Карта с нанесённым на неё расположением Коллайдера

Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн , получившая своё развитие в М-теории (теории бран), теория супергравитации , петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц.

БАК позволит провести эксперименты, которые ранее было невозможно провести и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии » - например, теория струн , которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий.

Изучение топ-кварков

История строительства

27-километровый подземный туннель, предназначенный для размещения ускорителя LHC

Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году , после окончания работы предыдущего ускорителя - Большого электрон-позитронного коллайдера .

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·10 12 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ (5,5·10 9 электронвольт) на каждую пару сталкивающихся нуклонов . Таким образом, БАК будет самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии своих ближайших конкурентов - протон-антипротонный коллайдер Тэватрон , который в настоящее время работает в Национальной ускорительной лаборатории им. Энрико Ферми (США), и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер . Туннель с длиной окружности 26,7 км проложен на глубине около ста метров под землёй на территории Франции и Швейцарии . Для удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита , общая длина которых превышает 22 км. Последний из них был установлен в туннеле 27 ноября 2006 года . Магниты будут работать при температуре 1,9 K (−271 °C). Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года.

Испытания

Технические характеристики

Процесс ускорения частиц в коллайдере

Скорость частиц в БАК на встречных пучках близка к скорости света в вакууме . Разгон частиц до таких больших скоростей достигается в несколько этапов. На первом этапе низкоэнергетичные линейные ускорители Linac 2 и Linac 3 производят инжекцию протонов и ионов свинца для дальнейшего ускорения. Затем частицы попадают в PS-бустер и далее в сам PS (протонный синхротрон), приобретая энергию в 28 ГэВ. После этого ускорение частиц продолжается в SPS (протонный суперсинхротрон), где энергия частиц достигает 450 ГэВ. Затем пучок направляют в главное 26,7-километровое кольцо и в точках столкновения детекторы фиксируют происходящие события.

Потребление энергии

Во время работы коллайдера расчётное потребление энергии составит 180 МВт . Предположительные энергозатраты всего кантона Женева. Сам CERN не производит энергию, имея лишь резервные дизельные генераторы .

Распределённые вычисления

Для управления, хранения и обработки данных, которые будут поступать с ускорителя БАК и детекторов, создаётся распределённая вычислительная сеть LCG (англ. LHC Computing GRID ), использующая технологию грид . Для определённых вычислительных задач будет задействован проект распределённых вычислений LHC@home .

Неконтролируемые физические процессы

Некоторые специалисты и представители общественности высказывают опасения, что имеется отличная от нуля вероятность выхода проводимых в коллайдере экспериментов из-под контроля и развития цепной реакции, которая при определённых условиях теоретически может уничтожить всю планету. Точка зрения сторонников катастрофических сценариев, связанных с работой БАК, изложена на отдельном сайте. Из-за подобных настроений БАК иногда расшифровывают как Last Hadron Collider (Последний Адронный Коллайдер).

В этой связи наиболее часто упоминается теоретическая возможность появления в коллайдере микроскопических чёрных дыр , а также теоретическая возможность образования сгустков антиматерии и магнитных монополей с последующей цепной реакцией захвата окружающей материи.

Указанные теоретические возможности были рассмотрены специальной группой CERN, подготовившей соответствующий доклад, в котором все подобные опасения признаются необоснованными. Английский физик-теоретик Эдриан Кент опубликовал научную статью с критикой норм безопасности, принятых CERN, поскольку ожидаемый ущерб, то есть произведение вероятности события на число жертв, является, по его мнению, неприемлемым. Тем не менее, максимальная верхняя оценка вероятности катастрофического сценария на БАК составляет 10 -31 .

В качестве основных аргументов в пользу необоснованности катастрофических сценариев приводятся ссылки на то, что Земля , Луна и другие планеты постоянно бомбардируются потоками космических частиц с гораздо более высокими энергиями. Упоминается также успешная работа ранее введённых в строй ускорителей, включая релятивистский коллайдер тяжёлых ионов RHIC в Брукхейвене . Возможность образования микроскопических чёрных дыр не отрицается специалистами CERN, однако при этом заявляется, что в нашем трёхмерном пространстве такие объекты могут возникать только при энергиях, на 16 порядков больших энергии пучков в БАК. Гипотетически микроскопические чёрные дыры могут появляться в экспериментах на БАК в предсказаниях теорий с дополнительными пространственными измерениями. Такие теории пока не имеют каких-либо экспериментальных подтверждений. Однако, даже если чёрные дыры будут возникать при столкновении частиц в БАК, предполагается, что они будут чрезвычайно неустойчивыми вследствие излучения Хокинга и будут практически мгновенно испаряться в виде обычных частиц.

21 марта 2008 года в федеральный окружной суд штата Гавайи (США) был подан иск Уолтера Вагнера (англ. Walter L. Wagner ) и Луиса Санчо (англ. Luis Sancho ), в котором они, обвиняя CERN в попытке устроить конец света, требуют запретить запуск коллайдера до тех пор, пока не будет гарантирована его безопасность.

Сравнение с природными скоростями и энергиями

Ускоритель предназначен для сталкивания таких частиц, как адроны и атомарные ядра. Однако, существуют природные источники частиц, скорость и энергия которых значительно выше, чем в коллайдере (см.: Зэватрон). Такие природные частицы обнаруживают в космических лучах . Поверхность планеты Земля частично защищена от этих лучей, но, проходя через атмосферу, частицы космических лучей сталкиваются с атомами и молекулами воздуха. В результате этих природных столкновений в атмосфере Земли рождается множество стабильных и нестабильных частиц. В результате, на планете уже в течение многих миллионов лет присутствует естественный радиационный фон. То же самое (сталкивание элементарных частиц и атомов) будет происходить и в БАК, однако с меньшими скоростями и энергиями, и в гораздо меньшем количестве.

Микроскопические чёрные дыры

Если чёрные дыры могут возникать в ходе столкновения элементарных частиц, они также будут и распадаться на элементарные частицы, в соответствии с принципом CPT-инвариантности , являющимся одним из самых фундаментальных принципов квантовой механики.

Далее, если бы гипотеза существования стабильных чёрных микро-дыр была верна, то они бы образовывались в больших количествах в результате бомбардировки Земли космическими элементарными частицами. Но бо́льшая часть прилетающих из космоса высокоэнергетических элементарных частиц обладают электрическим зарядом, поэтому часть чёрных дыр были бы электрически заряжены. Эти заряженные чёрные дыры захватывались бы магнитным полем Земли и, будь они в самом деле опасны, давно разрушили бы Землю. Механизм Швиммера, делающий чёрные дыры электрически нейтральными, очень похож на эффект Хокинга и не может работать, если эффект Хокинга не работает.

К тому же, любые чёрные дыры, заряженные или электрически нейтральные, захватывались бы белыми карликами и нейтронными звёздами (которые, как и Земля, бомбардируются космическим излучением) и разрушали их. В результате время жизни белых карликов и нейтронных звёзд было бы гораздо короче, чем наблюдаемое в действительности. Кроме того, разрушаемые белые карлики и нейтронные звёзды испускали бы дополнительное излучение, которое в действительности не наблюдается.

Наконец, теории с дополнительными пространственными измерениями, предсказывающие возникновение микроскопических чёрных дыр, не противоречат экспериментальным данным, только если количество дополнительных измерений не меньше трёх. Но при таком количестве дополнительных измерений должны пройти миллиарды лет, прежде чем чёрная дыра причинит Земле сколько-нибудь существенный вред.

Страпельки

Противоположных взглядов придерживается доктор физико-математических наук из НИИ ядерной физики МГУ Эдуард Боос, отрицающий возникновение на БАК макроскопических чёрных дыр, а следовательно, «кротовых нор» и путешествий во времени .

Примечания

  1. The ultimate guide to the LHC (англ.) P. 30.
  2. LHC: ключевые факты . «Элементы большой науки». Проверено 15 сентября 2008.
  3. Tevatron Electroweak Working Group, Top Subgroup
  4. LHC synchronization test successful (англ.)
  5. Второй тест системы инжекции прошёл с перебоями, но цели достиг . «Элементы большой науки» (24 августа 2008). Проверено 6 сентября 2008.
  6. LHC milestone day gets off to fast start
  7. First beam in the LHC - accelerating science .
  8. Mission complete for LHC team . physicsworld.com. Проверено 12 сентября 2008.
  9. На LHC запущен стабильно циркулирующий пучок . «Элементы большой науки» (12 сентября 2008). Проверено 12 сентября 2008.
  10. Происшествие на Большом адронном коллайдере задерживает эксперименты на неопределённый срок . «Элементы большой науки» (19 сентября 2008). Проверено 21 сентября 2008.
  11. Большой адронный коллайдер возобновит работу не раньше весны - ЦЕРН . РИА «Новости» (23 сентября 2008). Проверено 25 сентября 2008.
  12. http://press.web.cern.ch/Press/PressReleases/Releases2008/PR14.08E.html
  13. https://edms.cern.ch/file/973073/1/Report_on_080919_incident_at_LHC__2_.pdf
  14. https://lhc2008.web.cern.ch/LHC2008/inauguration/index.html
  15. Ремонт поврежденных магнитов будет более объемным, чем казалось ранее . «Элементы большой науки» (09 ноября 2008). Проверено 12 ноября 2008.
  16. Расписание на 2009 год . «Элементы большой науки» (18 января 2009). Проверено 18 января 2009.
  17. Пресс-релиз ЦЕРН
  18. Утверждён план работы Большого адронного коллайдера на 2009-2010 годы . «Элементы большой науки» (6 февраля 2009). Проверено 5 апреля 2009.
  19. The LHC experiments .
  20. «Ящик Пандоры» открывается . Вести.ру (9 сентября 2008). Проверено 12 сентября 2008.
  21. The Potential for Danger in Particle Collider Experiments (англ.)
  22. Dimopoulos S., Landsberg G. Black Holes at the Large Hadron Collider (англ.) Phys. Rev. Lett. 87 (2001)
  23. Blaizot J.-P. et al. Study of Potentially Dangerous Events During Heavy-Ion Collisions at the LHC.
  24. Review of the Safety of LHC Collisions LHC Safety Assessment Group
  25. Критический обзор рисков ускорителей . Проза.ру (23 мая 2008). Проверено 17 сентября 2008.
  26. Какова вероятность катастрофы на LHC?
  27. Судный день
  28. Asking a Judge to Save the World, and Maybe a Whole Lot More (англ.)
  29. Объяснение того, почему БАК будет безопасным (англ.)
  30. http://environmental-impact.web.cern.ch/environmental-impact/Objects/LHCSafety/LSAGSummaryReport2008-es.pdf (исп.)
  31. http://environmental-impact.web.cern.ch/environmental-impact/Objects/LHCSafety/LSAGSummaryReport2008-de.pdf (нем.)
  32. http://environmental-impact.web.cern.ch/environmental-impact/Objects/LHCSafety/LSAGSummaryReport2008-fr.pdf (фр.)
  33. H. Heiselberg. Screening in quark droplets // Physical Review D. - 1993. - Т. 48. - № 3. - С. 1418-1423. DOI :10.1103/PhysRevD.48.1418
  34. M. Alford, K. Rajagopal, S. Reddy, A. Steiner. Stability of strange star crusts and strangelets // The American Physical Society. Physical Review D. - 2006. - Т. 73, 114016.


В этом году ученые планируют воспроизвести в ядерной лаборатории те далекие первозданные условия, когда еще не было протонов и нейтронов, а существовала сплошная кварк-глюонная плазма. Иными словами, исследователи надеются увидеть мир элементарных частиц в том виде, каким он был всего через доли микросекунд после Большого взрыва, то есть после образования Вселенной. Программа называется «Как все началось». Кроме того, уже более 30 лет в научном мире выстраиваются теории, объясняющие наличие массы у элементарных частиц. Одна из них предполагает существование бозона Хиггса. Эту элементарную частицу называют еще божественной. Как сказал один из сотрудников ЦЕРН, «поймав следы Хиггс-бозона, я приду к собственной бабушке и скажу: посмотри-ка, пожалуйста, - из-за этой маленькой штучки у тебя столько лишних килограммов». Но экспериментально существование бозона пока не подтверждено: все надежды - на ускоритель LHC.

Большой адронный коллайдер – ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ.

Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение. Откуда они возникают, одинаковой ли природы их происхождение и, если да, то какова она?
Сегодня мы имеем ответы на вопросы, позволяющие гораздо лучше понять происхождение Вселенной. Однако в самом начале XXI века перед нами стоят новые вопросы, ответы на которые ученые надеются получить с помощью ускорителя БАК. И кто знает, развитие каких новых областей человеческих знаний повлекут за собой предстоящие исследования. А пока же наши знания о Вселенной недостаточны.

Комментирует член-корреспондент РАН из Института физики высоких энергий Сергей Денисов:
- В этом коллайдере участвует много российских физиков, которые связывают определенные надежды с открытиями, которые могут там произойти. Основное событие, которое может случиться – это открытие так называемой гипотетической частицы Хиггса (Питер Хиггс — выдающийся шотландский физик.). Роль этой частицы чрезвычайно важна. Она ответственна за образование массы других элементарных частиц. Если такую частицу откроют, то это будет величайшим открытием. Оно подтвердило бы так называемую Стандартную модель, которая сейчас широко используется для описания всех процессов в микромире. Пока эта частица не будет открыта, эту модель нельзя считать полностью обоснованной и подтвержденной. Это, конечно, самое первое, чего ученые ожидают от этого коллайдера (LHC).
Хотя, вообще говоря, никто не считает эту Стандартную модель истиной в последней инстанции. И, скорее всего, по мнению большинства теоретиков, она является приближением или, иногда говорят, «низкоэнергетическим приближением» к более Общей теории, которая описывает мир на расстояниях в миллион раз меньших, чем размер ядер. Это примерно как теория Ньютона является «низкоэнергетическим приближением» к теории Эйнштейна – теории относительности. Вторая важная задача, связанная с коллайдером – это попытаться перейти за пределы этой самой Стандартной модели, то есть совершить переход к новым пространственно-временным интервалам.

Физики смогут понять, в каком направлении надо двигаться, чтобы построить более красивую и более Общую теорию физики, которая будет эквивалентна таким малым пространственно-временным интервалам. Те процессы, которые там изучаются, воспроизводят по сути процесс образования Вселенной, как говорят, «в момент Большого Взрыва». Конечно, это для тех, кто верит в эту теорию о том, что Вселенная создавалась таким образом: взрыв, затем процессы при супервысоких энергиях. Оговариваемое путешествие во времени может оказаться связанным с этим Большим Взрывом.
Как бы там ни было, БАК – это достаточно серьезное продвижение в глубь микромира. Поэтому могут открыться совершенно неожиданные вещи. Скажу одно, что на БАКе могут быть открыты совершенно новые свойства пространства и времени. В каком направлении они будут открыты – сейчас сказать трудно. Главное – прорываться дальше и дальше.

Справка

Европейская организация ядерных исследований (ЦЕРН) — крупнейший в мире научно-исследовательский центр в области физики частиц. К настоящему времени число стран-участниц выросло до 20. Около 7000 ученых, представляющих 500 научных центров и университетов, пользуются экспериментальным оборудованием ЦЕРН. Кстати, в работе над Большим адронным коллайдером принимал непосредственное участие и российский Институт ядерной физики СО РАН. Наши специалисты сейчас заняты монтажом и тестированием оборудования, которое разработано и произведено в России для этого ускорителя. Ожидается, что Большой адронный коллайдер будет запущен в мае 2008 года. Как выразился Лин Эванс, глава проекта, ускорителю не хватает лишь одной детали – большой красной кнопки.

Ею является поиск путей объединения двух фундаментальных теорий – ОТО (о гравитационном ) и СМ (стандартной модели, объединяющей три фундаментальных физических взаимодействия – электромагнитного, сильного и слабого). Нахождению решения до создания БАКа препятствовали трудности при создании теории квантовой гравитации.

Построение этой гипотезы включает в себя соединение двух физических теорий – квантовой механики и общей теории относительности.

Для этого были использованы сразу несколько популярных и нужных в современной подходов – струнная теория, теория бран, теория супергравитации, а также теория квантовой гравитации. До построения колайдера главной проблемой проведения необходимых экспериментов являлось отсутствие энергии, которую нельзя достичь на других современных ускорителях заряженных частиц.

Женевский БАК дал ученым возможность проведения ранее неосуществимых экспериментов. Считается, что уже в скором будущем при помощи аппарата будут подтверждены или опровергнуты многие физические теории. Одной из самых проблемных является суперсимметрия или теория струн, которая долгое время разделяла физическое на два лагеря – «струнщиков» и их соперников.

Другие фундаментальные эксперименты, проводимые в рамках работы БАК

Интересны и изыскания ученых в области изучения топ- , являющихся самыми кварками и наиболее тяжелыми (173,1 ± 1,3 ГэВ/c²) из всех известных в настоящее время элементарных частиц.

Из-за этого свойства и до создания БАКа, ученые могли наблюдать кварки только на ускорителе «Тэватрон», так как прочие устройства просто не обладали достаточной мощностью и энергией. В свою очередь, теория кварков представляет собой важный элемент нашумевшей гипотезы о бозоне Хиггса.

Все научные изыскания по созданию и изучению свойств кварков ученые производят в топ-кварк-антикварковой паровой в БАКе.

Важной целью женевского проекта также является процесс изучения механизма электрослабой симметрии, которая также связана с экспериментальным доказательством существования бозона Хиггса. Если обозначить проблематику еще точнее, то предметом изучения является не столько сам бозон, сколько предсказанный Питером Хиггсом механизм нарушения симметрии электрослабого взаимодействия.

В рамках БАКа также проводятся эксперименты по поиску суперсимметрии – причем желаемым результатом станет и теории о том, что любая элементарная частица всегда сопровождается более тяжелым партнером, и ее опровержение.

БАК – это, прежде всего, большая страшилка. Но так ли опасна она и следует ли её бояться? И да, и нет! Во-первых, всё и даже больше, о чём собираются узнать физики и астрофизики уже заранее известно (см. ниже). А то, что представляет собой настоящую угрозу, из области их предположений, оказывается совсем иной угрозой. Я, почему так уверено говорю об этом, да только потому, что мной сделано 60 научных открытий свойств эфира Вселенной и поэтому об эфире известно всё, но пока мне одному. Во-первых, наука в корне ошибается в отношении «чёрных дыр». «Чёрные дыры» – это ядра всех галактик. Они огромные и их нельзя создать в миниатюре искусственно никоим образом. И вот почему? Любая галактика представляет собой гигантский естественный осциллятор, который циклически расширяется и сокращается с периодом в десятки миллиардов лет. В конце сокращения большинство галактик приобретают форму шара (ядро). Вся Вселенная, в том числе и все галактики, состоят главным образом из эфира. Эфир представляет собой идеальную неразрывную сжимаемую жидкость, сжатую до колоссального давления, имеет огромную плотность и, самое важное, его вязкость оказывается равной нулю. Ядро и есть «чёрная дыра», но в отличие от общепринятого представления о нём в нём нет, и не может быть, никакой материи в любом её виде – один лишь эфир. За сокращением галактики сразу же следует её расширение. В частности, из шарообразной формы дополнительно начинается образовываться дискообразная форма. В результате расширения в ней эфира его статическое давление внутри уменьшается. Через миллионы лет наступает первое критическое давление, при котором из эфира подобно капелькам росы появляются самые различные субэлементарные частицы, в том числе фотоны, жёсткое излучение – рентгеновские лучи, «частицы Бога» и прочие. Галактика становится видимой, светящейся. Если она обращена к нам боком, то в центре вокруг оси наблюдается чёрная точка или чёрное пятно – эфир в котором материя не образуется. Она образуется на больших диаметрах. Существует зона или видимый пояс, в котором образуется материя. Далее по мере расширения дискообразной части происходит усложнение материи. Субэлементарные частицы оказываются сдавленными со всех сторон эфиром. Сам эфир между частицами образует параболоиды вращения со статическим давлением меньшим, чем в окружающем их эфире. Наименьшие поперечные сечение параболоидов на средине расстояния между центрами масс этих частиц и определяют силы сдавливания частиц от не скомпенсированного давления на них с противоположных сторон. Под действием сил сдавливания частицы приходят в движение. Частиц великое множество, поэтому результирующие силы от сдавливающих сил оказываются долгое время равными нулю. За сотни миллионов лет это равновесие постепенно нарушается. Некоторые из них слипаются, затормаживая своё движение, другие не успевают пройти мимо и под действием сил сдавливания начинают вращаться вокруг слипшихся более массивных частиц, образую атомы. Затем через миллиарды лет таким же образом образуются молекулы. Материя постепенно усложняется: образуются газовые звёзды, затем звёзды с планетами. На планетах под действием всё тех же сил сдавливания материя становиться более сложной. Образуются: газообразные, жидкие и твёрдые вещества. Затем на отдельных из них появляется растительный и животный мир и, наконец, живые существа наделённые разумом – люди и инопланетяне. Таким образом, в удалённых зонах галактики по мере расширения дискообразной части, материя становится тем сложнее, чем дальше она находится от центра ядра. В самом же ядре статическое давление, по-видимому, всегда оказывается выше критического, поэтому в нём образование материи оказывается невозможным. Гравитация как таковая не существует вовсе. Во Вселенной и, в частности, в галактиках действует закон всемирного сдавливания (выдавливания). Ядро галактики является «чёрной дырой», но она не обладают силами затягивающими материю. Свет, попавший в такую дыру, свободно проникает сквозь неё вопреки заявлениям о том, что это якобы невозможно. Поскольку эфир Вселенной представляет собой неделимую сжимаемую жидкость, то он не обладает температурой. Температуру имеет лишь материя, поскольку она дискретна (состоит из частиц). Поэтому нашумевший Большой взрыв и Теория тепловой вселенной оказываются ошибочными. Поскольку во Вселенной действует Закон всемирного сдавливания (выдавливания), то отсутствует ни чем не объяснимая гравитация как таковая, принимаемая учёными просто – на веру. Поэтому не состоятельной оказывается ОТО – общая теория относительности А. Эйнштейна и все теории основанные на различного рода полей и зарядов. Никаких полей и зарядов попросту нет. Находит простое и понятное объяснение четыре великих взаимодействия. Кроме того притяжение объясняется сдавливанием, а отталкивание – выдавливанием. Относительно зарядов: разноимённые заряды притягиваются (явление – сдавливание), а одноименные отталкиваются (явление – выталкивание). Поэтому ещё целый ряд теорий также становятся не состоятельными. Однако падать в обморок от страха из-за образования «чёрных дыр» в БАК – Большом андронном коллайдере не следует. Ему её никогда не создать, как бы не пыжился его персонал, и какие бы клятвенные заверения не давал. Создавать «частицы Бога» (бозон Гиггса), по-видимому,_ невозможно и не целесообразно. Эти частицы сами в готовом виде прилетают к нам из первой зоны нашей галактики «Млечный путь», а бояться их – тем паче не следует. Бозон атакует Землю уже миллиарды лет и за это время ничего опасного не случилось. Однако чего следует бояться? Опасность есть и очень большая, о которой даже не догадываются те, которые экспериментируют на БАК! В БАК разгоняют до ранее не достижимых около световых скоростей сравнительно тяжёлые частицы. И, если только они по какой-то причине отклонятся от заданной траектории движения и поэтому попадут в детектор или ещё куда-нибудь, то они, обладая большой скоростью и удельной энергией, а её пытаются увеличивать, начнут вышибать электроны из атомов не радиоактивных веществ, провоцирую тем самым ранее неизвестную ядерную реакцию. После чего начнётся самопроизвольное деление ядер практически всех веществ. Причём это будет атомный взрыв не виданной ранее силы. Вот из-за этого и исчезнет: сначала БАК со Швейцарией, затем Европа и весь земной шар. Хотя на этом быть может всё и остановится, но всех нас уже не будет. Это и будет катастрофа космического масштаба. Поэтому пока не поздно надо персоналу БАК проявить смелость и немедленно приостановить эксперименты на БАК до выяснения истинной причины: так это будет или не так? Быть может я, к счастью, ошибаюсь. Хорошо, если бы это было так. Только коллектив учёных может дать правильный ответ на этот вопрос. Колпаков Анатолий Петрович, инженер-механик

Принцип работы Большого адронного коллайдера

Ускоритель БАК будет работать на основе эффекта сверхпроводимости, т.е. способности определенных материалов проводить электричество без сопротивления или потери энергии, обычно при очень низких температурах. Чтобы удержать пучок частиц на его кольцевом треке, необходимы более сильные магнитные поля, чем те, которые использовались ранее в других ускорителях ЦЕРН.

Большой адронный коллайдер - ускоритель протонов, построенный на территории Швейцарии и Франции, не имеет аналогов в мире. Эта кольцевая конструкция протяженностью 27 км сооружена на 100-метровой глубине.

В ней с помощью 120 мощных электромагнитов при температуре, близкой к абсолютному нулю - минус 271,3 градуса по Цельсию, предполагается разогнать до близкой к световой скорости (99,9 процентов) встречные пучки протонов. Однако в ряде мест их маршруты пересекутся, что позволит протонам сталкиваться. Направлять частицы будут несколько тысяч сверхпроводящих магнитов. Когда энергии будет достаточно, частицы столкнутся, тем самым учёные создадут модель Большого взрыва. Тысячи датчиков будут фиксировать моменты столкновения. Последствия столкновения протонов и станет главным предметом изучения мира. [ http://dipland.ru /Кибернетика/Большой_андронный_коллайдер_92988]

Технические характеристики

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тера электронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5 ГэВ (5·109электронвольт) на каждую пару сталкивающихся нуклонов . На начало 2010 года БАК уже несколько превзошел по энергии протонов предыдущего рекордсмена - протон-антипротонный коллайдер Тэватрон , который до конца 2011 года работал в Национальной ускорительной лаборатории им. Энрико Ферми (США ). Несмотря на то, что наладка оборудования растягивается на годы и ещё не завершена, БАК уже стал самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии остальные коллайдеры, в том числе и релятивистский коллайдер тяжёлых ионов RHIC , работающий в Брукхейвенской лаборатории (США).

Детекторы

На БАК работают 4 основных и 3 вспомогательных детектора:

· ALICE (A Large Ion Collider Experiment)

ATLAS (A Toroidal LHC ApparatuS)

CMS (Compact Muon Solenoid)

LHCb (The Large Hadron Collider beauty experiment)

TOTEM (TOTal Elastic and diffractive cross section Measurement)

LHCf (The Large Hadron Collider forward)

MoEDAL (Monopole and Exotics Detector At the LHC).

ATLAS, CMS, ALICE, LHCb - большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf - вспомогательные, находятся на удалении в несколько десятков метров от точек пересечения пучков, занимаемых детекторами CMS и ATLAS соответственно, и будут использоваться попутно с основными.

Детектор CMS

Детекторы ATLAS и CMS - детекторы общего назначения, предназначены для поиска бозона Хиггса и «нестандартной физики», в частности тёмной материи , ALICE - для изучения кварк-глюонной плазмы в столкновениях тяжёлых ионов свинца, LHCb - для исследования физики b -кварков , что позволит лучше понять различия между материей и антиматерией , TOTEM - предназначен для изучения рассеяния частиц на малые углы, таких что происходит при близких пролётах без столкновений (так называемые несталкивающиеся частицы, forward particles), что позволяет точнее измерить размер протонов, а также контролировать светимость коллайдера, и, наконец, LHCf - для исследования космических лучей , моделируемых с помощью тех же несталкивающихся частиц .

С работой БАК связан также седьмой, совсем незначительный в плане бюджета и сложности, детектор (эксперимент) MoEDAL , предназначенный для поиска медленно движущихся тяжёлых частиц.

Во время работы коллайдера столкновения проводятся одновременно во всех четырёх точках пересечения пучков, независимо от типа ускоряемых частиц (протоны или ядра). При этом все детекторы одновременно набирают статистику.

Потребление энергии

Во время работы коллайдера расчётное потребление энергии составит 180 М Вт . Предположительные энергозатраты всего ЦЕРН на 2009 год с учётом работающего коллайдера - 1000 ГВт·ч, из которых 700 ГВт·ч придётся на долю ускорителя. Эти энергозатраты - около 10 % от суммарного годового энергопотребления кантона Женева . Сам ЦЕРН не производит энергию, имея лишь резервные дизельные генераторы .[ http://ru.wikipedia.org/wiki/ ]

Возможно, через какие-то несколько лет интернет уступит место новой, более глубокой интеграции удаленных компьютеров, позволяющей не только удаленно передавать информацию, локализованную в разных концах света, но и автоматически использовать удаленные вычислительные ресурсы. В связи с запуском Большого адронного коллайдера CERN уже несколько лет работает над созданием такой сети.

То, что интернет (или то, что обозначается термином web) был изобретен в Европейской организации ядерных исследований (CERN), давно уже стало хрестоматийным фактом. Вокруг таблички «В этих коридорах была создана всемирная сеть» в одном из обычных коридоров обычного здания CERN во время дня открытых дверей всегда толпятся зеваки. Сейчас интернет используют для своих практических нужд люди по всему миру, а изначально он был создан для того, чтобы ученые, работающие на одном проекте, но находящиеся в разных концах планеты, могли общаться между собой, делиться данными, публиковать информацию, к которой можно было бы получить доступ удаленно.

Разрабатываемая в CERN система GRID (по-английски grid - решётка, сеть ) - это еще один шаг вперед, новая ступень интеграции пользователей компьютеров.

Он дает не только возможность публиковать данные, которые находятся где-то в другой точке планеты, но и использовать удаленные машинные ресурсы, не сходя со своего места.

Конечно, обычные компьютеры не играют особой роли в обеспечении вычислительных мощностей, поэтому первый этап интеграции - это соединение мировых суперкомпьютерных центров.

Создание этой системы спровоцировал Большой адронный коллайдер. Хотя уже сейчас GRID используется для массы других задач, без коллайдера его бы не было, и наоборот, без GRID обработка результатов коллайдера невозможна.

Карта серверов GRID //

Люди, которые работают в коллаборациях БАК, находятся в разных концах планеты. Известно, что над этим прибором работают не только европейцы, а и все 20 стран - официальных участниц CERN, всего же порядка 35 стран. Теоретически для обеспечения работы БАК существовала альтернатива GRID - расширение собственных вычислительных ресурсов компьютерного центра CERN. Но тех ресурсов, что были на момент постановки задачи, было совершенно недостаточно для моделирования работы ускорителя, хранения информации его экспериментов и ее научной обработки. Поэтому компьютерный центр нужно было бы очень значительно перестраивать и модернизировать, закупать больше компьютеров и средств для хранения данных. Но это бы означало, что все финансирование будет сосредоточено в CERN. Это было не очень приемлемо для стран, находящихся далеко от CERN. Конечно, они не были заинтересованы в спонсировании ресурсов, которыми очень сложно будет воспользоваться и скорее склонны были наращивать свой вычислительный, машинный потенциал. Поэтому родилась идея использовать ресурсы там, где они находятся.

Не пытаться все сосредоточить в одном месте, а объединить то, что уже есть в разных уголках планеты.