Учебник по теории вероятности: содержание

Глава 1. Случайные события. Вычисление вероятности

    1.1. Элементы комбинаторики

    1.2. Классическое определение вероятности

    1.3. Геометрическое определение вероятности

    1.4. Сложение и умножение вероятностей

    1.5. Условная вероятность

    1.6. Формула полной вероятности и формула Байеса

    1.7. Независимые испытания. Формула Бернулли

    1.8. Наивероятнейшее число успехов

    1.9. Формула Пуассона

    1.10. Теоремы Муавра-Лапласа

1.1. Элементы комбинаторики

Рассмотрим некоторое множество Х , состоящее из n элементов . Будем выбирать из этого множества различные упорядоченные подмножества из k элементов.

Размещением из n элементов множества Х по k элементам назовем любой упорядоченный набор элементов множества Х .

Если выбор элементов множества из Х происходит с возвращением, т.е. каждый элемент множества Х может быть выбран несколько раз, то число размещений из n по k находится по формуле (размещения с повторениями ).

Если же выбор делается без возвращения, т.е. каждый элемент множества Х можно выбирать только один раз, то количество размещений из n по k обозначается и определяется равенством

(размещения без повторений ).


Пример.
Пусть даны шесть цифр: 1; 2; 3; 4; 5; 6. Определить сколько трехзначных чисел можно составить из этих цифр.

Решение. Если цифры могут повторяться, то количество трехзначных чисел будет . Если цифры не повторяются, то .

Пример. Студенты института изучают в каждом семестре по десять дисциплин. В расписание занятий включаются каждый день по 3 дисциплины. Сколько различных расписаний может составить диспетчерская?

Решение . Расписание на каждый день может отличаться либо предметами, либо порядком расположения этих предметов, поэтому имеем размещения:

Частный случай размещения при n =k называется перестановкой из n элементов. Число всех перестановок из n элементов равно
.

Пример . 30 книг стоит на книжной полке, из них 27 различных книг и одного автора три книги. Сколькими способами можно расставить эти книги на полке так, чтобы книги одного автора стояли рядом?

Решение. Будем считать три книги одного автора за одну книгу, тогда число перестановок будет . А три книги можно переставлять между собой способами, тогда по правилу произведения имеем, что искомое число способов равно: *=3!*28!

Пусть теперь из множества Х выбирается неупорядоченное подмножество (порядок элементов в подмножестве не имеет значения). Сочетаниями из n элементов по k называются подмножества из k элементов, отличающиеся друг от друга хотя бы одним элементом. Общее число всех сочетаний из n по k обозначается и равно
.

Справедливы равенства: , , .

Пример. В группе из 27 студентов нужно выбрать трех дежурных. Сколькими способами можно это сделать?

Решение. Так как порядок студентов не важен, используем формулу для числа сочетаний: .

При решении задач комбинаторики используют следующие правила:

Правило суммы. Если некоторый объект А может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А, либо В можно m + n способами.

Правило произведения. Если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А, В) в указанном порядке может быть выбрана m*n способами.

Пример. Наряд студентки состоит из блузки, юбки и туфель. Девушка имеет в своем гардеробе четыре блузки, пять юбок и трое туфель. Сколько нарядов может иметь студентка?

Решение. Пусть сначала студентка выбирает блузку. Этот выбор может быть совершен четырьмя способами, так как студентка имеет четыре блузки, затем пятью способами произойдет выбор юбки и тремя способами выбор туфель. По принципу умножения получается 4*5*3=60 нарядов (комбинаций).

1.2. Классическое определение вероятности

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным , если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу , если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами. Исход называется благоприятствующим появлению события А , если появление этого события влечет за собой появление события А .

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8). Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятностью события A называют отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможных несовместных элементарных исходов, образующих полную группу

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству .

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаевm =n =10. Следовательно, Р (А )=1. Событие А достоверное .

Пример. В урне 10 шаров: 6 белых и 4 черных. Вынули два шара. Какова вероятность, что оба шара белые?

Решение. Вынуть два шара из десяти можно следующим числом способов: .
Число случаев, когда среди этих двух шаров будут два белых, равно .
Искомая вероятность
.

Пример. В урне 15 шаров: 5 белых и 10 черных. Какова вероятность вынуть из урны синий шар?

Решение. Так как синих шаров в урне нет, то m =0, n =15. Следовательно, искомая вероятность р =0. Событие, заключающееся в вынимании синего шара, невозможное .

Пример. Из колоды в 36 карт вынимается одна карта. Какова вероятность появления карты червовой масти?

Решение . Количество элементарных исходов (количество карт) n =36. Событие А = (Появление карты червовой масти). Число случаев, благоприятствующих появлению события А , m =9. Следовательно,
.

Пример. В кабинете работают 6 мужчин и 4 женщины. Для переезда наудачу отобраны 7 человек. Найти вероятность того, что среди отобранных лиц три женщины.

Решение. Общее число возможных исходов равно числу способов, которыми можно отобрать 7 человек из 10, т.е.
.

Найдем число исходов, благоприятствующих интересующему нас событию: трех женщин можно выбрать из четырех способами; при этом остальные четыре человека должны быть мужчинами, их можно отобрать способами. Следовательно, число благоприятствующих исходов равно .

Искомая вероятность
.

1.3. Геометрическое определение вероятности

Пусть случайное испытание можно представить себе как бросание точки наудачу в некоторую геометрическую область G (на прямой, плоскости или пространстве). Элементарные исходы – это отдельные точки G, любое событие – это подмножество этой области, пространства элементарных исходов G. Можно считать, что все точки G «равноправны» и тогда вероятность попадания точки в некоторое подмножество пропорционально его мере (длине, площади, объему) и не зависит от его расположения и формы.

Геометрическая вероятность события А определяется отношением:
,
где m(G), m(A) – геометрические меры (длины, площади или объемы) всего пространства элементарных исходов и события А.

Пример. На плоскость, разграфленную параллельными полосами шириной 2d, расстояние между осевыми линиями которых равно 2D, наудачу брошен круг радиуса r (). Найти вероятность того, что круг пересечет некоторую полосу.

Решение. В качестве элементарного исхода этого испытания будем считать расстояние x от центра круга до осевой линии ближайшей к кругу полосы. Тогда все пространство элементарных исходов – это отрезок . Пересечение круга с полосой произойдет в том случае, если его центр попадет в полосу, т.е. , или будет находится от края полосы на расстоянии меньшем чем радиус, т.е. .

Для искомой вероятности получаем: .

1.4. Сложение и умножение вероятностей

Событие А называется частным случаем события В , если при наступлении А наступает и В . То, что А является частным случаем В , записываем .

События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записываем А = В .

Суммой событий А и В называется событие А + В , которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.

Теорема о сложении вероятностей. Вероятность появления одного из двухнесовместных событий равна сумме вероятностей этих событий.

Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:

.

Если случайные события образуют полную группу несовместных событий, то имеет место равенство

Произведением событий А и В называется событие АВ , которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными , если при данном испытании могут произойти оба эти события.

Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле

События событий А и В называются независимыми , если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В , если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей. Вероятность произведения независимых событий А и В вычисляется по формуле:

Вероятность произведения зависимых событий вычисляется по формуле условной вероятности (см. следующий раздел).

Пример. В первом ящике 1 белый и 5 черных шаров, во втором 8 белых и 4 черных шара. Из каждого ящика вынули по шару. Найти вероятность того, что один из вынутых шаров белый, а другой – черный.

Решение. Обозначим события: А – вынули белый шар из первого ящика,
;

Вынули черный шар из первого ящика,
;

В – белый шар из второго ящика,
;

Черный шар из второго ящика,
.

Нам нужно, чтобы произошло одно из событий или . По теореме об умножении вероятностей
, .
Тогда искомая вероятность по теореме сложения будет
.

Пример. Вероятность попадания в цель у первого стрелка 0,8, у второго – 0,9. Стрелки делают по выстрелу. Найти вероятность: а) двойного попадания; б) хотя бы одного попадания; г) одного попадания.

Решение.

Пусть А – попадание первого стрелка, ;

В – попадание второго стрелка, .

Тогда - промах первого, ;

Промах второго, .

Найдем нужные вероятности.

а) АВ – двойное попадание,

б) – двойной промах, .

в) А +В – хотя бы одно попадание,

г) – одно попадание,

Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8. Найти вероятности того, что формула содержится 1) только в одном справочнике; 2) только в двух справочниках; 3) во всех трех справочниках.

Решение.

А – формула содержится в первом справочнике;

В – формула содержится во втором справочнике;

С – формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

Пусть в результате испытания могут появиться n событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий? Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.

Теорема. Вероятность появления хотя бы одного из событий , независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий

Если события имеют одинаковую вероятность , то формула принимает простой вид:

.

Пример. Вероятности попадания в цель при стрельбе из трех орудий таковы: p 1 = 0,8;p 2 = 0,7; p 3 = 0,9. Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.

Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия), (попадание второго орудия) и (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям , и (т. е. вероятности промахов), соответственно равны:

, ,

Искомая вероятность .

Пример. В типографии имеется 4 плоскопечатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А).

Решение. События "машина работает" и "машина не работает" (в данный момент) - противоположные, поэтому сумма их вероятностей равна единице:

Отсюда вероятность того, что машина в данный момент не работает, равна

Искомая вероятность

Так как полученная вероятность весьма близка к единице, то на основании следствия из принципа практической невозможности маловероятных событий мы вправе заключить, что в данный момент работает хотя бы одна из машин.

Пример. Вероятность того, что при одном выстреле стрелок попадает в цель, равна 0,4. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее 0,9 он попал в цель хотя бы один раз?

Решение. Обозначим через А событие "при n выстрелах стрелок попадает в цель хотя бы один раз". События, состоящие в попадании в цель при первом, втором выстрелах и т. д., независимы в совокупности, поэтому применима формула .

Приняв во внимание, что, по условию, (следовательно, ), получим

Прологарифмируем это неравенство по основанию 10:

Итак, , т.е. стрелок должен произвести не менее 5 выстрелов.

1.5. Условная вероятность

Случайное событие определено как событие, которое при осуществлении совокупности условий эксперимента может произойти или не произойти. Если при вычислении вероятности события никаких других ограничений, кроме условий эксперимента, не налагается, то такую вероятность называют безусловной ; если же налагаются и другие дополнительные условия, то вероятность события называют условной . Например, часто вычисляют вероятность события В при дополнительном условии, что произошло событие А .

Условной вероятностью (два обозначения) называют вероятность события В , вычисленную в предположении, что событие А уже наступило.

Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т.е.

В частности, отсюда получаем
.

Пример. В урне находятся 3 белых шара и 2 черных. Из урны вынимается один шар, а затем второй. Событие В – появление белого шара при первом вынимании. Событие А – появление белого шара при втором вынимании.

Решение. Очевидно, что вероятность события А , если событие В произошло, будет
.
Вероятность события А при условии, что событие В не произошло, будет
.

Пример. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероятность появления белого шара при втором испытании (событие В), если при первом испытании был извлечен черный шар (событие А).

Решение . После первого испытания в урне осталось 5 шаров, из них 3 белых. Искомая условная вероятность .

Этот же результат можно получить по формуле
.

Действительно, вероятность появления белого шара при первом испытании
.

Найдем вероятность того, что в первом испытании появится черный шар, а во втором - белый. Общее число исходов - совместного появления двух шаров, безразлично какого цвета, равно числу размещений . Из этого числа исходов событию благоприятствуют исходов. Следовательно, .

Искомая условная вероятность

Результаты совпали.

Пример. В трамвайном парке имеются 15 трамваев маршрута №1 и 10 трамваев маршрута №2. Какова вероятность того, что вторым по счету на линию выйдет трамвай маршрута №1?

Решение . Пусть А - событие, состоящее в том, что на линию вышел трамвай маршрута №1, В - маршрута №2.

Рассмотрим все события, которые могут при этом быть (в условиях нашей задачи): . Из них нас будут интересовать только первое и третье, когда вторым выйдет трамвай маршрута №1.

Так как все эти события совместны, то:

;

;

отсюда искомая вероятность

Пример. Какова вероятность того, что 2 карты, вынутые из колоды в 36 карт, окажутся одной масти?

Решение . Сначала подсчитаем вероятность того, что две карты окажутся одной определенной масти (например «пики»). Пусть А - появление первой карты такой масти, В - появление второй карты той же масти. Событие В зависит от события А , т.к. его вероятность меняется от того, произошло или нет событие А . Поэтому придется воспользоваться теоремой умножения в ее общей форме:

,
где (после вынимания первой карты осталось 35 карт, из них той же масти, что и первая - 8).

Получаем
.

События, состоящие в том, что будут вынуты две карты масти «пики», масти «треф» и т.д., несовместны друг с другом. Следовательно, для нахождения вероятности их объединения воспользуемся теоремой сложения:
.

1.6. Формула полной вероятности и формула Байеса

Если событие А может произойти только при выполнении одного из событий , которые образуют полную группу несовместных событий , то вероятность события А вычисляется по формуле

Эта формула называется формулой полной вероятности .

Вновь рассмотрим полную группу несовместных событий , вероятности появления которых . Событие А может произойти только вместе с каким-либо из событий , которые будем называть гипотезами . Тогда по формуле полной вероятности

Если событие А произошло, то это может изменить вероятности гипотез .

По теореме умножения вероятностей

.

Аналогично, для остальных гипотез

Полученная формула называется формулой Байеса (формулой Бейеса ). Вероятности гипотез называются апостериорными вероятностями , тогда как -априорными вероятностями .

Пример. В магаз поступила новая продукция с 3х предприятий.20%-продукция первого предприятия, 30% - продукция второго предприятия, 50% - продукция третьего предприятия; далее, 10% продукции первого предприятия высшего сорта, на втором предприятии - 5% и на третьем - 20% продукции высшего сорта. Найти вероятность того, что случайно купленная новая продукция окажется высшего сорта.

Решение. Обозначим через В событие, заключающееся в том, что будет куплена продукция высшего сорта, через обозначим события, заключающиеся в покупке продукции, принадлежащей соответственно первому, второму и третьему предприятиям.

Можно применить формулу полной вероятности, причем в наших обозначениях:

Подставляя эти значения в формулу полной вероятности, получим искомую вероятность:

Пример. Один из трех стрелков вызывается на линию огня и производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго - 0,5; для третьего - 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Решение. Возможны три гипотезы:

А 1 - на линию огня вызван первый стрелок,

А 2 - на линию огня вызван второй стрелок,

А 1 - на линию огня вызван третий стрелок.

Так как вызов на линию огня любого стрелка равновозможен, то

В результате опыта наблюдалось событие В - после произведенных выстрелов мишень не поражена. Условные вероятности этого события при сделанных гипотезах равны:

по формуле Байеса находим вероятность гипотезы после опыта:

Пример. На трех станках-автоматах обрабатываются однотипные детали, поступающие после обработки на общий конвейер. Первый станок дает 2% брака, второй – 7%, третий – 10%. Производительность первого станка в 3 раза больше производительности второго, а третьего – в 2 раза меньше, чем второго.

а) Каков процент брака на конвейере?

б) Каковы доли деталей каждого станка среди бракованных деталей на конвейере?

Решение. Возьмем с конвейера наудачу одну деталь и рассмотрим событие А – деталь бракованная. Оно связано с гипотезами относительно того, где была обработана эта деталь: – взятая наудачу деталь обработана на -ом станке, .

Условные вероятности (в условии задачи они даны в форме процентов):

Зависимости между производительностями станков означают следующее:

А так как гипотезы образуют полную группу, то .

Решив полученную систему уравнений, найдем: .

а) Полная вероятность того, что взятая наудачу с конвейера деталь – бракованная:

Другими словами, в массе деталей, сходящих с конвейера, брак составляет 4%.

б) Пусть известно, что взятая наудачу деталь – бракованная. Пользуясь формулой Байеса, найдем условные вероятности гипотез:

Таким образом, в общей массе бракованных деталей на конвейере доля первого станка составляет 33%, второго – 39%, третьего – 28%.

1.7. Независимые испытания. Формула Бернулли

При решении вероятностных задач часто приходится сталкиваться с ситуациями, в которых одно и тоже испытание повторяется многократно и исход каждого испытания независим от исходов других. Такой эксперимент еще называется схемой повторных независимых испытаний или схемой Бернулли .

Примеры повторных испытаний:

1) многократное извлечение из урны одного шара при условии, что вынутый шар после регистрации его цвета кладется обратно в урну;

2) повторение одним стрелком выстрелов по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой (роль пристрелки не учитывается).

Итак, пусть в результате испытания возможны два исхода : либо появится событие А , либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы; вероятность появления события А в каждом отдельно взятом или единичном испытании постоянна и от испытания к испытанию не изменяется (т.е. испытания проводятся в одинаковых условиях). Обозначим вероятность появления события А в единичном испытании буквой р, т.е. , а вероятность противоположного события (событие А не наступило) - буквой .

Тогда вероятность того, что событие А появится в этих n испытаниях ровно k раз, выражаетсяформулой Бернулли

Распределение числа успехов (появлений события) носит название биномиального распределения .

Пример. В урне 20 белых и 10 черных шаров. Вынули 4 шара, причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Найти вероятность того, что из четырех вынутых шаров окажется 2 белых.

Решение. Событие А – достали белый шар. Тогда вероятности
, .
По формуле Бернулли требуемая вероятность равна
.

Пример. Определить вероятность того, что в семье, имеющей 5 деталей, будет не больше трех девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Решение. Вероятность рождения девочки
, тогда .

Найдем вероятности того, что в семье нет девочек, родилась одна, две или три девочки:

, ,

, .

Следовательно, искомая вероятность

.

Пример. Среди деталей, обрабатываемых рабочим, бывает в среднем 4% нестандартных. Найти вероятность того, что среди взятых на испытание 30 деталей две будут нестандартными.

Решение. Здесь опыт заключается в проверке каждой из 30 деталей на качество. Событие А - «появление нестандартной детали», его вероятность , тогда . Отсюда по формуле Бернулли находим
.

Пример. При каждом отдельном выстреле из орудия вероятность поражения цели равна 0,9. Найти вероятность того, что из 20 выстрелов число удачных будет не менее 16 и не более 19.

Решение. Вычисляем по формуле Бернулли:

Пример. Независимые испытания продолжаются до тех пор, пока событие А не произойдет k раз. Найти вероятность того, что потребуется n испытаний (n ³ k), если в каждом из них .

Решение. Событие В – ровно n испытаний до k -го появления события А – есть произведение двух следующий событий:

D – в n -ом испытании А произошло;

С – в первых (n–1) -ом испытаниях А появилось (к-1) раз.

Теорема умножения и формула Бернулли дают требуемую вероятность:

Надо заметить, что использование биномиального закона зачастую связано с вычислительными трудностями. Поэтому с возрастанием значений n и m становится целесообразным применение приближенных формул (Пуассона, Муавра-Лапласа), которые будут рассмотрены в следующих разделах.

1.8. Наивероятнейшее число успехов

Биномиальное распределение (распределение по схеме Бернулли) позволяет, в частности, установить, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов (появлений события) имеет вид:

Так как , то эти границы отличаются на 1. Поэтому , являющееся целым числом, может принимать либо одно значение, когда целое число () , то есть когда (а отсюда и ) нецелое число, либо два значения, когда целое число.

Пример. При автоматической наводке орудия вероятность попадания по быстро движущейся цели равна 0,9. Найти наивероятнейшее число попаданий при 50 выстрелах.

Решение. Здесь . Поэтому имеем неравенства:

Следовательно, .

Пример. Данные длительной проверки качества выпускаемых стандартных деталей показали, что в среднем брак составляет 7,5%. Определить наиболее вероятное число вполне исправных деталей в партии из 39 штук.

Решение. Обозначая вероятность выпуска исправной детали через , будем иметь и (получение бракованной детали и получение исправной детали - события противоположные). Так как здесь n= 39, то искомое число можно найти из неравенств:

Отсюда наивероятнейшее число исправных деталей равно 36 или 37.

Неравенства для наивероятнейшего числа успехов позволяют решить и обратную задачу: по данному и известному значению р определить общее число n всех испытаний.

Пример. При каком числе выстрелов наивероятнейшее число попаданий равно 16, если вероятность попадания в отдельном выстреле составляет 0,7? Т А к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность (по сравнению с исходной формулой Бернулли). ., находим, вероятности выводится по ... 45 Сама теория достаточно сложна и подробно излагается лишь в специальных учебниках по корпоративным...

  • Менеджмент учебник санкт-петербург издательство «союз»

    Учебник

    ... по аппарату построения (форма); – по характеру моделируемых объектов содержание ). По ... вероятности во всех случаях, то учебники по теории вероятностей (а заодно и данная глава ... Теория вероятностей утверждает, что случайные события , ... вычислений . ...

  • Приказ № от 2014 г. Рабочая программа по математике класс: 5 (базовый уровень)

    Рабочая программа

    А. Г. Математика. 6 кл. Учебники по содержанию и по стилю выстроены так, чтобы... Глава 6. 4 2 2 - Введение в вероятность . §53 Достоверные, невозможные и случайные события Вероятность наступления событий . Достоверные, невозможные и случайные события ...

  • Проект основной образовательной программы мкоу бутурлиновская сош №1 Бутурлиновского муниципального района Воронежской области на 2012-2017гг

    Основная образовательная программа

    ... Случайные события и вероятность . Понятие о случайном опыте и случайном событии . Частота случайного события . Статистический подход к понятию вероятности . Вероятности противоположных событий . Достоверные и невозможные события . Равновозможность событий ...

  • Тема 5: Элементы теории вероятностей

    Ни телеграммы нету, ни письма.

    Но есть игра случайности слепой.

    И если просто выйдешь на перрон,

    То кто-нибудь приедет непременно.

    В. Незвал

    Введение

    Все мы довольно часто говорим «это невероятно», «более вероятно, что...», «это маловероятно», «можно утверждать со стопроцентной вероятностью, что...», когда пытаемся спрогнозировать наступление того или иного события. При этом обычно опираемся на интуицию, жизненный опыт, здравый смысл и т.п. Но очень часто такие приблизительные оценки оказываются недостаточными: бывает важно знать, на сколько или во сколько раз совершение одного случайного события вероятнее другого. Иными словами, нужны точные количественные оценки, надо уметь численно характеризовать возможность наступления того или иного события. Раздел математики, посвященный исследованию количественных оценок случайных событий, называется теорией вероятностей.

    Ее основателями считают Пьера Ферма и Блеза Паскаля. Эти французские ученые XVII века первыми нашли ключ к составлению количественной оценки вероятности события. Они использовали метод, который позже был назван комбинаторным анализом, или, проще, комбинаторикой.

    Однако мы не будем сейчас говорить ни о предмете, ни о содержании теории вероятностей и комбинаторики, а просто приведем пример, который иллюстрирует все вышесказанные слова.

    Начальник написал 10 различных писем и поручил своему помощнику надписать 10 конвертов с нужными адресами. Тот так и сделал, но дальнейшее перепоручил секретарше. Она выполнила это ответственное задание формально, то есть разложила письма по конвертам, не обращая внимания на адреса. Какова вероятность того, что ни одно письмо не попало в нужный конверт? Ответ оказывается на удивление большим: вероятность такой масштабной ошибки превышает 36%!

    Случайные события и их вероятности

    Всякое действие, явление, наблюдение с несколькими различными исходами, реализуемое при данном комплексе условий, будем называть испытанием .

    Например, многократное подбрасывание монеты, процесс изготовления какой-либо детали представляют собой испытания.

    Результат этого действия или наблюдения будем называть событием .

    Например, появление цифры при подбрасывании монеты, попадание в мишень при выстреле являются событиями.

    Если нас интересует какое-либо определенное событие из всех возможных, то будем называть его искомым .

    События принято обозначать заглавными буквами латинского алфавита.

    Во многих играх используют игральный кубик. У кубика 6 граней, на каждой грани отмечено различное количество точек – от 1 до 6. Играющий бросает кубик и смотрит, сколько точек имеется на выпавшей грани (на той грани, которая располагается сверху). Довольно часто точки на грани кубика заменяют соответствующим числом и тогда говорят о выпадении 1, 2 или 6. Бросание кубика можно считать опытом, экспериментом, испытанием, а полученный результат – исходом испытания или элементарным событием. Людям интересно угадывать наступление того или иного события, предсказывать его исход. Какие предсказания они могут сделать, когда бросают игральный кубик? Например, такие:

    1) событие А - выпадет цифра 1, 2, 3, 4, 5 или 6;

    2) событие В - выпадет цифра 7, 8 или 9;

    3) событие С - выпадет цифра 1.

    Событие А, предсказанное в первом случае, обязательно наступит. Вообще, событие, которое в данном опыте обязательно наступит, называют достоверным событием .

    Событие 5, предсказанное во втором случае, никогда не наступит, это просто невозможно. Вообще, событие, которое в данном опыте наступить не может, называют невозможным событием .

    А как вы думаете, событие С, предсказанное в третьем случае, наступит или не наступит? На этот вопрос мы с полной уверенностью ответить не в состоянии, поскольку 1 может выпасть, а может и не выпасть. Событие, которое в данном опыте может как наступить, так и не наступить, называют случайным событием .

    Один из основателей математической статистики, шведский ученый Харальд Крамер писал: «По-видимому, невозможно дать точное определение того, что подразумевается под словом "случайный". Смысл этого слова лучше всего разъяснить на примерах».

    Мы последуем этому совету.

    Пример 1 . Все двузначные числа написаны на карточках. Петя случайным образом выбрал одну карточку. Охарактеризуйте как достоверные, невозможные или случайные следующие события:

    а) событие А – на выбранной карточке оказалось простое число;

    б) событие В – на карточке оказалось составное число;

    в) событие С – на карточке оказалось число, не являющееся ни простым, ни составным;

    г) событие D – на карточке оказалось четное или нечетное число.

    Решение . События А и В случайные, так как они могут произойти, а могут и не произойти. Событие С невозможно: вспомните определение простого и составного числа. Событие D достоверно, так как любое двузначное число или четно, или нечетно.

    Думая про наступление достоверного события, вы слово «вероятно» использовать, скорее всего, не будете. Например, если сегодня среда, то завтра четверг, это – достоверное событие. Вы в среду не станете говорить: «Вероятно, завтра четверг», вы скажете коротко и ясно: «Завтра четверг». Правда, если вы склонны к красивым фразам, то можете сказать так: «Со стопроцентной вероятностью утверждаю, что завтра четверг». Напротив, если сегодня среда, то наступление назавтра пятницы – невозможное событие. Оценивая это событие в среду, вы можете сказать так: «Уверен, что завтра не пятница». Или так: «Невероятно, что завтра пятница». Ну а если вы склонны к красивым фразам, то можете сказать так: «Вероятность того, что завтра пятница, равна нулю». Итак, достоверное событие – это событие, наступающее при данных условиях со стопроцентной вероятностью (т. е. наступающее в 10 случаях из 10, в 100 случаях из 100 и т. д.). Невозможное событие – это событие, не наступающее при данных условиях никогда, событие с нулевой вероятностью.

    Но, к сожалению (а может быть, и к счастью), не все в жизни так четко и ясно: это будет всегда (достоверное событие), этого не будет никогда (невозможное событие). Чаще всего мы сталкиваемся именно со случайными событиями, одни из которых более вероятны, другие менее вероятны. Обычно люди используют слова «более вероятно» или «менее вероятно», как говорится, по наитию, опираясь на то, что называют здравым смыслом. Но очень часто такие оценки оказываются недостаточными, поскольку бывает важно знать, на сколько процентов вероятно случайное событие или во сколько раз одно случайное событие вероятнее другого. Иными словами, нужны точные количественные характеристики, нужно уметь охарактеризовать вероятность числом.

    Первые шаги в этом направлении мы с вами уже сделали. Мы говорили, что вероятность наступления достоверного события характеризуется как стопроцентная, а вероятность наступления невозможного события – как нулевая. Учитывая, что 100% равно 1, люди договорились о следующем:

    1) вероятность достоверного события считается равной 1;

    2) вероятность невозможного события считается равной 0.

    А как подсчитать вероятность случайного события? Ведь оно произошло случайно, значит, не подчиняется закономерностям, алгоритмам, формулам. Оказывается, и в мире случайного действуют определенные законы, позволяющие вычислять вероятности. Этим занимается раздел математики, который так и называется – теория вероятностей.

    Проведем следующий опыт. Будем бросать игральный кубик (100 раз) и результат записывать в таблицу.

    т п р
    0,19
    0,14
    0,2
    0,14
    0,22
    0,11

    Число т означает количество исходов бросания, в которых выпало число очков, указанное в соответствующей строке. Число п – это общее число бросаний кубика (испытаний). Число р называется абсолютной частотой события и находится по формуле: . Если мы продолжим бросать игральный кубик, то можем заметить, что абсолютные частоты для событий «выпадет 1 », «выпадет 2 »… «выпадет 6 » будут становиться примерно одинаковыми, т.е. стремиться к числу 0,1666… = . Абсолютную частоту случайного события называют еще опытной или статистической вероятностью события.

    Часто бывает так, что многократное повторение одного и того же опыта невозможно. В этом случае приходит на помощь, так называемая классическая , или доопытная вероятность .

    КЛАССИЧЕСКАЯ ВЕРОЯТНОСТНАЯ СХЕМА: Для нахождения вероятности события А при проведении некоторого опыта следует:

    1) найти число N всех возможных исходов данного опыта;

    2) принять предположение о равновероятности (равновозможности) всех этих исходов;

    3) найти количество N(А) тех исходов опыта, в которых наступает событие А;

    4) найти частное , оно и будет равно вероятности события А.

    Принято вероятность события А обозначать: Р(А). Объяснение такого обозначения очень простое: слово «вероятность» по-французски – probabilite, по-английски – probability. В обозначении используется первая буква слова.

    Используя это обозначение, вероятность события А по классической схеме можно найти с помощью формулы .

    Часто все пункты приведенной классической вероятностной схемы выражают одной довольно длинной фразой.

    КЛАССИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ Вероятностью события А при проведении некоторого испытания называют отношение числа исходов, в результате которых наступает событие А, к общему числу всех равновозможных между собой исходов этого испытания.

    Пример 2. Найти вероятность того, что при одном бросании игрального кубика выпадет: а) 4; б) 5; в) четное число очков; г) число очков, большее 4; д) число очков, не кратное трем.

    Решение. Всего имеется N = 6 возможных исходов: выпадение грани куба с числом очков, равным 1, 2, 3, 4, 5 или 6. Мы считаем, что ни один из них не имеет никаких преимуществ перед другими, т. е. принимаем предположение о равновероятности этих исходов.

    а) Ровно в одном из исходов произойдет интересующее нас событие А – выпадение числа 4. Значит, N(А) = 1 и .

    б) Решение и ответ такие же, как и в предыдущем пункте.

    в) Интересующее нас событие В произойдет ровно в трех случаях, когда выпадет число очков 2, 4 или 6. Значит, N(B) = 3 и .

    г) Интересующее нас событие С произойдет ровно в двух случаях, когда выпадет число очков 5 или 6. Значит, д) Из шести возможных выпавших чисел четыре (1, 2, 4, и 5) не кратны трем, а остальные два (3 и 6) делятся на три. Значит, интересующее нас событие наступает ровно в четырех из шести возможных и равновероятных между собой исходах опыта. Поэтому в ответе получается .

    Ответ: а) ; б) ; в) ; г) ; д) .

    Реальный игральный кубик вполне может отличаться от идеального (модельного) кубика, поэтому для описания его поведения требуется более точная и детальная модель, учитывающая преимущества одной грани перед другой, возможное наличие магнитов и т. п. Но «дьявол кроется в деталях», а большая точность ведет, как правило, к большей сложности, и получение ответа становится проблемой. Мы же ограничиваемся рассмотрением простейшей вероятностной модели, где все возможные исходы равновероятны.

    Замечание 1. Рассмотрим еще пример. Был задан вопрос: «Какова вероятность выпадения тройки при одном бросании кубика?» Ученик ответил так: «Вероятность равна 0,5». И объяснил свой ответ: «Тройка или выпадет, или нет. Значит, всего есть два исхода и ровно в одном наступает интересующее нас событие. По классической вероятностной схеме получаем ответ 0,5». Есть в этом рассуждении ошибка? На первый взгляд – нет. Однако она все же есть, причем в принципиальном моменте. Да, действительно, тройка или выпадет, или нет, т. е. при таком определении исхода бросания N = 2. Правда и то, что N(А) = 1 и уж, разумеется, верно, что = 0,5, т.е. три пункта вероятностной схемы учтены, а вот выполнение пункта 2) вызывает сомнения. Конечно, с чисто юридической точки зрения, мы имеем право считать, что выпадение тройки равновероятно ее невыпадению. Но вот можем ли мы так считать, не нарушая свои же естественные предположения об «одинаковости» граней? Конечно, нет! Здесь мы имеем дело с правильным рассуждением внутри некоторой модели. Только вот сама эта модель «неправильная», не соответствующая реальному явлению.

    Замечание 2 . Рассуждая о вероятности, не упускайте из виду следующее важное обстоятельство. Если мы говорим, что при бросании кубика вероятность выпадения одного очка равна , это совсем не значит, что, кинув кубик 6 раз, вы получите одно очко ровно один раз, бросив кубик 12 раз, вы получите одно очко ровно два раза, бросив кубик 18 раз, вы получите одно очко ровно три раза и т. д. Слово вероятно носит предположительный характер. Мы предполагаем, что, скорее всего, может произойти. Вероятно, если мы бросим кубик 600 раз, одно очко выпадет 100 раз или около 100. Если у вас будет время и желание, проведите эксперимент: бросьте игральный кубик, например, 60 раз и составьте таблицу выпадений очков 1, 2, 3, 4, 5, 6. Скорее всего (вероятнее всего), все числа в вашей таблице будут около 10.

    Пример 3. Найти вероятность того, что при двукратном бросании игрального кубика произведение выпавших очков будет: а) кратно 5; б) кратно 6.

    Решение . При каждом из двух бросаний кубика возможны 6 исходов. Предполагается, что эти два испытания независимы друг от друга. По правилу умножения получаем, что данный опыт имеет 6 6 = 36 исходов. Будем действовать по классической вероятностной схеме, т. е. считать, что все N = 36 исходов равновероятны между собой.

    Все 36 исходов можно перечислить. Например, с помощью таблицы. В данном случае все исходы – это пары (1; 1), (1; 2), ..., (1; 6), (2; 1), (2; 2), ..., (6; 5), (6; 6).

    а) Если на первом месте стоит 5, то при любой второй цифре их произведение кратно 5. Получается шесть вариантов: (5; 1), (5; 2), (5; 3), (5; 4), (5; 5), (5; 6). Еще шесть вариантов получается, если 5 стоит на втором месте. Так как 5 – простое число, то других вариантов нет.

    Вроде бы, ответ 6 + 6 = 12. Но один результат (5; 5) мы посчитали дважды. Значит, интересующее нас событие А наступает ровно в 11 из возможных 36 равновероятных между собой исходах, т. е. N(А) = 11, поэтому .

    б) Если на первом или на втором месте стоит 6, то произведение выпавших чисел делится на 6, а всего таких вариантов, как и в случае а), будет 11. Но произведение выпавших чисел будет кратно 6 в тех случаях, когда одно из чисел, отличных от 6, - четное, а другое кратно 3. Перечислим благоприятные варианты: (2; 3), (4; 3), (3; 2), (3; 4) – всего 4 варианта. Добавив их к указанным выше 11 вариантам, получим 15 благоприятных исходов, т.е. N(А) = 15. Значит, .

    Ответ: а) , б) .

    Задачи на отыскание вероятностей случайных событий «в два с половиной раза» сложнее задач по комбинаторике. Сначала мы используем комбинаторику при нахождении N – количества всех исходов опыта. Во второй раз комбинаторика нужна при нахождении N(А). При этом во второй раз – это уже более сложная комбинаторика. Наконец, надо еще уметь вычислить значение дроби. Вот и получается «две с половиной комбинаторики».

    Теория вероятностей возникла в XVII веке при анализе различных азартных игр. Неудивительно поэтому, что первые примеры носят игровой характер. От примеров с игральными кубиками перейдем к случайному вытаскиванию игральных карт из колоды.

    Пример 4. Из колоды в 36 карт случайным образом одновременно вытаскивают 3 карты. Какова вероятность того, что среди них нет пиковой дамы?

    Решение. У нас имеется множество из 36 элементов. Мы производим выбор трех элементов, порядок которых не важен. Значит, возможно, получение N = исходов. Будем действовать по классической вероятностной схеме, т. е. предположим, что все эти исходы равновероятны.

    Среди всех N = исходов нам следует сосчитать те, в которых нет пиковой дамы (событие А). Отложим даму пик в сторону, и из оставшихся 35 карт будем выбирать 3 карты. Получатся все интересующие нас варианты. Значит, N(А) = .

    Осталось вычислить нужную вероятность по классическому определению:

    А чему равна вероятность того, что среди выбранных трех карт есть пиковая дама? Число всех таких исходов нетрудно посчитать, надо просто из всех исходов N вычесть все те исходы, в которых дамы пик нет, т. е. вычесть найденное в примере 4 число N(А) . Затем эту разность N N(А) в соответствии с классической вероятностной схемой следует поделить на N . Вот что получим: .

    Мы видим, что между вероятностями двух событий имеется определенная связь. Если событие А заключается в отсутствии дамы пик, а событие В состоит в ее наличии среди выбранных трех карт, то

    Р(В) = 1 – Р(А)

    Р(А) + Р(В) = 1.

    К сожалению, в равенстве Р(А) + Р(В) = 1 нет никакой информации о связи событий А и В между собой; эту связь нам приходится держать в уме. Удобнее было бы заранее дать событию В название и обозначение, явно указывающие на его связь с А.

    Определение 1. Событие В называют противоположным событию А и обозначают В = , если событие В происходит тогда и только тогда, когда не происходит событие А.

    ТЕОРЕМА 1. Для нахождения исходов. Будем действовать по классической вероятностной схеме, т. е. предположим, что все эти исходы равновероятны между собой.

    Если А – интересующее нас событие, то противоположное ему событие состоит в том, что среди выбранных пяти карт нет ни одной карты бубновой масти. Но это значит, что все 5 карт выбраны из других карточных мастей, т. е. из 36 - 9 = = 27 карт. Значит, N(А) = и можно легко найти вероятность события А : .

    Теперь по теореме находим вероятность самого события А: Р(А) = 1 - Р() ≈ 0,786.

    Как видим, вероятность довольна высока. Кстати, полезное напоминание: без калькулятора вычислить вероятность более или менее сложного события бывает затруднительно.

    Ответ: ≈ 0,786.

    В теории вероятностей используются различные стандартные игровые ситуации. Это бросание монеты или игрального кубика, вытаскивание карт из колоды. К этому списку добавим еще одну, назовем ее «урновая схема»: в темном ящике (урне) лежат неотличимые на ощупь шары различного цвета. Один или несколько шаров вытаскивают. Вычисляют вероятность того, что выбранные шары имеют какой-то определенный набор цветов.

    Пример 6. В урне лежат 10 белых и 11 рыжих шаров. Случайным образом достают 5 шаров. Какова вероятность того, что среди этих 5 шаров ровно 3 белых?

    Решение. Шары в урне предполагаем неразличимыми, из 21 шара случайным образом производят выбор 5 шаров, причем порядок выбора не важен. Значит, существует N = способов такого выбора. Считаем все эти способы равновероятными.

    Интересующее нас событие А наступает, когда 3 из 5 шаров – белые, а 2 – рыжие. Из 10 белых шаров, имеющихся в урне, 3 шара можно выбрать способами, а из 11 рыжих шаров 2 шара – способами. Выбор разноцветных шаров считаем независимым. По правилу умножения получаем, что нужный нам состав шаров можно выбрать N(А) = способами. Остается посчитать вероятность.

    (почти одна треть).

    Ответ: ≈ 0,324.


    ©2015-2019 сайт
    Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
    Дата создания страницы: 2018-01-08

    1. Случайные события

    Теория вероятностей - это раздел математики изучающий закономерности массовых случайных событий.

    Случайным называется событие, наступление которого нельзя гарантировать. Случайность того или иного события определяется множеством причин, которые существуют объективно, но учесть их все, а также степень их влияния на изучаемое событие, невозможно. К таким случайным событиям относятся: выпадание того или иного числа при бросании игральной кости, выигрыш в лотереи, коли­чество больных, записавшихся на прием к врачу и т.п.

    И хотя в каждом конкретном случае трудно предсказать исход испытания, при достаточно большом числе наблюдений можно установить наличие некоторой закономерности. Подбрасывая монету, можно заметить, что число выпадания орла и решки примерно одинаково, а при бросании игральной кости различные грани также появляются, примерно одинаково. Это говорит о том, что случайным явлениям присущи свои закономерности, но они проявляются лишь при большом количестве испытаний. Правильность этого подтверждает закон больших чисел, который лежит в основе теории вероятностей.

    Рассмотрим основные термины и понятия теории вероятностей.

    Испытанием называется совокупность условий, при которых может произойти данное случайное событие.

    Событие - это факт, который при осуществлении определенных условий может произойти или нет. События обозначают большими буквами латинского алфавита А, В, С...

    Например, событие А - рождение мальчика, событие В – выигрыш в лотерее, событие С - выпадение цифры 4 при бросании игральной кости.

    События бывают достоверные, невозможные и случайные.

    Достоверное событие - это событие, которое в результате испытания непременно должно произойти.

    Например, если на игральной кости на всех шести гранях. нанести цифру 1, тогда выпадение цифры 1, при бросании кости, есть событие достоверное.

    Невозможное событие - это событие, которое в результате испытания не может произойти.

    Например, в ранее рассмотренном примере - это выпадение любой цифры, кроме 1.

    Случайное событие - это событие, которое при испытаниях может произойти или не произойти. Те или иные события реализуются с различной возможностью.

    Например, завтра днем ожидается дождь. В этом примере наступление дня является испытанием, а выпадение дождя - случайное событие.

    События называются несовместными, если в результате данного испытания появление одного из них исключает появление другого.

    Например, при бросании монеты выпадение одновременно орла и решки есть события несовместные.

    События называются совместными, если в результате данного испытания появление одного из них не исключает появление другого.


    Например, при игре в карты появление валета и масти пик - события совместные.

    События называются равновозможными, если нет оснований считать, что одно из них происходит чаше, чем другое!

    Например, выпадение любой грани игрального кубика есть равновозможные события.

    События образуют полную группу событий, если в результате испытания обязательно произойдет хотя бы одно из них и любые два из них несовместны.

    Например, при 10 выстрелах в мишень возможно от 0 до 10 попаданий. При бросании игрального кубика может выпасть цифра от 1 до 6. Эти события образуют полную группу.

    События, входящие в полную группу попарно несовместных и равновозможных событий, называются исходами, или элементарными событиями. Согласно определению достоверного события, можно считать, что событие, состоящее в появлении одного, неважно какого, из событий полной группы, есть событие достоверное.

    Например, при бросании одного игрального кубика выпадает число меньше семи. Это пример достоверного события.

    Частным случаем событий, образующих полную группу, являются противоположные события.

    Два несовместных события А и (читается «не А») называются противоположными, если в результате испытания одно из них должно обязательно произойти.

    Например, если стипендия начисляется только при получении на экзамене хороших и отличных оценок, то события «стипендия» и «неудовлетворительная или удовлетворительная оценка» - противоположные.

    Событие А называется благоприятствующим событию В, если появление события А влечет за собой появление события В.

    Например, при бросании игрального кубика появлению нечетного числа благоприятствуют события, связанные с выпадением чисел 1,3 и 5.

    2. Операции над событиями

    Операции над событиями аналогичны операциям над множествами.

    Суммой нескольких событий называется событие, состоящее в наступлении хотя бы одного из них в результате испытания.

    Сумма событий может быть обозначена знаками «+», «È», «или».

    На рисунке 1 представлена геометрическая интерпретация с помощью диаграмм Эйлера-Венна. Сумме событий А + В будет соответствовать вся заштрихованная область.

    рис.1

    Область пересечения событий А и В соответствует совместным событиям, которые могут произойти одновременно. Аналогично для событий А, В и С имеются совместные события А и В; А и С; В и С; А и В и С, которые могут про изойти одновременно.

    Например, в урне находятся белые, красные и синие шары. Возможны следующие события: А - вынут белый шар; В - вынут красный шар; С - вынут синий шар. Событие В + С означает, что произошло событие - вынут цветной шар или вынут не белый шар.

    Произведением нескольких событий называется событие которое состоит в совместном наступлении всех этих событий в результате испытания.

    Произведение событий может быть обозначено знаками «х», «∩», «и».

    Геометрическая интерпретация произведения событий представлена на рис. 2.

    рис.2

    Произведением событий А и В будет заштрихованная область пересечения площадей А и В. А для трех событий А и В и С - общая площадь, одновременно входящая во все три события.

    Например, пусть из колоды карт наугад извлекается карта. Событие А - вынута карта пиковой масти; В - вынут валет. Тогда событие А×В означает событие - вынут валет пик.

    Разностью двух событий А-В называется событие, состоящее из исходов, входящих в А, но не входящих в В.

    На рис. 3 представлена иллюстрация разности событий с помощью диаграмм Эйлера-Венна.

    рис.3

    Разностью двух событий А-В является заштрихованная область А без той части, которая входит в событие В. Разность между произведением событий А и В и событием С будет совместная площадь события А и события В без совместной с нею площадью события С.

    Например, пусть при бросании игрального кубика событие А - появление четных чисел (2,4,6), а событие В - чисел-кратных 3, т.е. (3, 6). Тогда событие А-В появление чисел (2,4).

    3. Определение вероятности события

    Случайные события реализуются с различной возможностью. Одни происходят чаще, другие - реже. Для количественной оценки возможностей реализации события вводится понятие вероятности события.

    Вероятность события - это число, характеризующее степень возможности появления события при многократном повторении испытаний.

    Вероятность обозначается буквой Р (от англ. probability - вероятность). Вероятность является одним из основных понятий теории вероятностей. Существует несколько определений этого понятия.

    Классическое определение вероятности заключается в следующем. Если известны все возможные исходы испытания и нет оснований считать, что одно случайное событие появлялось бы чаще других, т.е. события равновозможны и несовместны, то имеется возможность аналитического определения вероятности события.

    Вероятностью Р(А) события А называется отношение числа благоприятствующих исходов т к общему числу равновозможных несовместных исходов п:

    Свойства вероятности:

    1. Вероятность случайного события А находится между 0 и 1.

    2. Вероятность достоверного события равна 1.

    .

    3. Вероятность невозможного события равна 0.

    .

    В этой главе приводится краткий обзор основных понятий и результатов теории вероятностей, которые используются в курсе эконометрики.

    Теория вероятностей исследует закономерности случайных явлений, изучает случайные величины, оценивает вероятности случайных событий.

    Одно из основных понятий теории вероятностей – случайное событие . Под событием понимается любое явление, которое происходит в результате осуществления определенного комплекса условий. В теории вероятностей любое событие рассматривается как результат некоторого эксперимента , т.е. осуществления определенного комплекса условий (синонимами термина эксперимент являются опыт, испытание, наблюдение). В связи с этим часто вместо термина событие используется термин исход . Эксперимент, результат которого не предсказуем заранее в силу различных причин, называется случайным (вероятностным ). В частности, любое действие в экономике по своей сути является случайным экспериментом.

    Событие, которое может произойти или не произойти в условиях данного эксперимента, называется случайным . Если событие обязательно произойдет в условиях эксперимента, то оно называется достоверным . Событие, называется невозможным , если в условиях данного эксперимента оно никогда не произойдет.

    Например, создание какой-либо фирмы в контексте получения прибыли является случайным экспериментом, поскольку результатом такого эксперимента может быть только случайное событие, т.е. прибыль может быть, а может и не быть. То, что спрос на бытовую технику упадет при резком снижении доходов населения, в экономике рассматривается как достоверное событие. То, что увеличение спроса на автомобили приведет к снижению их цены, рассматривается как невозможное событие.

    В теории вероятностей события обычно обозначаются большими латинскими буквами, например A , B , C . Достоверное событие обозначается буквой W, а невозможное событие – символом Æ.

    Следует отметить, что в теории вероятностей рассматриваются только такие эксперименты, которые можно повторить (воспроизвести) при неизменном комплексе условий произвольное число раз (по крайней мере, теоретически). В связи с этим, в теории вероятностей имеют дело с повторением испытаний двух типов: 1) повторение испытаний для одного и того же объекта; 2) испытание многих сходных объектов. Например, можно исследовать продукцию, выпущенную каким-либо одним станком за определенный период времени, а можно исследовать продукцию, выпущенную несколькими одинаковыми станками, но в фиксированный момент времени. С точки зрения теории вероятностей такие серии экспериментов эквивалентны.



    Чтобы охарактеризовать вероятность события числом, нужно установить единицу измерения вероятности. Здесь поступают следующим образом: достоверному событию приписывают вероятность, равную единице; невозможному – равную нулю. Таким образом, вероятность P (A ) события А должна удовлетворять следующим условиям:

    1 о. P (A )=1, если А достоверное событие ;

    2 о. P (A )=0, если А невозможное событие ;

    3 о. 0<P (A )<1, если А случайное событие .

    При различных подходах к вероятности, величина P (A ) может трактоваться по-разному. В экономических исследованиях часто используются статистическое определение вероятности , т.е. под вероятностью события A понимается величина

    где под n понимается количество наблюдений результатов эксперимента, в которых событие A встречалось ровно m раз (конечно, число наблюдений n должно быть достаточно большим).

    Пример 2.1. Аналитик по инвестициям собирает данные об акциях и отмечает, выплачивались ли по ним дивиденды и увеличивались или нет акции в цене за интересующий его период времени. Собранные данные были представлены в виде таблицы:

    Если акция выбрана случайно из набора в 246 акций, то чему равна вероятность того, что: а) она из числа тех акций, которые увеличились в цене; б) по ней выплачены дивиденды; в) по ней не выплачены дивиденды, и она не выросла в цене.

    Решение. Используя статистическое определение вероятности, легко получаем:

    а) ; б) ; г) . â

    В задачах, использующих вероятностные количественные характеристики, приходится по вероятностям одних событий оценивать вероятности других событий. Для этого используются различные соотношения, в основе которых лежат теоремы сложения и умножения вероятностей.

    События называются несовместными , если они не могут наблюдаться одновременно в одном и том же эксперименте.

    Суммой событий A и B называется событие A+B , состоящее в появлении хотя бы одного из этих событий.

    Вероятность суммы несовместных событий A и B равна сумме вероятностей этих событий:

    Пример 2.2. В ходе исследования потребительского рынка проводили опрос потребителей. В частности, один из вопросов касался сорта зубной пасты, которую использует потребитель. Если известно, что 14% населения использует сорт A , а 9% – сорт B , то чему равна вероятность того, что случайно выбранный человек будет использовать одну из двух паст. (Предполагается, что в данный момент человек использует только одну пасту).

    Решение. Пусть A A , а B – событие, состоящее в том, что выбранный человек использует пасту сорта B. Поскольку события A и B несовместные по условию задачи, то, используя теорему сложения вероятностей (2.2), получим

    Если появление одного из событий не меняет вероятности появления другого события, то такие события называются независимыми .

    Произведением событий A и B называется событие , состоящее в появлении одновременно обоих этих событий.

    Вероятность произведения независимых событий A и B равна произведению вероятностей этих событий:

    Пример 2.3. Алмазы, возможно, вскоре станут использовать в качестве полупроводников в спутниках связи. Теория предсказывает, алмазные микросхемы будут более быстродействующими, термо- радиационностойкими, что особенно важно для приборов, работающих в космосе. По оценкам экспертов, вероятности этих трех событий равны 0,9; 0,9 и 0,95 соответственно. Предполагается, что обсуждением проекта по разработке алмазных микросхем стоит вести лишь в том случае, если имеется хотя бы 70% уверенности в том, что они будут обладать всеми тремя указанными свойствами. Должен ли обсуждаться проект?

    Решение. Пусть A – событие, состоящее в том, что алмазные микросхемы будут более быстродействующими, B – событие, состоящее в том, что алмазные микросхемы будут более термостойкими, C – событие, состоящее в том, что алмазные микросхемы будут более радиационностойкими. Поскольку события A , B и С независимы, то, используя теорему умножения вероятностей (2.3), получим

    Таким образом, поскольку 0,7695>0,7, то предложенный проект следует обсуждать. â

    В ряде случаев вероятности появления одних событий зависят от того, произошло другое событие или нет. Такие события называются зависимыми .

    Вероятность события A , вычисленная при условии, что имело место другое событие B , называется условной вероятностью события A и обозначается или .

    Вероятность произведения двух событий A и B равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже имело место:

    Пример 2.4. Одна из наиболее сложных проблем рыночных исследований – отказ потребителей отвечать на вопросы о потребительских предпочтениях, либо, если опрос проводится по месту жительства, – отсутствие их дома на момент опроса. Предположим, что исследователь рынка с вероятностью в 0,94 верит, респондент согласится отвечать на вопросы анкеты, если окажется дома. Он также полагает, что вероятность того, что этот человек будет дома, равна 0,65. Имея такие данные, оцените процент заполненных анкет.

    Решение. Пусть A – событие того, что респондент окажется дома. Вероятность этого события . Пусть B – событие того, что респондент согласится отвечать на вопросы. По условию задачи задана условная вероятность , т.е. вероятность того, что он согласится отвечать на вопросы, если он будет дома. Тогда, согласно теореме умножения вероятностей зависимых событий (2.4), вероятность того, что человек будет дома и согласится отвечать на вопросы, будет равна

    т.е. процент заполненных анкет будет равен 61%. â

    Вероятность суммы совместных событий A и B равна сумме вероятностей этих событий без вероятности их совместного появления:

    Пример 2.5. Вероятность того, что покупатель, собирающийся приобрести компьютер и пакет прикладных программ, приобретет только компьютер, равна 0,15. Вероятность того, что покупатель купит только пакет программ, равна 0,1. Вероятность того, что будут куплены и компьютер и пакет программ, равна 0,05. Чему равна вероятность того, что будут куплены или компьютер, или пакет программ, или компьютер и пакет программ вместе?

    Решение. Пусть A – событие того, что покупатель приобретет компьютер, B – событие того, что покупатель приобретет пакет программ, тогда AB – событие того, что покупатель приобретет и компьютер, и пакет программ. Следовательно, вероятность того, что будут куплены или компьютер, или пакет программ, или компьютер и пакет программ вместе, будет равна

    Два несовместных события A и называются противоположными , если при эксперименте одно из них обязательно произойдет. Иначе, для противоположных событий справедливы равенства:

    Решение. Пусть A i – событие того, что i -й прохожий купит книгу. Вероятность этого события , а противоположного события . Тогда вероятность того, что хотя бы один из 20 прохожих купят книгу, будет равна

    . â

    Если событие B может произойти только с одним из несовместных событий A 1 , A 2 ,…, A n , образующих полную группу, т.е. , то вероятность события B может быть найдена по формуле полной вероятности :

    Пример 2.7. Вероятность того, что новый товар будет пользоваться спросом на рынке, если конкурент не выпустит в продажу аналогичный продукт, равна 0,67. Вероятность того, что товар будет пользоваться спросом при наличии на рынке конкурирующего товара, равна 0,42. Вероятность того, что конкурирующая фирма выпустит аналогичный товар на рынок в течение интересующего нас периода, равна 0,35. Чему равна вероятность того, товар будет иметь успех?

    Решение. Пусть A 1 – событие того, что конкурент выпустит в продажу аналогичный продукт, A 2 – событие того, что конкурент не выпустит в продажу аналогичный продукт. Поскольку эти события несовместные и образуют полную группу, то и . По условию задачи и . В результате по формуле полной вероятности (2.9) находим

    Глава 1. Основные понятия и формулы теории вероятностей ………………………………………….. 5

    § 1. Предмет теории вероятностей. Случайные

    события ………………………………………. 5

    § 2. Вероятность случайного события …………... 8

    § 3 Алгебра событий …………………………….. 12

    § 4 Формула сложения вероятностей …………… 17

    § 5 Аксиоматический подход к теории

    вероятностей ………………………………… 19

    § 6 Классическая схема теории вероятностей …. 24

    § 7 Геометрические вероятности ……………….. 26

    § 8 Условная вероятность. Независимость

    случайных событий …………………………. 29

    § 9 Формула полной вероятности. Формулы

    Байеса ……………………………………….... 39

    § 10 Комбинаторика ………………………………. 42

    § 11 Схема Бернулли ……………………………..... 49

    § 12 Вероятности при больших значениях n .

    Глава 2. Случайные величины и их характеристики 62

    § 1 Случайная величина и её функция

    распределения.................................................. 62

    § 2 Дискретные случайные величины................. 67

    § 3 Непрерывные случайные величины.............. 70

    § 4 Функции от случайной величины.................. 78

    § 5 Системы случайных величин ………………. 81

    § 6 Независимые случайные величины ………... 89

    § 7 Математическое ожидание случайной

    величины …………………………………….. 94

    § 8 Дисперсия случайной величины ………….... 109

    § 9. Корреляционный момент и корреляция

    случайных величин ……………………………. 113

    Глава 3. Закон больших чисел и центральная

    предельная теорема ……………………… 119

    § 1 НеравенствоЧебышева ……………………... 119

    § 2 Закон больших чисел ………………………... 123

    § 3 Центральная предельная теорема Ляпунова и

    её следствия …………………………………129

    Задачи по теории вероятностей …………………… 138

    Индивидуальные задания № 1 по теории

    вероятностей …………………………………………… 153

    Индивидуальные задания № 2 по теории

    вероятностей …………………………………………... 166

    Таблица значений функции …….. 183

    Таблица значений для функции

    ................................................... 185

    Степени числа e ....................................................... 188

    Таблица значений функции ………………..... 189

    Глава I. Основные понятия и формулы теории вероятностей.

    Предмет теории вероятностей. Случайные события.

    Предметом теории вероятностей являются модели опытов (экспериментов, наблюдений, испытаний), которые осуществляются, как только создаются определённые совокупности условий.

    Примеры опытов:

    1) бросание монеты 20 раз,

    2) покупка лотерейного билета,

    3) приход утром (между 8 и 9 часами) на станцию метро «Новогиреево»,

    На практике часто встречаются такие ситуации, когда исход проводимого нами опыта нельзя предсказать заранее с полной уверенностью. Например (смотри примеры опытов выше)

    1) невозможно предсказать, что герб выпадет ровно 9 раз, или герб выпадет от 7 до 15 раз

    2) выпадет ли выигрыш на лотерейный билет с таким-то номером

    3) мы будем ждать электропоезд от 20 до 80 секунд

    Во всех подобных ситуациях мы вынуждены считать результат опыта зависящего от случая, рассматривать его как случайное событие .

    Определение. Некоторое событие называется случайным по отношению к данному опыту, если при осуществлении этого опыта оно может наступить, а может и не наступить.

    Примером случайного события может служить выпадение герба ровно 9 раз в опыте с бросанием монеты 20 раз, выигрыш проданному лотерейному билету, будем ждать поезд от 20 до 80 секунд, совпадение даты рождения (в опыте) у двух наугад выбранных студентов на лекции по теории вероятностей и в данной аудитории.

    Случайные события обозначаются в дальнейшем А , В , С и т.д.

    Замечание. Согласно данному выше определению, событие считают случайным, если его наступление в результате опыта представляет собой лишь одну из двух возможностей – оно либо наступит, либо не наступит.

    События, которые в результате данного опыта всегда наступают, называется достоверными (обозначение I), которые никогда не наступают – невозможными событиями (обозначение Ø).

    Теория вероятностей рассматривает модели таких опытов, которые могут быть повторены в одних и тех же условиях (достаточно) неограниченное число раз, т.е. мы будем предполагать, что в принципе возможно создать много раз одни и те же условия, осуществляющие данный опыт.

    Случайные события, наступление которых возможно в такого рода опытах, называются массовыми случайными событиями.

    Массовые случайные события следует отличать от единичных, обладающих той особенностью, что опыт, с которым связаны эти события, принципиально невоспроизводим. Например, событие «1 января 2010 г. в Москве шел снег» является в этом смысле единичным (исключительным), так как воспроизвести наступление указанного дня много раз невозможно. В то же время событие « 1 января в Москве шёл снег» (без упоминания о годе) является несомненно, массовым: ведь наблюдать погоду в Москве 1 января можно много раз (в течение многих лет).

    В самых общих словах предмет теории вероятностей может быть определён следующим образом:

    Теория вероятностей занимается изучением закономерностей, присущих массовым случайным событиям .

    Оказывается, и случайные события подчиняются некоторым (вероятностным) закономерностям. Исход каждого опыта по отношению к данному событию является случайным, неопределённым. Однако средний результат большого числа опытов утрачивает случайный характер, становится закономерным.

    Например, рассмотрим опыт с бросанием данной монеты. Предположим, что бросание производится много раз подряд. Оказывается «доля» (средний результат) тех бросаний, при которых выпадает герб (т.е. отношение числа таких бросаний к числу всех бросаний) с увеличением числа бросаний приближается к (или другому числу – это зависит от состояния монеты).

    Приведём другой пример. В сосуде заключён газ. Находясь в беспрерывном движении, молекулы газа ударяются друг о друга и вследствие этого постоянно меняют величину и направление своей скорости. Казалось бы, отсюда следует, что давление газа на стенки сосуда, обусловленное ударами отдельных молекул о стенки, должно меняться случайным, неконтролируемым образом. Однако это не так: давление газа подчиняется строгой закономерности (закону Бойля-Мариотта). Причина этой закономерности кроется в том, что давление газа на стенки сосуда есть средний результат воздействия большого числа молекул. Случайные особенности, свойственные движению отдельных молекул, в массе (поскольку молекул много) взаимно погашаются, нивелируются и возникает некоторая средняя закономерность.

    Именно эта устойчивость среднего результата, его независимость от колебаний отдельных слагаемых (отдельных исходов опыта) и обуславливает широту применения теории вероятностей. Физика, биология, медицина, лингвистика и т.д.- все эти области науки используют (одни в большей степени, другие в меньшей) понятия и выводы теории вероятностей и родственных ей дисциплин - математической статистики, теории информации и т.д.

    Перейдём теперь к простейшей, самой главной закономерности в случайных событиях, в конечном счёте, составляющей основу всех приложений теории вероятностей к практике.


    Похожая информация.