Слово стохастический используется математиками и физиками для описания процессов, в которых имеется элемент случайности. Оно происходит непосредственно от греческого слова «атоааизеоа». В этике Аристотеля это слово используется в смысле «способности угадывать». Математики применили это слово, очевидно, на том основании, что при необходимости угадывать появляется элемент случайности. В «Новом международном словаре» Вебстера слово стохастический определено как предположительный. Мы, таким образом, замечаем, что техническое значение этого слова не находится в точном соответствии с его лексическим (словарным) определением. В том же смысле, что и «стохастический процесс», некоторые авторы пользуются выражением «случайный процесс». В дальнейшем мы будем говорить о процессах и сигналах, которые не являются чисто случайными, но содержат в себе случайность в той или иной степени. По этой причине мы предпочитаем слово «стохастический».

Рис. 3.1-1. Сравнение типичного стохастического и предсказуемого сигналов.

На рис. 3.1-1 сравниваются простые формы колебаний стохастического и регулярного сигналов. Если повторить эксперимент по измерению стохастического сигнала, то мы получим колебания новой формы, отличной от предыдущей, но все еще проявляющей некоторое сходство в характерных чертах. Запись колебаний волн океана

является еще одним примером стохастического сигнала. Почему необходимо говорить об этих, довольно необычных, стохастических сигналах? Ответ на этот вопрос основан на том факте, что входные сигналы систем автоматики зачастую не являются полностью предсказуемыми подобно синусоиде или простейшему переходному процессу. В действительности, стохастические сигналы встречаются при исследованиях автоматических систем чаще, чем предсказуемые сигналы. Тем не менее то обстоятельство, что предсказуемые сигналы имеют большое значение до настоящего времени, не является серьезным упущением. Весьма часто можно прийти к приемлемой методике, подбирая сигналы из класса предсказуемых сигналов так, чтобы отобразить характерные особенности истинного сигнала, являющегося по своей природе стохастическим. Примером такого рода является использование нескольких соответственно подобранных синусоид с целью представить стохастические изменения моментов, обусловливающих качку, в задаче об устойчивости корабля. С другой стороны, мы встречаем такие задачи, в которых представление истинного стохастического сигнала с помощью предсказуемой функции весьма затруднительно. В качестве первого примера рассмотрим схему системы автоматического слежения за целью и управления огнем. Здесь наводящее радиолокационное устройство измеряет ошибку наведения не точно, а только приблизительно. Разность между истинной ошибкой наведения и тем, что измеряет радиолокатор, часто называют радиолокационным шумом. Обычно очень трудно аппроксимировать радиолокационный шум несколькими синусоидами или другими простыми функциями. Другим примером является плетение текстильных волокон. В процессе плетения из беспорядочно запутанных связок волокна (называемых пряжей) вытягивается нить. Толщину нити, в некотором смысле, можно рассматривать как входной сигнал при регулировании процесса плетения. Отклонения в этом процессе происходят из-за изменения числа и толщины отдельных волокон в различных переплетающихся участках пряжи. Очевидно, этот тип отклонений является по своей природе стохастическим, и его затруднительно аппроксимировать любыми регулярными функциями.

Предыдущие рассуждения показывают, что стохастические сигналы при исследовании систем регулирования играют важную роль. Пока мы говорили о стохастических сигналах как о сигналах, вызванных процессами, содержащими некоторый элемент случайности. Чтобы перейти к дальнейшему, мы должны уточнить понятия о таких сигналах. Современная физика, в особенности квантовая механика, учит, что все физические процессы при детальном исследовании

оказываются разрывными и недетерминированными. Законы классической механики заменяются статистическими законами, основанными на вероятности событий. Например, мы обычно считаем напряжение колебаний, возникающих на экране вакуумной трубки осциллографа, гладкой функцией. Однако мы знаем, что если исследовать эти колебания при помощи микроскопа, они не будут выглядеть столь гладко из-за дробового шума в трубке, сопровождающего возбуждение колебаний. После некоторого размышления нетрудно склониться к тому, что все сигналы в природе являются стохастическими. Хотя сначала мы предположили, что по сравнению с синусоидой или функцией единичного скачка стохастический сигнал является относительно абстрактным понятием, но в действительности вернее обратное: синусоида, функция единичного скачка и вообще регулярные сигналы представляют абстракцию. Однако, подобно евклидовой геометрии, - это полезная абстракция.

Стохастический сигнал не может быть представлен графически наперед заданным образом, так как он обусловлен процессом, содержащим элемент случайности. Мы не можем сказать, какова величина стохастического сигнала в будущий момент времени. О стохастическом сигнале в будущий момент времени можно сказать только какова вероятность, что его величина попадает в определенный интервал. Мы, таким образом, видим, что понятия функции для стохастического сигнала и для регулярного сигнала совершенно различны. Для регулярной переменной величины идея функции подразумевает определенную зависимость переменной от ее аргумента. С каждой величиной аргумента мы связываем одно или несколько значений переменной. В случае стохастической функции мы не можем связать единственным образом величину переменной с некоторым частным значением аргумента. Все, что мы можем сделать - это связать с частными значениями аргумента некоторые распределения вероятности. В определенном смысле все регулярные сигналы являются тем предельным случаем стохастических сигналов, когда распределения вероятности обладают высокими пиками, так что неопределенность положения переменной для частной величины аргумента равна нулю. На первый взгляд стохастическая переменная может показаться настолько неопределенной, что ее аналитическое рассмотрение невозможно. Однако мы увидим, что анализ стохастических сигналов может быть проведен с помощью функций плотности вероятности и других статистических характеристик, таких как средние величины, среднеквадратичные величины и функции корреляции. Ввиду статистической природы стохастические сигналы зачастую удобно считать элементами множества сигналов, каждый из которых обусловлен одиим и тем же процессом. Это множество сигналов называется ансамблем. Понятие ансамбля для стохастических сигналов соответствует понятию населения в статистике. Характеристики стохастического сигнала

относятся обычно к ансамблю, а не к частному сигналу ансамбля. Таким образом, когда мы говорим об определенных свойствах стохастического сигнала, то обычно подразумеваем, что этими свойствами обладает ансамбль. Вообще невозможно считать, что отдельный стохастический сигнал имеет произвольные свойства (с возможным исключением несущественных свойств). В следующем параграфе мы обсудим важное исключение из этого общего правила.

"Стохастический" – это слово, которое физики, математики и другие ученые используют для описания процессов, обладающих элементом случайности. Происхождение его древнегреческое. В переводе оно означает "умеющий угадывать".

Значение слова "стохастический"

"Стохастический" - это понятие, которое используется во множестве различных областей науки. Оно означает случайность, хаотичность, неопределенность чего-либо. В этике Аристотеля (его скульптурный портрет представлен выше) понятие "стохастический" – это определение, относящееся к способности угадывать. Очевидно, математики употребляли его на том основании, что элемент случайности появляется как раз при необходимости угадывать. Слово "стохастический" – это понятие, которое определено в "Новом международном словаре" как "предположительный".

Таким образом, можно заметить, что техническое значение данного понятия не точно соответствует его словарному (лексическому) значению. Некоторые авторы используют выражение "стохастический процесс" как синоним понятия "случайный процесс".

Стохастичность в математике

Употребление данного термина в математике в настоящее время широко распространено. К примеру, существует такое понятие в теории вероятности, как стохастический процесс. Его итог нельзя определить по изначальному состоянию данной системы.

Употребление в математике понятия "стохастичность" относят к трудам Владислава Борцкевича. Именно он использовал данный термин в значении "выдвигать гипотезы". В математике, в особенности в таком разделе этой науки, как теория вероятности, область случайных исследований играет большую роль. Существует, к примеру, такое понятие, как стохастическая матрица. Колонки или строки данной матрицы в сумме дают единицу.

Стохастическая математика (финансовая)

Данный раздел математики анализирует финансовые структуры, действующие в условиях неопределенности. Он призван находить самые рациональные методы управления финансовыми средствами и структурами, учитывая такие факторы, как стохастическая эволюция, риск, время и др.

В науке принято выделять следующие структуры и объекты, которые используются в финансовой математике в целом:

  • фирмы (к примеру, компании);
  • индивидуумы;
  • посреднические структуры (пенсионные фонды, банки);
  • финансовые рынки.

Основным объектом изучения финансовой математики стохастической является именно последний из них. Данный раздел базируется на таких дисциплинах, как статистика случайных процессов, теория случайных процессов и др.

В настоящее время даже людям, далеким от науки, хорошо известно по многочисленным новостям и публикациям в СМИ, что значения так называемых глобальных финансовых индексов (например, индекса Доу Джонса), цены акций меняются хаотически. Л. Башелье предпринял первую попытку описать с использованием математики эволюцию стоимости акций. Его стохастический метод опирается на теорию вероятностей. Диссертация Л. Башелье, где представлена эта попытка, была опубликована в 1900 году. Ученый доказал формулу, известную в настоящее время как формула справедливой стоимости опциона-колл. В ней отражается стохастическая вероятность.

Важные идеи, которые в дальнейшем привели к возникновению теории эффективного рынка, были изложены в труде М. Кендалла, изданном в 1953 году. В этой работе рассматривается вопрос динамики цен акций. Исследователь описывает ее с помощью стохастических процессов.

Стохастичность в физике

Благодаря физикам Э. Ферми, С. Уламу, Н. Метрополису и Д. Нейману большое распространение получил метод Монте-Карло. Его название произошло от казино, расположенного в одноименном городе такой страны, как Монако. Именно здесь занимал деньги для игры дядя Улама. Использование природы повторов и случайностей для изучения процессов является аналогичным происходящей в казино деятельности.

При применении данного метода моделирования сначала происходит поиск вероятностного аналога. До этого моделирование осуществлялось в противоположном направлении: оно использовалось для проверки результата детерминированной проблемы, полученной ранее. И хотя и до открытия метода Монте-Карло существовали подобные подходы, они не были популярными и общими.

Энрико Ферми в 1930 году применил стохастические приемы для расчета свойств нейтрона, в то время только что обнаруженного. Методы Монте-Карло в дальнейшем использовались при работе над манхэттенским проектом, хотя в то время были существенно ограничены возможности вычислительных машин. По этой причине они получили широкое распространение только после того, как появились компьютеры.

Стохастические сигналы

Регулярные и стохастические сигналы имеют разные формы колебаний. Если повторно измерить последние, мы получим колебания, имеющие новую форму, которая отлична от предыдущей, однако проявляет определенное сходство в существенных чертах. Пример стохастического сигнала – запись колебаний волн моря.

Почему же вообще необходимо вести речь об этих достаточно необычных сигналах? Дело в том, что при изучении автоматических систем они встречаются даже чаще, чем предсказуемые.

Стохастичность и искусственный интеллект

Стохастические программы в сфере искусственного интеллекта работают с применением вероятностных методов. В качестве примера можно привести такие алгоритмы, как стохастическая оптимизация или нейронные сети. Это же относится к имитации отжига и генетическим алгоритмам. Во всех этих случаях стохастичность может содержаться в проблеме как таковой или же в планировании чего-либо в условии неопределенности. Детерминированное окружение для агента моделирования является более простым, чем стохастическое.

Итак, как мы видим, интересующее нас понятие используется во многих областях науки. Мы перечислили и охарактеризовали лишь основные сферы его применения. Изучение всех этих процессов, согласитесь, очень важно и актуально. Именно поэтому интересующее нас понятие, вероятно, будет еще долго использоваться в науке.

Не может быть определен по изначальному состоянию системы.

  • В математике стохастическая матрица - это матрица , в которой все столбцы и/или строки - ряды неотрицательных действительных чисел, дающих в сумме.
  • В физике, стохастический резонанс - это проявление эффекта допорогового периодического сигнала, из-за добавления беспорядочного (шумового) воздействия, имеющего определённую оптимальную амплитуду, при которой проявление наиболее сильно́.
  • В музыке. Стохастическая музыка - по Хиллеру - это название такого вида композиционной техники, при котором законы теории вероятности определяют факт появления тех или иных элементов композиции при заранее обусловленных общих формальных предпосылках. В 1956 году, Янис Ксенакис ввел свой термин «стохастическая музыка», для описания музыки, основанной на законах вероятностей и законах больших чисел.
  • Стохастические системы - это системы, изменение в которых носит случайный характер. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

    Стохастический: Определение процесса, определяемого рядом наблюдений.

    См. также


    Wikimedia Foundation . 2010 .

    Синонимы :

    Смотреть что такое "Стохастический" в других словарях:

      - [гр. stochastikos умеющий угадывать] случайный, вероятностный, беспорядочный, непредсказуемый. Словарь иностранных слов. Комлев Н.Г., 2006. стохастический (гр. stochasis догадка) случайный, или вероятностный, напр, с. процесс процесс, характер… … Словарь иностранных слов русского языка

      Вероятностный, случайный; непредсказуемый. Ant. закономерный, обязательный Словарь русских синонимов. стохастический прил., кол во синонимов: 4 беспорядочный (44) … Словарь синонимов

      Большой Энциклопедический словарь

      Управляемый законами теории вероятностей, случайный. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

      Англ. stochastic; нем. stochastisch. В статистике случайный или вероятный; напр., С. процесс процесс, характер изменения к рого во времени точно предсказать невозможно. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

      стохастический - ая, ое. stochastique, нем. stochastisch <гр. stochasis догадка. мат. Случайный, происходящий с вероятностью, которую невозможно предсказать. С.процесс. Стохастичность и, ж. Крысин 1998. Лекс. БСЭ 2: стохасти/ческий … Исторический словарь галлицизмов русского языка

      стохастический - tikimybinis statusas T sritis automatika atitikmenys: angl. stochastic vok. stochastisch rus. стохастический pranc. stochastique ryšiai: sinonimas – stochastinis … Automatikos terminų žodynas

      Ая, ое [греч. stochasis догадка] Книжн. Случайный, вероятностный, возможный. С ие изменения в экономике. С. процесс эволюции природы. * * * стохастический (от греч. stochastikós умеющий угадывать), случайный, вероятностный … Энциклопедический словарь

      Стохастический - то есть случайный, не имеющий очевидной закономерной причины … Физическая Антропология. Иллюстрированный толковый словарь.

      Стохастический - (от греч. stochastikos умеющий угадывать) случайный, вероятностный … Начала современного естествознания

    Книги

    • , Ф. С. Насыров. Книга посвящена применению методов теории функций вещественной переменной и теории дифференциальных уравнений в стохастическом анализе. Материал охватывает общую теорию локальных времен для…
    • Локальные времена, симметричные интегралы и стохастический анализ , Насыров Ф.С.. Книга посвящена применению методов теории функций вещественной переменной и теории дифференциальных уравнений в стохастическом анализе. Материал охватывает общую теорию локальных времен для…

    Определение

    X t (⋅) : Ω → R , t ∈ T {\displaystyle X_{t}(\cdot)\colon \Omega \to \mathbb {R} ,\quad t\in T} ,

    где T {\displaystyle T} произвольное множество , называется случайной функцией .

    Терминология

    Данная классификация нестрогая. В частности, термин «случайный процесс» часто используется как безусловный синоним термина «случайная функция».

    Классификация

    • Случайный процесс X (t) {\displaystyle X(t)} называется процессом дискретным во времени , если система, в которой он протекает, меняет свои состояния только в моменты времени t 1 , t 2 , … {\displaystyle \;t_{1},t_{2},\ldots } , число которых конечно или счётно. Случайный процесс называется процессом с непрерывным временем , если переход из состояния в состояние может происходить в любой момент времени.
    • Случайный процесс называется процессом с непрерывными состояниями , если значением случайного процесса является непрерывная случайная величина. Случайный процесс называется случайным процессом с дискретными состояниями , если значением случайного процесса является дискретная случайная величина:
    • Случайный процесс называется стационарным , если все многомерные законы распределения зависят только от взаимного расположения моментов времени t 1 , t 2 , … , t n {\displaystyle \;t_{1},t_{2},\ldots ,t_{n}} , но не от самих значений этих величин. Другими словами, случайный процесс называется стационарным , если его вероятностные закономерности неизменны во времени. В противном случае, он называется нестационарным .
    • Случайная функция называется стационарной в широком смысле , если её математическое ожидание и дисперсия постоянны, а АКФ зависит только от разности моментов времени, для которых взяты ординаты случайной функции. Понятие ввёл А. Я. Хинчин .
    • Случайный процесс называется процессом со стационарными приращениями определённого порядка, если вероятностные закономерности такого приращения неизменны во времени. Такие процессы были рассмотрены Ягломом .
    • Если ординаты случайной функции подчиняются нормальному закону распределения , то и сама функция называется нормальной .
    • Случайные функции, закон распределения ординат которых в будущий момент времени полностью определяется значением ординаты процесса в настоящий момент времени и не зависит от значений ординат процесса в предыдущие моменты времени, называются марковскими .
    • Случайный процесс называется процессом с независимыми приращениями , если для любого набора t 1 , t 2 , … , t n {\displaystyle t_{1},t_{2},\ldots ,t_{n}} , где n > 2 {\displaystyle n>2} , а t 1 < t 2 < … < t n {\displaystyle t_{1}, случайные величины (X t 2 − X t 1) {\displaystyle (X_{t_{2}}-X_{t_{1}})} , (X t 3 − X t 2) {\displaystyle (X_{t_{3}}-X_{t_{2}})} , … {\displaystyle \ldots } , (X t n − X t n − 1) {\displaystyle (X_{t_{n}}-X_{t_{n-1}})} независимы в совокупности.
    • Если при определении моментных функций стационарного случайного процесса операцию усреднения по статистическому ансамблю можно заменить усреднением по времени, то такой стационарный случайный процесс называется эргодическим .
    • Среди случайных процессов выделяют импульсные случайные процессы .

    Траектория случайного процесса

    Пусть дан случайный процесс { X t } t ∈ T {\displaystyle \{X_{t}\}_{t\in T}} . Тогда для каждого фиксированного t ∈ T {\displaystyle t\in T} X t {\displaystyle X_{t}} - случайная величина, называемая сечением . Если фиксирован элементарный исход ω ∈ Ω {\displaystyle \omega \in \Omega } , то X t: T → R {\displaystyle X_{t}\colon T\to \mathbb {R} } - детерминированная функция параметра t {\displaystyle t} . Такая функция называется траекто́рией или реализа́цией случайной функции { X t } {\displaystyle \{X_{t}\}} .

    Обнаружение радиолокационных сигналов неопределенно из-за того, что одновременно с ними присутствуют и случайные флуктуации, или "шумы". Если бы можно было предсказать точные значения шумовых напряжений или токов, их можно было бы вычесть из суммарного сигнала и после этого принять определенное решение либо о наличии, либо об отсутствии сигнала. Но такое предсказание невозможно, так как шумовые напряжения появляются вследствие хаотического теплового движения ионов - и электронов в элементах приемника и в пространстве, окружающем антенну. Лучшее, что можно сделать, это описать флуктуации напряжения статистически с помощью распределений вероятностей их значений и использовать эти статистические данные для проектирования приемника, в котором достигалось бы наибольшее возможное число успешных обнаружений при большом числе опытов. В настоящей главе дается статистическое описание шума, а в следующей главе вводятся различные критерии успешного и ошибочного обнаружения в статистических ситуациях, указывающие, какими соображениями следует руководствоваться при поисках оптимальной конструкции приемника.

    Если бы напряжение в некоторой точке радиолокационного приемника, например на сетке первой усилительной лампы, было записано как функция времени, запись имела бы совершенно беспорядочный вид и казалось бы, что нет способа вычисления или предсказания значений этого флуктуирующего напряжения. Если бы одновременно были записаны напряжения в соответствующих точках каждого из набора одинаковых приемников, находящихся в одинаковых условиях,

    они различались бы в деталях от приемника к приемнику. Однако некоторые грубые или средние свойства записей были бы почти одинаковы. Изучая большое число таких записей и определяя относительные частоты, с которыми рассматриваемые величины принимают различные значения, можно описать поведение флуктуирующих напряжений статистически. Такое описание производится на языке теории вероятностей, позволяющей делать логические заключения о свойствах флуктуирующих напряжений. Краткий обзор теории вероятностей дан в приложении Б. Для более полного ознакомления с ней читателю следует изучить один из учебников, указанных в литературе к приложению Б. В настоящей главе теория вероятностей будет использована для анализа шумовых флуктуаций.

    Функция времени, подобная записи флуктуационного напряжения, упомянутой выше, называется временндй последовательностью, а набор временных последовательностей, подобный тому, который получается от большого числа приемников, находящихся в одинаковых условиях, известен как ансамбль. Случайная функция, значения которой описываются только при помощи системы распределений вероятностей, о чем более подробно будет говориться ниже, часто называется стохастическим процессом. Если измерения производятся непрерывно во времени, имеет место непрерывный стохастический процесс. Во многих случаях величины измеряются только в отдельные последовательные моменты времени. При этом получается дискретный стохастический процесс. Пример последнего - ежечасные или ежедневные наблюдения температуры на метеорологических станциях. Мы будем иметь дело в основном с непрерывными процессами, но многие представления могут быть применены в той же мере и к дискретным процессам. Каждый член ансамбля называется реализацией стохастического процесса.

    Если член ансамбля временных последовательностей выбран случайно, вероятность, что его значение х в любой данный момент времени лежит в интервале между есть

    где функция плотности вероятности переменной х. Под этим мы понимаем в применении к вышеприведенному

    примеру следующее. Если напряжения измерены в одинаковых точках в большом числе идентичных приемников, число значений, лежащих в таком интервале, равно длине интервала, умноженной на достаточно малой длине интервала). Во многих случаях не будет зависеть от момента времени, в который производятся измерения. Функция плотности вероятности является основой статистического описания стохастического процесса, но сама по себе она недостаточна, так как ничего не говорит о том, как связано значение х, измеренное в один момент времени, со значениями, измеренными в другие моменты времени.

    Обозначим значения временной последовательности измеренные в последовательные моменты времени через Функция плотности совместного распределения вероятностей

    определяется утверждением, что вероятность выполнения неравенств

    равна Для полного описания непрерывного стохастического процесса требуется задание функций распределения для всех возможных выборов моментов времени для всех положительных целых Все эти функции нормированы так, что выполняется соотношение

    в соответствии с определением вероятности. Кроме того, они должны быть согласованы так, чтобы функцию распределения более низкого порядка можно было получить, интегрируя по

    интервалу изменения "лишней" переменной. Например,

    Любые переменных для которых выполняется равенство

    называются статистически независимыми.

    Функция плотности совместного распределения операционно определяется с помощью относительных частот осуществления различных комбинаций значений для и рассматриваемых моментов времени. Но, очевидно, определить полную систему функций распределения таким образом невозможно. Вместо этого для получения гипотетических распределений строится теория процессов птем применения законов физики к ситуациям, возникающим в таких областях науки, как статистическая механика или термодинамика. С помощью теории стохастических процессов вычисляются некоторые средние значения, доступные для наблюдения, и вычисленные значения сравниваются с найденными из опыта. Когда ситуация слишком сложна для такого анализа, как, например, в экономике и, вероятно, даже в метеорологии, для стохастического процесса предлагается простая статистическая "модель". Эта модель дает функцию распределения, содержащую несколько неизвестных параметров, значения которых оцениваются на основе доступных данных. Затем строятся логические заключения и, если возможно, производится сравнение с результатами дальнейших наблюдений. К счастью, существует большая теоретическая база, позволяющая рассматривать электрические шумовые процессы, с которыми приходится встречаться в задачах обнаружения сигналов. Некоторые физические основы будут изложены ниже, в разд. 3. Но сначала мы должны обсудить некоторые понятия, которые будут применяться при анализе стохастических процессов.

    Пока радиолокационный приемник поддерживается при постоянной температуре и связан с неподвижной антенной,

    на которую сигнал не действует, статистическое описание шума в приемнике не будет зависеть от выбора начала отсчета времени. Это значит, что плотность совместного распределения вероятностей зависит только от интервалов между измерениями, а не от самих моментов времени Такие стохастические процессы называют стационарными. Если не будет сделано других утверждений, будем считать, что изучаемые временные последовательности обладают этим свойством временной инвариантности или стационарности.

    Длинная запись одиночной реализации стационарной временной последовательности для большинства моментов времени обладает одинаковыми свойствами. По-видимому, большое число отрезков, взятых из одного члена ансамбля, будет создавать ансамбль с такими же статистическими свойствами, как и у основного ансамбля. Если измеряемая переменная связана с механической системой, подобной газу, или электрической, подобной контуру, и если с течением времени система проходит через все состояния, совместимые с внешними условиями, созданными экспериментатором, сделанное выше предположение является обоснованным. В частности, средние, найденные по длинной выборке на одной реализации процесса, равны средним значениям по всем членам ансамбля в какой-либо момент времени. Стохастические процессы, обладающие этим свойством, называются эргодическими.

    Например, среднее или "математическое ожидание" стационарной временнбйпоследовательности определяется равенством

    где функция плотности распределения вероятностей одиночного наблюдения. Это среднее значение х не зависит от времени. С другой стороны, среднее по времени х можно определить формулой

    Из-за условия стационарности это среднее по времени не зависит от момента времени в который начинается усреднение. Если, кроме того, стохастический процесс эргодический, То же самое справедливо для математического ожидания других функций аргумента х.

    Легко можно представить себе процессы, не являющиеся эргодическими, например такие, где величина х постепенно перемещается в область, которую она потом не может покинуть, или если есть некоторое количество таких "ловящих" областей. Но в этой книге будет предполагаться, что все изучаемые флуктуационные процессы являются эргодическими. Справедливость такого предположения должна основываться на успехе теорий, в которых оно принято, так как, хотя это допущение и подтверждается интуицией, проверить его экспериментально невозможно. Допущение эргодичности существенно для любых задач, в которых статистические параметры приходится оценивать на основе одиночной экспериментальной реализации процесса.