ветви С. г. содержат втой или иной пропорции признаки обоих структурных типов.

Механизм образования и поддержания спиральных ветвей. В дифференциальновращающемся диске галактики спиральная структура может быть долгоживущейв двух случаях: когда СВ непрерывно возникают и разрушаются и когда весьспиральный узор вращается с одинаковой угл. скоростью, в отличие от дискаС. г., т. е. не связан с ним жёстко. Первый вариант пригоден для объясненияфлокуллентных СВ, к-рые образуются, если в галактиках непрерывно возникаютлокальные очаги звездообразования. Дифференц. вращение растягивает их вдуги, пока они не потеряют яркость и не исчезнут с прекращением образованиямассивных звёзд. Концентрацию старых звёзд диска флоккулентные СВ не меняют.

Регулярные СВ рассматриваются как волновые образования в диске [идеяпринадлежит Б. Линдбладу (В. Lindblad)]. В процессе движения вокруг центраС. г. звёзды и газ периодически проходят через гребни волн. При этом регулярноменяется как плотность, так и скорости их движения. Анализ поля скоростейгаза С. г. (а для нашей Галактики - и звёзд) подтверждает волновой характерСВ. наиб. высокую амплитуду изменения плотности имеет газ, поскольку дисперсияскоростей газовых облаков (10км/с) в неск. раз ниже, чем звёзд диска, а столкновения газовых масс сопровождаютсяпотерей энергии. Повышение плотности газа в СВ является осн. причиной увеличенияинтенсивности звездообразования в них.

Разрабатывается неск. подходов к объяснению механизмов возбуждения иподдержания спиральных волн плотности (СВП) в С. г. Возможность существованияСВП как малых возмущений в гравитирующем бесстолкновит. (звёздном) дискевпервые была показана в работе К. Лина (С. Lin) и Ф. Шу (F. Shu). В наиб.

Здесь - волновое число, т - мода колебаний (число спиралей), -угл. скорости вращения диска и СВП соответственно,- невозмущённая поверхностная плотность диска, c s - скоростьзвука или дисперсия скоростей, -эпициклич. частота. Роль сил упругости в бесстолкновит. среде играют силыКориолиса. Знак k определяет направление вращения спиралей (закручивающиесяили раскручивающиеся СВ). Дисперсионное соотношение даёт два решения для k, соответствующих «коротким» и «длинным» волнам, к-рые отличаются помимо направлением распространения. Величина для бесстолкновит. газа может иметь значения в интервале . Области диска, где реализуются верхние и нижние пределы, наз. соответственновнешним и внутренним линдбладовскими резонансами, а область - коротацией. Короткие волны распространяются от коротации к резонансам, c s ,проходя через диск за ~10 9 лет. Это обстоятельство, как и затуханиеСВП при появлении ударной волны в газе, заставляет искать механизмы усиленияили возбуждения колебаний. В качестве генератора СВП предлагались вращающийсябар (перемычка), если он имеется в С. г., а также наличие внешнего возмущающеготела (близкого спутника).

В альтернативном подходе, предложенном А. М. Фридманом, СВП имеют негравитационную, а гидродинамич. природу и генерируются в результате гидродинамич. v(r)(вблизи локального максимума кривой вращения). Возникающие при этомСВ имеют закручивающуюся форму, а их число определяется отношением , где - перепад скорости. Наблюдения показывают, что локальный максимум на кривойвращения наблюдается в центр. части мн. галактик (напр., Галактика, М 31),хотя и не всех. По-видимому, единого механизма генерации СВП не существует.

Лит.: Воронцов-Вельяминов Б. А., Внегалактическая астрономия,2 изд., М., 1978; Рольфе К., Лекции по теории волн плотности, пер. с англ.,М., 1980; К r u i t Р. С. van der, Searle L., Surface photometry of edge-onspiral galaxies. 3. Properties of the three dimensional distribution oflight and mass in disk of spiral galaxies, «Astron. and Astrophys.», 1982,т. 110, p. 61; К е n n i с u t t R. C. J г., The rate of star formationin normal disc galaxies, «Astrophys. J.», 1983, v. 272, p. 54; F r i dm a n А. М. и др., Centrifugal instability in rotating shallow water andthe problem of the spiral structure in galaxies, «Phys. Lett.», 1985, v.109 A, p. 228; Ефремов Ю. Н. и др., Современные представления о природеспиральной структуры галактик, «УФН», 1989, т. 157, в. 4, с. 599. А.

  • - сосуды с относительно узким просветом, у которых утолщения вторичной клеточной стенки имеют вид спирали. Способны растягиваться и поэтому свойственны проводящим пучкам молодых растущих органов...

    Анатомия и морфология растений

  • - гигантские звездные системы с числом звезд от десятков до сотен миллиардов в каждой. Современные оценки дают около 150 млн галактик в известной нам Метагалактике...
  • - один из основных типов галактик, масса до триллиона масс Солнца, а звезд до 100-150...

    Начала современного Естествознания

  • - гигантские звездные системы; к ним относится, в частности, наша Галактика. подразделяются на эллиптические, спиральные и неправильные. Ближайшие к нам галактики - Магеллановы Облака и туманность Андромеды...

    Астрономический словарь

  • - вихревые движения воздуха у земной поверхности или за горным препятствием, возникающие в результате неравномерного нагревания склонов. См. Тсхачапи...

    Словарь ветров

  • - роторы - вихревые валы воздуха, обладающие горизонтальной осью вращения. Наблюдаются в долинах, расположенных между параллельными горными хребтами...

    Словарь ветров

  • - гигантские звёздные системы, подобные нашей звёздной системе - Галактике, в состав которой входит Солнечная система...
  • - галактик, спиралевидные образования из горячих звёзд и газово-пылевой материи, отходящие от центр. части спиральных галактик к их периферии...
  • - один из осн. типов галактик. Масса С. г. до ~ 1012 масс Солнца. Каждая С. г. имеет ядро, уплощенный диск, в к-ром располагаются спиральные ветви, и сферич. составляющую, ослабевающую к периферии...

    Естествознание. Энциклопедический словарь

  • - туманности в форме спирали, представляющие собой чрезвычайно удаленные звездные системы, подобные Млечному Пути. ...

    Морской словарь

  • - см. Ткани...
  • - см. Ткани...

    Энциклопедический словарь Брокгауза и Евфрона

  • - см. Клеточка...

    Энциклопедический словарь Брокгауза и Евфрона

  • - структурные образования, характерные для т. н. спиральных галактик...

    Большая Советская энциклопедия

  • - гигантские звёздные системы, при наблюдениях в телескоп имеющие вид яркого ядра, из которого выходят спиральные ветви, закручивающиеся вокруг ядра. Чаще всего С. г. имеют две ветви, закручивающиеся в...

    Большая Советская энциклопедия

  • - Тонкие, соединения в пучки трубочки, по которыми сок от концов кореньев поднимается по винтообразно или кольцеобразно изогнутым волокнам и расходится по всем частям растения...

    Словарь иностранных слов русского языка

"СПИРАЛЬНЫЕ ГАЛАКТИКИ" в книгах

Крендели спиральные

Из книги Праздничный стол автора Иовлева Татьяна Васильевна

Литературные галактики

Из книги Повседневная жизнь Монпарнаса в Великую эпоху. 1903-1930 гг. автора Креспель Жан-Поль

К ЦЕНТРУ ГАЛАКТИКИ

Из книги Пархатого могила исправит, или как я был антисемитом автора Колкер Юрий

К ЦЕНТРУ ГАЛАКТИКИ - Получил я за книгу порядочные деньги, - сказал мне при нашем знакомстве Борис Иванович Иванов,

4. К ЦЕНТРУ ГАЛАКТИКИ

Из книги Мои кочегарки. Воспоминания. автора Колкер Юрий

4. К ЦЕНТРУ ГАЛАКТИКИ - ... Получил я за книгу порядочные деньги, - говорил мой собеседник, - и ушел с работы. Целый год жил, не работая. И что вы думаете, Юра, я много написал за этот год?Разговор происходил в 1980 году, в кочегарке на улице Плеханова. Собеседника звали Борис

Мы дети Галактики

Из книги Мы в Галактике автора Климкевич Светлана Титовна

Мы дети Галактики ОТЕЦ-ЕДИНАЯ ЖИЗНЬ СЫН – ЗНАЮЩИЙ И ПОЗНАЮЩИЙ ЗАКОНЫ ЖИЗНИ ОТЦА СВЯТОЙ ДУХ – РАЗУМ ОТЦА – СОЗНАНИЕ ЖИЗНИ 07.03.2011 г.Я Есмь Что Я Есмь!Я Есмь Манас!Приветствую тебя, Владыка!Светлана, Дорогая! Мы в Галактике! Эта фраза будет звучать в нашем тексте постоянно. Мы

Разум Галактики

Из книги Мы сменили свою простую одежду на божественную автора Климкевич Светлана Титовна

Разум Галактики «Повышенная осознанность это умение просчитывать символы» Барбара Марсиньяк «Путь силы» 17.02.2011 г.Проснулась, мысль в голове: «Данную многомерную реальность нам открывает множество разумов в нашем сознании» – мысль по теме над осознанием которой я

Центр Галактики

Из книги Тайны пространства и времени автора Комаров Виктор

Центр Галактики Наша звездная система представляет собой объект чрезвычайно сложный и трудный для исследования. К тому же ее изучение современными методами началось сравнительно недавно. Поэтому нет ничего удивительного в том, что с Галактикой связано так много

Галактики

Из книги Твиты о вселенной автора Чаун Маркус

Галактики 86. Что такое галактики? Галактики - большие острова звезд, дрейфующие в океане космического пространства. Это строительные блоки Вселенной, которых около 100 млрд.Галактики разлетаются друг от друга как части космической шрапнели после колоссального взрыва -

Галактики

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

Галактики По мере расширения Вселенной горячий газ, из которого она состояла, охлаждался. В каких-то случайных ее областях плотность газа была немного выше, чем в других. Когда газ становился достаточно холодным, гравитация стягивала каждую из областей высокой

Спиральные прочистки труб

Из книги Современный квартирный сантехник автора Бейкер Гленн И.

Спиральные прочистки труб Спиральные прочистки образуют еще одну необходимую группу инструментов для устранения засоров. Часто они называются тросами. Как вы, должно быть, понимаете, существуют различные типы и размеры тросов. Неплохо было бы иметь хотя бы один такой

Галактики

Из книги Краткий справочник необходимых знаний автора Чернявский Андрей Владимирович

Галактики Галактики - это гигантские (до сотни млрд звезд) звездные системы. К ним относится, в частности, наша Галактика - Млечный Путь. Ближайшие к нам галактики - Магеллановы Облака (на расстоянии 52 килопарсека) и Туманность Андромеды (на расстоянии 670 килопарсек).

Галактики

Из книги Большая Советская Энциклопедия (ГА) автора БСЭ

Спиральные ветви галактик

БСЭ

Спиральные галактики

Из книги Большая Советская Энциклопедия (СП) автора БСЭ

Основной комплекс асан. Уттхита Парсваконасана (асана «Спиральные перемещения»)

Из книги Йога. Домашние тренировки автора Автор неизвестен

Основной комплекс асан. Уттхита Парсваконасана (асана «Спиральные перемещения») Эффект: повышение гибкости костей конечностей, профилактика зажимов суставов.Исходное положение показано на рисунке. На выдохе оттягиваем правую руку и туловище, сильно устремляясь влево