Определение случайной величины. Многие случайные собы­тия могут быть оценены количественно случайными величинами.

Случайной называют такую величину, которая принима­ет значения в зависимости от стечения случайных обсто­ятельств.

Случайными величинами являются: число больных на приеме у врача, число студентов в аудитории, число рождений в городе, продолжительность жизни отдельного человека, скорость моле­кулы, температура воздуха, погрешность в измерении какой-либо величины и др. Если пронумеровать шары в урне примерно так, как это делают при разыгрывании тиража лото, то произвольное вынимание шара из урны покажет число, являющееся случайной величиной.

Различают дискретные и непрерывные случайные величины.

Случайная величина называется дискретной, если она принимает счетное множество значений: число букв на произ­вольной странице книги, энергия электрона в атоме, число волос на голове человека, число зерен в колосьях, число молекул в вы­деленном объеме газа и т. п.

Непрерывная случайная величина принимает любые зна­чения внутри некоторого интервала: температура тела, масса зерен в колосьях пшеницы, координата места попадания пули в цель (принимаем пулю за материальную точку) и др.

Распределение дискретной случайной величины. Диск­ретная случайная величина считается заданной, если указаны ее возможные значения и соответствующие им вероятности. Обозна­чим дискретную случайную величину X, ее значения x 1 x 2 , ., а вероятности Р(х 1) = p 1, Р(х 2) = р 2 и т. д. Совокупность X и Р называется распределением дискретной случайной величи­ны (табл. 1).

Таблица 1

Случайной величиной является номер вида спорта в игре «Спортло-10». Общее число видов равно 49. Указать распределение этой случайной величины (табл. 3).

Таблица 3


Значение 1 = 0 соответствует такому случаю, при котором трижды подряд событие А не происходило. Вероятность этого сложного события, по теореме умножения вероятностей (2.6), равна

Значение I = 1 относится к случаю, при котором событие А про­изошло в одном из трех испытаний. По формуле (2.6) получаем

Так как при l = 1 происходят также и два других сложных со­бытия: (А и А и А)и(А и А и А), то необходимо, воспользовав­шись теоремой сложения вероятностей (2.4), получить полную ве­роятность для l = 1, сложив трижды предыдущее выражение:

Значение I = 2 соответствует случаю, при котором событие А произошло в двух из трех испытаний. Рассуждениями, подобны­ми приведенным выше, получим полную вероятность для этого случая:

При 1 = 3 событие А появляется во всех трех испытаниях. Ис­пользуя теорему умножения вероятностей, находим


В общем случае биномиальное распределение позволяет опре­делить вероятность того, что событие А произойдет l раз при п испытаниях:

На основе многолетних наблюдений вызов врача в данный дом оце­нивается вероятностью 0,5. Найти вероятность того, что в течение шести дней произойдет четыре вызова врача; Р(А) = 0,5, п = 6,1 = 4. Т Воспользуемся формулой (2.10):

Числовые характеристики дискретной случайной величи­ны. Во многих случаях, наряду с распределением случайной ве­личины или вместо него, информацию об этих величинах могут дать числовые параметры, получившие название числовых ха­рактеристик случайной величины. Рассмотрим наиболее упот­ребительные из них.

Математическое ожидание (среднее значение) случайной величины есть сумма произведений всех возможных ее значе­
ний на вероятности этих значений:

Пусть при большом числе испытаний п дискретная случайная величина X принимает значения x v x 2 , ..., х п соответственно m 1 , m г, ..., т п раз. Среднее значение равно

Если п велико, то относительные частоты т 1 /п, т 2 /п, ... будут стремиться к вероятностям, а средняя величина - к математиче­скому ожиданию. Именно поэтому математическое ожидание час­то отождествляют со средним значением.

Найти математическое ожидание для дискретной случайной вели­чины, которая задается цифрой на грани при бросании игральной кости (см. табл. 2).

Используем формулу (2.11):

Найти математическое ожидание для дискретной случайной вели­чины, которая определяется тиражом «Спортлото» (см. табл. 3). Согласно формуле (2.11), находим


Возможные значения дискретной случайной величины рассеяны во­круг ее математического ожидания, часть из них превышает М{Х), часть - меньше М{Х). Как оценить степень разброса случайной величины отно­сительно ее среднего значения? Может показаться, что для решения та­кой задачи следует вычислить отклонения всех случайных величин от ее математического ожидания X - М(Х), а затем найти математическое ожидание (среднее значение) этих отклонений: М[Х - М(Х)]. Вез доказа­тельства отметим, что эта величина равна нулю, так как отклонения слу­чайных величин от математического ожидания имеют как положитель­ные, так и отрицательные значения. Поэтому целесообразно учитывать либо абсолютные значения отклонений М[Х - М (X)], либо их квадраты М[Х - М(Х)] 2 . Второй вариант оказывается предпочтительнее, так при­ходят к понятию дисперсии случайной величины.

Дисперсией случайной величины называют математиче­ское ожидание квадрата отклонения случайной величины от ее математического ожидания:


Она означает, что дисперсия равна разности между математи­ческим ожиданием квадрата случайной величины X и квадратом ее математического ожидания.

Найти дисперсию случайной величины, которая задается цифрой на грани при бросании игральной кости (см. табл. 2).

Математическое ожидание этого распределения равно 3,5. Запишем значения квадратов отклонения случайных величин от математического ожидания: (1 - 3,5) 2 = 6,25; (2 - 3,5) 2 = 2,25; (3 - 3,5) 2 = 0,25; (4 - 3,5) 2 = 0,25; (5 - 3,5) 2 = 2,25; (6 - 3,5) 2 = 6,25. По формуле (2.12) с учетом (2.11) няходим дисперсию:

Как следует из (2.12), дисперсия имеет размерность квадрата размерности случайной величины. Для того чтобы оценивать расстояние случайной величины в единицах той же размерности, вводят понятие среднего квадратического отклонения, под которым понимают квадратный корень из дисперсии:

Распределение и характеристики непрерывной случайной величины. Непрерывную случайную величину нельзя задать тем же законом распределения, что и дискретную. В этом случае поступают следующим образом.

Пусть dP - вероятность того, что непрерывная случайная величина X принимает значения между х и х + dx. Очевидно, что Ирм больше интервал dx, тем больше и вероятность dP: dP ~ dx. Шроме того, вероятность должна зависеть и от самой случайной Величины, вблизи которой расположен интервал, поэтому

где f(x) - плотность вероятности, или функция распределения вероятностей. Она показывает, как изменяется вероятность, отнесенная к интервалу dx случайной величины, в зависимости от значения самой этой величины:

Интегрируя выражение (2.15) в соответствующих пределах, находим вероятность того, что случайная величина принимает какое-либо значение в интервале (ab):

Условие нормировки для непрерывной случайной величины имеет вид

Как видно из (2.19), эта функция равна вероятности того, что случайная величина принимает значения, меньшие х:

Для непрерывной случайной величины математическое ожи­дание и дисперсия записываются соответственно в виде

Если классическая теория вероятностей изучала, в основном, события и вероятность их появления (наступления), то современная теория вероятностей изучает случайные явления и их закономерности с помощью случайных величин. Понятие случайной величины, таким образом, является основополагающим в теории вероятностей. Ещё ранее проводились события, состоящие в появлении того или иного числа. Например, при бросании игральной кости могли появиться числа 1, 2, 3, 4, 5, 6. Наперёд определить число появившихся очков невозможно, поскольку оно зависит от многих случайных причин, которые полностью не могут быть учтены. В этом смысле число очков есть величина случайная, а числа 1, 2, 3, 4, 5 и 6 есть возможные значения этой величины.

Случайной величиной называется величина, которая в результате опыта принимает то или иное (причём, одно и только одно) возможное числовое значение, наперёд неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.

Случайны величины принято, обычно, обозначать прописными буквами , а их возможное значения - соответствующими строчными буквамиНапример, если случайная величинаимеет три возможных значения, то они, соответственно, обозначаются так:. Для удобства будем писать:.

ПРИМЕР 1 . Число родившихся мальчиков среди ста новорожденных есть величина случайная, которая имеет следующие возможные значения: 0, 1, 2, ..., 100.

ПРИМЕР 2 . Расстояние, которое пролетит снаряд при выстреле из орудия, есть также величина случайная. Действительно, расстояние зависит не только от установки прицела, но и от многих других причин (силы и направления ветра, температуры и т. п.), которые не могут быть полностью учтены. Возможные значения этой величины, очевидно, принадлежат некоторому промежутку (интервалу) .

Заметим, что с каждым случайным событием можно связать какую-либо случайную величину, принимающую значения из R. Например, опыт - выстрел по мишени; событие - попадание в мишень; случайная величина - число попаданий в мишень.

Вернёмся к примерам, приведённым выше. В первом из них случайная величина могла принять одно из следующих возможных значений: 0, 1, 2,..., 100. Эти значения отделены одно от другого промежутками, в которых нет возможных значений. Таким образом, в этом примере случайная величина принимает отдельные, изолированные, возможные значения.

Во втором примере случайная величина могла принять любое из значений промежутка . Здесь нельзя отделить одно возможное значение от другого промежутком, не содержащим возможных значений случайной величины.

Уже из сказанного можно заключить о целесообразности различать случайные величины, принимающие лишь отдельные, изолированные значения и случайные величины, возможные значения которых сплошь заполняют некоторый промежуток.

Дискретной ( прерывной ) случайной величиной называется такая случайная величина, которая принимает конечное или счётное множество 1 различных значений. Другими словами - это такая случайная величина, которая принимает отдельные, изолированные возможные значения с определенными вероятностями.

Число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка действительной числовой оси.

Очевидно, во-первых, число возможных значений непрерывной случайной величины – бесконечно. Во-вторых, дискретная случайная величина является частным случаем непрерывной случайной величины.

    Закон распределения вероятностей

I . Закон распределения вероятностей дискретной случайной величины

На первый взгляд может показаться, что для задания дискретной случайной величины достаточно перечислить все её возможные значения. В действительности это не так: различные случайные величины иногда могут иметь одинаковые перечни возможных значений, а соответствующие вероятности этих значений – различные. Поэтому для полной характеристики мало знать значения случайной величины, нужно ещё знать, как часто эти значения встречаются в опыте при его повторении, т.е. нужно ещё указать вероятности их появления.

Рассмотрим случайную величину . Появление каждого их возможных значенийсвидетельствует о том, что произошло соответственно одно из событий, которые образуют полную группу 2 . Допустим, что вероятности этих событий известны:

, . . . , ,

Тогда: соответствие, устанавливающее связь между возможными значениями случайной величины и их вероятностями, называется законом распределения вероятностей случайной величины , или просто – законом распределения случайной величины.

Закон распределения вероятностей данной случайной величины можно задать таблично (ряд распределения), аналитически (в виде формулы) и графически.

При табличном задании закона распределения дискретной случайной величины первая строка таблицы содержит возможные значения, а вторая - их вероятности, т.е.


В целях наглядности закон распределения дискретной случайной величины можно изобразить и графически, для чего в прямоугольной системе координат строят точки , а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения. При этом, сумма ординатпостроенного многоугольника равна единице.

Аналитически закон распределения дискретной случайной величины можно записать, например, используя формулу Бернулли для схемы повторения независимых опытов. Так, если обозначить случайную величину, которой является число бракованных деталей в выборке, через , то возможные её значениябудут 0, 1, 2, . . . ,. Тогда, очевидно, формула Бернулли будет устанавливать зависимость между значениямии вероятностью() их появления, где

,

что о определяет закон распределения данной случайной величины.

II . Закон распределения вероятностей непрерывной случайной величины

Вспомним, что дискретная случайная величина задаётся перечнем всех её возможных значений и их вероятностей. Такой способ задания не является общим: он не применим, например, для непрерывных случайных величин.

Действительно, рассмотрим случайную величину , возможные значения которой сплошь заполняют интервал. Можно ли составить перечень всех возможных значений? Очевидно, что этого сделать нельзя. Этот пример указывает на целесообразность дать общий способ задания любых типов случайных величин (как уже отмечалось, дискретная случайная величина является частным случаем непрерывной случайной величины). С этой целью вводятинтегральную функцию распределения.

Пусть – переменная, принимающая произвольные действительные значения (на оси:) . Рассмотрим событие, состоящее в том, что случайная величинапримет значение меньшее. Тогда, вероятностьсобытиязависит от, т.е. является функцией от. Эту функцию принято обозначать черези называть функцией распределения случайной величины или, ещё – интегральной функцией распределения. Другими словами:

интегральной функцией распределения называют функцию , определяющую для каждого значенияR вероятность того, что случайная величина примет значение, меньшее, т.е.

.

Геометрически это равенство можно истолковывать так: есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки.

Свойства интегральной функции :


Доказательство этого свойства вытекает из определения интегральной функции как вероятности: вероятность всегда есть неотрицательное число, не превышающее единицы.

Действительно, пусть – событие, состоящее в том, что случайная величинапримет значение меньшее; аналогично,
– событие, состоящее в том, что случайная величинапримет значение меньшее. Другими словами:

Следовательно, если , то . Значит (объяснить - почему?)или, что то же самое:

Что и требовалось показать.

Это свойство вполне очевидно. Так, если - достоверное событие, а– невозможное событие, то

Рассмотрим следующие события: . Видим, что– т.е. событияинесовместны. Тогда

Но ,В результате, можем записать:, что и требовалось показать.

Мы будем в основном изучать такие непрерывные случайные величины, функции распределения которых непрерывны.

График функция распределения дискретной случайной величины представляет собой ступенчатую ломаную линию (см. рис.). Величина скачка в точках разрыва равна вероятности значения случайной величины в этой точке. Зная ряд распределения случайной величины, можно построить график её функции распределения:

.

Для непрерывной случайной величины более наглядной является не интегральная, а дифференциальная функция распределения или, так называемая, плотность распределения случайной величины.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Южно-Уральский государственный университет

(национальный исследовательский университет)»

Факультет «Приборостроительный (КТУР)»

Кафедра «Информационно-измерительная техника»

Реферат на тему

«Что такое случайная величина?»

по дисциплине «Теория вероятностей и математическая статистика»

Проверил:

______________/ А.П. Лапин

Выполнил:

студент группы ПС-236

_______________/Загоскин Я.С./

Челябинск 2015

ВВЕДЕНИЕ

1. СЛУЧАЙНАЯ ВЕЛИЧИНА

ЗАКЛЮЧЕНИЕ

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

ВВЕДЕНИЕ

Теория вероятностей - относительно молодая, но уже ставшая классической, ветвь математики. Развитие ее как отдельной науки пришлось на середину XVII века, и началось с переписки двух известных во всем мире французских математиков: Блеза Паскаля и Пьера де Ферма. Однако задачами, относящимися к просчету вероятностей в азартных играх, ученые начали интересоваться значительно раньше. Так, например, итальянский математик Лука Пачоли еще в 1494 в своем труде «Сумма арифметики, геометрии, отношений и пропорций» («Summa de arithmetica, geometria, proportioni et proportionalitа»), рассмотрел одну из задач о вероятностях, но, к сожалению, привел ошибочное решение.

Сегодня методы теории вероятностей и математической статистики являются неотъемлемой частью практически любой дисциплины, как технической, так и гуманитарной направленности. Законы распределения случайных величин оказались применимыми не только к математике, физике, химии, и так далее, но и к дисциплинам, носящим отчасти прогностический характер, таким как социология, экономика, политология, etc.

В данной работе, познакомимся с основными понятиями, терминами и законами теории вероятностей и математической статистики, а так же с применением последних на практике.

1. СЛУЧАЙНАЯ ВЕЛИЧИНА

1.1 Определение случайной величины

Случайная величина - это фундаментальное понятие теории вероятностей и математической статистики.

Каждый автор по-своему формулирует понятие случайной величины. Е.С. Вентцель, например, определяет случайную величину, как величину, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно .

Иначе говоря, случайная величина это величина, имеющая целый набор допустимых значений, но принимающая лишь одно, и какое именно, заранее точно сказать нельзя.

Формальное математическое определение случайной величины звучит следующим образом:

Пусть (Щ, F, P) - вероятностное пространство, тогда случайной величиной называют функцию X: Щ > R .

Случайную величину на практике обычно обозначают заглавными буквами, например: X, Y, Z, тогда, как возможные значения самой величины определяются строчными знаками: x, y, z.

1.2 Виды и примеры случайных величин

Различают два вида случайных величин: дискретные и непрерывные.

К дискретным относятся те случайные величины, множество значений которых конечно или фиксировано. Примером дискретной случайной величины, можно считать количество попаданий в цель при заранее определенном числе выстрелов.

Непрерывная случайная величина это такая величина, множество значений которой несчётно или бесконечно. В качестве примера для непрерывной случайной величины, можно взять количество кругов на воде, после попадания в нее камня, или расстояние, которое пролетит стрела, прежде чем упасть на землю.

Все случайные величины, ко всему прочему, имеют еще одну важную характеристику - ряд допустимых значений, который, в свою очередь, может как ограниченным, так и неограниченным. Отсюда, имеем, в зависимости от числа допустимых значений, ограниченные случайные величины, ряд допустимых значений конечен или фиксирован, и неограниченные, количество допустимых значений которых бесконечно.

Дискретные случайные величины могут иметь ограниченный и неограниченный ряд возможных значений, когда как непрерывные - только неограниченный.

На практике в теории вероятностей и математической статистике, как правило, имеют дело только с непрерывными случайными величинами.

2. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

2.1 Закон распределения дискретной случайной величины

Любое соотношение между допустимыми значениями случайной величины и вероятностями их наступления называют законом распределения дискретной случайной величины.

Существует два способа задания закона распределения:

· Аналитически, когда закон распределения задается в виде таблицы соответствия значений случайной величины и их вероятностью, именуемой рядом распределения:

Таблица 1 - ряд распределения случайной величины

Здесь, в первой строке располагаются возможные значения случайной величины, а во второй - их вероятности, при этом сумма всех вероятностей равна единице:

· Графически, когда таблица распределения случайно величины принимает многоугольника распределения:

Рисунок 1 - многоугольник распределения случайной величины

Где сумма всех ординат многоугольника является вероятностью всех допустимых значений случайной величины, следовательно, также равна единице.

Существует также биномиальный закон распределения дискретной случайной величины или, второе название - закон распределения Бернулли.

Определение: дискретная случайная величина о распределена по биномиальному закону, если вероятность того, что событие A наступит ровно m раз в серии из n испытаний по схеме Бернулли, равна:

Или в виде таблицы:

Таблица 2 - ряд биномиального распределения

Примером является выборочный контроль качества производственных изделий, при котором отбор изделий для пробы производится по схеме случайной повторной выборки, т.е. когда проверенные изделия возвращаются в исходную партию. Тогда количество нестандартных изделий среди отобранных есть случайная величина с биномиальным законом распределения вероятностей.

Дискретная случайная величина называется распределенной по закону Пуассона, если она имеет неограниченное счетное множество допустимых значений 0, 1, 2, …, m, … Тогда соответствующие вероятности определяются формулой (3):

M = 0, 1, 2,…; (3)

Примером явления, распределенного по закону Пуассона, является последовательность радиоактивного распада частиц.

2.2 Законы распределения непрерывной случайной величины

случайный величина теория вероятность

Рассмотренные выше правила распределения случайной величины являются справедливыми лишь по отношению к дискретным величинам, в силу того, что все перечисленные законы строятся исключительно из соображения, что количество возможных значений случайной величины конечно и строго фиксировано. Именно поэтому, например, распределить непрерывную случайную величину по закону Пуассона или Бернулли не получится, так как невозможно перечислить количество допустимых значений данной величины - оно бесконечно.

Для описания распределения непрерывных случайных величин существуют следующие законы:

Рассмотрим значения случайной величины Х такие, что Х<х. Вероятность события X<х зависит от x, т.е. является функцией x. Эта функция и называется интегральной функцией распределения и обозначается через F(x):

Равенство (4) читается:

Вероятность того, что случайное значение X находится левее значения х, определяется функцией распределения F(x).

Рисунок 2 - Графическое представление функции распределения с.в.

Стоит отметить, что в виде функции распределения, можно описывать как непрерывную, так и дискретную случайные величины - это универсальная характеристика.

Для непрерывных случайных величин на практике, наравне с функцией распределения F(x), также принято использовать другой закон распределения - плотность распределения вероятностей случайной величины:

Равенство (5) - дифференциальный закон распределения случайной величины, который выражает крутизну функции распределения F(x).

Рисунок 3 - Графическое представление дифференциального закона распределения с.в.

Заметим, что дифференциальный закон распределения случайной величины не является универсальным - он применим исключительно к непрерывным случайным величинам.

Одним из часто используемых на практике законов, является нормальный закон распределения - закон распределения Гаусса. Закон характеризует плотность вероятности нормально распределенной случайной величины X и имеет вид:

Где a и у параметры распределения имеют значения:

Кривая распределения (рисунок 4а), или кривая Гаусса, получается симметричной относительной точки x = a - точки максимума. При уменьшении значения у ордината точки максимума безгранично возрастает, кривая же при этом пропорционально расходится вдоль оси абсцисс, сохраняя площадь графика постоянной величиной, равной единице (рисунок 4б).

Рисунок 4 - Кривые распределения:

4а - кривая Гаусса,

4б - поведение кривой Гаусса при изменении параметра у;

На практике, нормальное распределение играет значимую роль во многих областях знаний, но особенное внимание ей уделяют в физике. Физическая величина подчиняется закону Гаусса, когда она подвергается влиянию большого числа случайных помех, что является крайне распространенной ситуацией, вследствие чего нормальное распределение чаще всего встречается в природе, и именно отсюда пошло ее название.

Непрерывная случайная величина называется равномерно распределенной на промежутке (a, b), если все ее возможные значения принадлежат этому промежутку и плотность распределения вероятностей постоянна - закон равномерного распределения непрерывной случайной величины, имеющий вид:

Для случайной величины Х, равномерно распределенной в интервале (a, b) (рисунок 5), вероятность попадания в любой интервал (x1, x2), лежащий внутри интервала (a, b), равна:

Рисунок 5 - График плотности равномерного распределения

В качестве примера равномерно распределенных величин, можно взять ошибки округления. Так, если все табличные значения некоторой функции округлены до одного и того же разряда, то выбирая наугад табличное значение, мы считаем, что ошибка округления выбранного числа - случайная величина, равномерно распределенная в интервале, где.

Непрерывная случайная величина X называется показательно распределенной, если плотность распределения ее вероятностей имеет вид:

В качестве примера, возьмем время Т безотказной работы компьютерной системы, где Т - случайная величина, имеющая показательное распределение с параметром л, физический смысл которого - среднее число отказов в единицу времени, не считая простоев системы для ремонта.

Рисунок 6 - График плотности показательного распределения

ЗАКЛЮЧЕНИЕ

Методы, средства и законы теории вероятностей и математической статистики на протяжении всех этапов формирования дисциплины, являлись актуальным, какими и остаются вплоть до наших дней. Главный принцип методов, позволивший затронуть столь огромное количество отраслей и сфер знания - универсальность. Их с легкостью можно применять в любой дисциплине, и при этом они не теряют своей силы, остаются справедливыми.

Но никогда еще теория вероятностей не была столь востребована, как сегодня. Связано это в первую очередь с невероятными темпами развития и роста вычислительной техники. С каждым годом она становится все сложнее, повышается быстродействие, количество производимых в секунду операций, и все это происходит не без участия математической статистики, которая, в свою помогает оптимизировать работу вычислительных систем и комплексов, повышает точность расчетов, осуществляет прогностическую функцию.

Данная работа частично помогает разобраться в азах дисциплины. Знакомит с фундаментальными понятиями, такими как дискретные и непрерывные случайные величины, поясняет разницу между последними. Знакомит с законами их распределения, с дальнейшим применением всех полученных знаний на практике.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Вентцель, Е.С. Теория вероятностей/ Е.С. Вентцель - М.:Наука, 1969г.

2. Смирнов, Н.В. Курс теории вероятностей и математической статистики для технических приложений./ Н.В. Смирнов, И.В. Дунин-Барковский - М.: «Наука», 1969г.

3. Пустыльник, Е.И. Статистические методы анализа и обработка наблюдений: учебное пособие/ Е.И. Пустыльник. - М.:«Наука», 1968г.

4. Джонсон, Н. Статистика и планирование в науке и технике./ Н. Джонсон, Ф. Лион - М.: «Мир», 1969г.

5.http://www.wikipedia.org/

Аннотация

Загоскин Я.С. «Что такое случайная величина?»

Челябинск: Юургу

Библиогр. Список - 5 наим.

Цель реферата: Познакомиться с базовыми терминами теории вероятностей и математической статистики.

Задачи реферата: Разобраться с понятием случайной величины.

Рассмотрено понятие случайной величины, определена классификация случайных величин, рассмотрены законы их распределения, примеры применения законов и методов на практике, а также проанализирована перспективность дисциплины.

Размещено на Allbest.ru

Подобные документы

    Вероятность попадания случайной величины Х в заданный интервал. Построение графика функции распределения случайной величины. Определение вероятности того, что наудачу взятое изделие отвечает стандарту. Закон распределения дискретной случайной величины.

    контрольная работа , добавлен 24.01.2013

    Непрерывная случайная величина и функция распределения. Математическое ожидание непрерывной случайной величины. Среднее квадратичное отклонение. Кривая распределения для непрерывной случайной величины. Понятие однофакторного дисперсионного анализа.

    контрольная работа , добавлен 03.01.2012

    Описание случайных ошибок методами теории вероятностей. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон распределения. Понятие функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    реферат , добавлен 19.08.2015

    Случайные величины. Функция и плотность распределения вероятностей дискретной случайной величины. Сингулярные случайные величины. Математическое ожидание случайной величины. Неравенство Чебышева. Моменты, кумулянты и характеристическая функция.

    реферат , добавлен 03.12.2007

    Задачи математической статистики. Распределение случайной величины на основе опытных данных. Эмпирическая функция распределения. Статистические оценки параметров распределения. Нормальный закон распределения случайной величины, проверка гипотезы.

    курсовая работа , добавлен 13.10.2009

    Математическое ожидание случайной величины. Свойства математического ожидания, дисперсия случайной величины, их суммы. Функция от случайных величин, ее математическое ожидание. Коэффициент корреляции, виды сходимости последовательности случайных величин.

    лекция , добавлен 17.12.2010

    Дискретные системы двух случайных величин. Композиция законов распределения, входящих в систему. Определение вероятности попадания случайной величины в интервал; числовые характеристики функции; математическое ожидание и дисперсия случайной величины.

    контрольная работа , добавлен 22.11.2013

    Плотность распределения непрерывной случайной величины. Характеристика особенностей равномерного и нормального распределения. Вероятность попадания случайной величины в интервал. Свойства функции распределения. Общее понятие о регрессионном анализе.

    контрольная работа , добавлен 26.04.2013

    Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.

    контрольная работа , добавлен 25.03.2015

    Функция распределения непрерывной случайной величины. Математическое ожидание непрерывной случайной величины, плотность распределения вероятностей системы. Ковариация. Коэффициент корреляции.

Определение . Случайной величиной называют такую величину, которая в результате эксперимента принимает какое-либо одно значение из множества ее возможных значений, причем до экс­перимента невозможно предсказать, какое именно.

Случайными величинами являются, например, количество оч­ков, выпадающих при бросании игрального кубика, число посе­тителей аптеки в течение дня, количество яблок на дереве и т. д.

Случайными величинами являются также температура боль­ного в некоторое наугад выбранное время суток, масса наугад выбранной таблетки некоторого препарата, рост наугад выбран­ного студента и т. д.

О

днако с математической точки зрения между такими слу­чайными величинами, как, например, число посетителей аптеки в течение дня (обозначим эту случайную величину X 1) и рост наугад выбранного студента из некоторой группы студентов (ве­личина Х 2), имеется принципиальное различие, а именно: для величины X 1 можно перечислить все ее возможные значения (1, 2, 3, 4, 5, 6, ...), тогда как для величины Х 2 этого сделать нельзя, поскольку эта величина в результате измерения может принять любое значение из отрезка, где

и - соответ­ственно минимальный и максимальный рост студентов группы.

Случайные величины принято обозначать прописными буква­ми латинского алфавита - X, Y, Z и т. д., а их возможные значения - соответствующими строчными буквами с числовыми индексами. Например, значения случайной величины xобозна­чают следующим образом:x 1 ,x 2 ,x 3 и т. д.

Понятие дискретных и непрерывных случайных величин

Определение . Случайная величина называется дискретной, если совокупность всех ее возможных значений представляет собой конечное или бесконечное, но обязательно счетное множество значений, т. е. такое множество, все элементы которого могут быть (по крайней мере, теоретически) пронумерованы и выписаны в соответствующей последовательности.

Определение . Случайная величина называется непрерывной, если множество ее возможных значений представляет собой не­который конечный или бесконечный промежуток числовой оси.

Исходя из этих определений, такие из перечисленных выше случайных величин, как количество очков, выпадающих при бро­сании игрального кубика, число посетителей аптеки в течение дня, количество яблок на. дереве, являются дискретными случай­ными величинами, а такие, как температура больного в фикси­рованное время суток, масса наугад выбранной таблетки некото­рого препарата, рост наугад выбранного студента, - непрерыв­ными величинами.

Дискретные случайные величины

Рассмотрим подробнее дискретные случайные величины , причем, как правило, будем ограничивать рассмотрение такими случай­ными величинами, у которых количество возможных значений конечно.

Наиболее полную информацию о дискретной случайной вели­чине дает закон распределения этой величины.

Определение . Законом распределения дискретной случайной величины называется соответствие между всеми возможными значениями этой случайной величины и соответствующими им вероятностями.

Закон распределения дискретной случайной величины часто задают в виде двухстрочной таблицы, в первой строке которой перечислены все возможные значения этой величины (как правило, в порядке возрастания), а во второй - соответствующие этим значениям вероятности таблице 1:

Пример 2. Имеется десять студенческих групп, насчитыва­ющих соответственно 12, 10, 11, 8, 12, 9, 10, 8, 10 и 11 студентов. Составить закон распределения случайной величины X, опреде­ляемой как число студентов в наугад выбранной группе.

Решение. Возможными значениями рассматриваемой случай­ной величины Х являются следующие (в порядке возрастания):

8, 9, 10, 11 и 12.

Поскольку случайная величина Х принимает значение, равное 8, в том случае, если наугад выбранной группой окажется груп­па из 8 студентов (назовем это событием А), вероятность того, что случайная величина Х примет значение
, равна вероят­ности этого случайного события:
.

Вероятность же случайного события А в соответствии с классическим определением вероятности равна
по­скольку из 10 групп две насчитывают по 8 студентов.

Таким образом, для вероятности значения получаем:

.

Аналогично можно найти вероятности остальных значений слу­чайной величины X:

что позволяет составить искомый закон распределения (таблица 2):

Закон распределения дискретной случайной величины может быть задан также с помощью формулы, позволяющей для каж­дого возможного значения этой величины определить соответ­ствующую вероятность.

Дискретные и непрерывные случайные величины

Как правило, при изготовлении продукции на процесс её производства оказывает влияние множество различных факторов, в результате чего наблюдается разброс значений показателей качества продукцию. Таким образом, показатели качества изготовляемой продукции или оказываемых услуг следует рассматривать как случайные величины.

Случайной величиной называется такая величина, которая в результате испытаний в границах определенного интервала может принимать различные числовые значения (согласно СТБ ГОСТ Р 50779.10 случайная величина - переменная, которая может принимать любое значение из заданного множества значений и с которой связано распределение вероятностей ).

Дискретными случайными величинами называются такие, которые в результате испытаний могут принимать лишь отдельные, изолированные значения и не могут принимать значения промежуточные между ними. Например, количество негодных деталей в партии может быть только целым положительным числом 1, 2, 3 и т.д., но не может быть 1,3; 1,7 и т.п.

Непрерывной случайной величиной называется такая величина, которая в результате испытаний может принимать любые численные значения из непрерывного ряда их возможных значений в границах определенного интервала.

Например, действительные размеры деталей, обработанных на станке, являются случайными величинами непрерывного типа, так как они могут принять любое численное значение в определенных границах.

Возможности случайных величин принимать при испытаниях те или иные численные значения оцениваются при помощи вероятностей.

Совокупность значений случайных величин, расположенных в возрастающем порядке с указанием их вероятностей для каждого из значений, называется распределением случайных величин (согласно СТБ ГОСТ Р 50779.10 распределение – это функция, определяющая вероятность того, что случайная величина примет какое-либо заданное значение или будет принадлежать заданному множеству значений).

Распределение случайной величины можно представить в табличном, графическом виде и при помощи статистических оценок.

При представлении распределения случайной величины в табличном виде каждому номеру исследуемой единицы продукции (номеру измерения) соответствует значение показателя качества для данной единицы продукции (результат измерения).

При представлении распределения случайной величины в графическом виде строят график распределения в координатах значение случайной величины – вероятность (частота, частость) значения случайной величины.

На рисунке ниже показаны графики распределения дискретной и непрерывной случайных величин.

Рисунок - График распределения дискретной случайной величины

Рисунок - График распределения непрерывной случайной величины

Различают теоретические и эмпирические распределения случайных величин. В теоретических распределениях оценка возможных значений случайной величины производится при помощи вероятностей, а в эмпирических - при помощи частот или частостей, полученных в результате испытаний.

Следовательно, эмпирическим распределением случайной величины называется совокупность экспериментальных ее значений, расположенных в порядке возрастания, с указанием частот или частостей для каждого из значений(согласно СТБ ГОСТ Р 50779.10 распределение частот – это эмпирическое отношение между значениями признака и его частотами или его относительными частотами).

Таблица. Пример табличного представления теоретического распределения дискретной случайной величины

Графически эмпирическое распределение дискретной случайной величины можно представить в виде столбиковой диаграммы , образуемой набором столбцов равной ширины, высоты которых пропорциональны частотам дискретных значений случайной величины.

Рисунок - Столбиковая диаграмма дискретной случайной величины.

Если случайная величина является непрерывной, то возникают некоторые сложности с представлением ее распределения в виде таблицы или графика. Поэтому на практике при изучении случайных величин непрерывного типа полученные значения разбивают на равные интервалы с таким расчетом, чтобы значение интервала было несколько больше погрешности измерения исследуемой величины. Затем подсчитывают частоты не по действительным значениям случайной величины, а по интервалам. Поэтому таблица эмпирического распределения случайной величины непрерывного типа будет иметь следующий вид.

Таблица. Эмпирическое распределение случайной величины непрерывного типа.

Интервал значений Х

Среднее арифметическое значение

Частота f i

Частость m i

160,031 - 160,033

160,033 - 160,035

160,035 - 160,037

160,037 - 160,039

160,039 - 160,041

160,041 - 160,043

160,043 - 160,045

160,045 - 160,047

f i = 100

m i = 1

Эмпирическое распределение случайной непрерывной величины графически может быть представлено в виде гистограммы распределения, полигона частот или полигона кумулятивных частот.

Гистограмма распределения представляет собой совокупность соприкасающихся прямоугольников, основания которых равны интервалам разбиения непрерывной случайной величины, а площади пропорциональны частотам, с которыми значения случайной величины попадают в эти интервалы (согласно СТБ ГОСТ Р 50779.10 гистограмма (распределения) – это графическое представление распределения частот для количественного признака, образуемое соприкасающимися прямоугольниками, основаниями которых служат интервалы классов, а площади пропорциональны частотам этих классов).

Рисунок - Гистограмма распределения случайной непрерывной величины.

Полигон частот – это ломаная линия, получаемая при соединении точек, абсциссы которых равны серединам интервалов разбиения, а ординаты – соответствующим частотам.

Рисунок - Полигон частот случайной непрерывной величины.

Полигон кумулятивных частот – это ломаная линия, получаемая при соединении точек, абсциссы которых равны верхним границам интервалов разбиения, а ординаты – либо кумулятивным частотам, либо кумулятивным частостям (кумулятивным относительным частотам).

Рисунок - Полигон кумулятивных частот случайной непрерывной величины.

При теоретических описаниях случайных величин непрерывного типа используется функция распределения. Теоретическое распределение случайной непрерывной величины графически может быть представлено в виде интегральной, обратной интегральной, дифференциальной функций распределения и функции интенсивности .

Пусть Х - случайная величина, а х - какое-либо действительное число (при этом Х < х ). Событию Х < х отвечает вероятность Р(Х < х), которая является функцией F(х), т.е.

Р(Х < х) = F(х)

F(Х) называется функцией распределения вероятностей случайной величины или интегральной функцией распределения.

Для дискретной случайной величины интегральная функция распределения F(Х) легко определяется по таблице или графику.

Таким образом, для приведенного выше примера распределения дискретной случайной величины (при Х < 4):

F(X) = Р( Х ) = P(Х=1 ) + P(Х=2 ) + P(Х=3 ) = 1/30 + 4/30 +15/30 = 19/30

График интегральной функции распределения дискретной случайной величины будет иметь вид ступенчатой кривой. Ординаты кривой для любого значения Х будут представлять сумму вероятностей предшествующих значений.

Рисунок - Интегральная функция распределения дискретной случайной величины

Вероятность того, что случайная величина при испытаниях окажется в границах двух заданных значений х 1 и х 2 (х 2 > х 1) равна приращению интегральной функции на этом участке, т.е.

Р(х 1 ≤ Х ≤ х 2 ) = Р(Х < х 2 ) - Р(Х < х 1 ) = F(Х 2 ) - F(Х 1 )

Если обратиться к выше приведенному примеру распределения дискретной случайной величины, то при х1= 2 и х2 = 3:

Р(2≤Х≤3) = Р(Х < 3) - Р(Х < 2)= F(Х2) - F(Х1)= 4/30-1/30 = 3/30

Для непрерывной случайной величины график интегральной функции распределения будет иметь вид монотонно возрастающей кривой. На практике с помощью интегральной функции распределения определяют теоретические частоты распределения.

Рисунок - Интегральная функция распределения

непрерывной случайной величины

Обратная интегральная функция распределения равна разности между единицей и интегральной функции распределения.

Плотностью распределения (дифференциальной функцией распределения) случайной величины называют первую производную от интегральной функции распределения:

Для аналитического описания непрерывной случайной величины в теории надежности используют функцию интенсивности , равную отношению дифференциальной функции распределения к обратной интегральной функции распределения:

Рисунок - Функция интенсивности непрерывной случайной величины.

Тема 3.

Случайные величины и функции распределения

Понятие случайной величины.

Понятие случайной величины

Функция распределения случайной величины, ее свойства

Случайные величины с дискретным распределением

Понятие случайной величины с дискретным распределением

Закон распределения дискретной случайной величины.

Примеры дискретных распределений

Случайные величины с абсолютно непрерывным распределением

Понятие случайной величины с абсолютно непрерывным распределением

Закон распределения абсолютно непрерывной случайной величины. Плотность, ее свойства

Примеры абсолютно непрерывных распределений

Понятие случайного вектора.

Понятие случайного вектора

Независимые случайные величины

Совместное распределение случайных величин

Понятие случайной величины.

С момента возникновения теории вероятностей ее основной задачей было изучение не вероятностных свойств экспериментов со случайными исходами, а связанных с этими экспериментами числовых величин, которые естественно назвать случайными величинами . Например, мы можем интересоваться не парами чисел на верхних гранях кубиков, а их суммой; числом успехов или числом неудач до первого успеха в схеме Бернулли.

Часто в литературе можно встретить вариации на тему следующего определения: Случайной величиной называют переменную величину, которая в зависимости от исходов испытания принимает значения, зависящие от случая.

Таким образом, случайная величина – это числовая величина, значение которой зависит от того, какой именно (элементарный) исход произошел в результате эксперимента со случайным исходом. Множество всех значений, которые случайная величина может принимать, называют множеством возможных значений этой случайной величины.

Мы приведем более строгое определение, поскольку понятие случайной величины является одним из тех ключевых понятий, которые связывают теорию вероятностей с математическим анализом и составляют понятийную основу математической статистики.

Определение . Случайной величиной называется функция Х = Х(ω), определенная на пространстве элементарных событий Ω, для которых событие {Х < х} = {ω: Х(ω) < х} принадлежит σ-алгебре событий A для любого вещественного х.

Условие {Х < х} єA дает возможность рассматривать вероятности событий {Х < х}, поскольку вероятности определены только на множествах из А . Кроме того, через события {Х < х}, х є (-∞, ∞) с помощью известных операций над событиями можно выразить сколь угодно сложное событие, связанное со случайной величиной Х. Такое событие также будет принадлежать σ-алгебре событий A и, следовательно, для него определена вероятность.

Замечание. Таким образом, случайная величина – это функция, областью определения которой является пространство элементарных событий Ω, а множеством значений – числовое множество, возможно, все множество действительных чисел R .

σ-алгебра событий A – это область определения вероятности, если рассматривать ее как функцию.

Замечание . «Термин «случайная величина» несколько неточен, более подходящим был бы термин «Функция случая» , независимой переменной является точка в пространстве элементарных событий, т.е. исход эксперимента или случай». (В.Феллер «Введение в теорию вероятностей», гл. IX )

Случайные величины обозначаются буквами греческого алфавита:(кси),(эта), или заглавными буквами латинского алфавита X, Y, …Значения случайной величины будем записывать в виде конечной или бесконечной последовательностиx 1 ,x 2 ,,x n ,; y 1 ,y 2 ,,y n ,

Замечание . Ранее мы ввели понятие вероятности применительно к некоторым событиям. Теперь мы переходим к разговору о функциях. Самое очевидное событие, которое можно связать с понятием функции – это принятие ею некоторого значения (конкретного или принадлежащего промежутку)

Для исследования вероятностных свойств случайной величины необходимо знать правило, позволяющее находить вероятность того, что случайная величина примет значение из подмножества ее значений. Любое такое правило называют законом распределения вероятностей или распределением (вероятностей) случайной величины. (при этом слово «вероятностей» обычно опускают)

Общим законом распределения, присущим всем случайным величинам, является функция распределения .

Определение. Вся совокупность вероятностей Р{Х < х}, х є (-∞, ∞) задает закон распределения случайной величины Х в общем случае. Часто для краткости закон распределения случайной величины называют просто распределением случайной величины.

Определение. Функция F(x) = Р{Х < х}, х є (-∞, ∞) называется функцией распределения случайной величины Х.

Значение функции распределения в точке х равно вероятности события {Х < х}, то есть события, состоящего из тех и только тех элементарных исходов ω, для которых Х < х.

Обычно говорят, что значение функции распределения в точке х равно вероятности того, что случайная величина Х примет значение, меньшее х.

Геометрически это означает следующее: F(x) – вероятность того, что случайная величина Х примет значение, которое изображается точкой на числовой прямой, расположенной слева от точки х.

Замечание . Функцию распределения называют также интегральной функцией, или интегральным законом распределения случайной величины Х

Функция распределения обладает следующими свойствами :

    0≤ F(x)≤1 (т.к. по определению, функция распределения является вероятностью)

    F(x 1) ≤ F(x 2) при x 1 < x 2 (т.е. F(x) – неубывающая функция)

    lim F(x) = 0 при x → - ∞ , lim F(x) = 1 при x → + ∞

    P (x 1 ≤ X ≤ x 2) = F(x 1) - F(x 2)

    F(x) – непрерывная слева функция, т.е. F(x) = F(x - 0), где F(x - 0) = lim F(y) при y → x - 0 (левосторонний предел)

Замечание . Для того, чтобы подчеркнуть, какой именно случайной величине принадлежит функция распределения F(x), этой функции иногда приписывают нижний индекс, обозначающий конкретную случайную величину. Например, F X (x) = Р{Х < х}

Замечание. В некоторых изданиях функция распределения определяется как F(x) = Р{Х ≤ х}. Такое определение ничего не меняет по существу понятия функции распределения, меняется лишь последнее, пятое свойство. Функция в таком случае оказывается непрерывной справа.

Отступление: «Что такое функция?»

Пусть нам даны два множества Х и Y, причем Y – числовое множество. И пусть задано правило f, по которому каждому элементу (точке) множества Х ставится в соответствие (один и только один) элемент (число) множества Y. Правило f вместе с множествами X и Y задают функцию f. Запись y=f(x) означает, что к некоторой точке x множества X применили правило f, и в результате получили точку y из множества Y. X называется аргументом (независимой переменной), а y – значением (зависимой переменной) функции f в точке х. Множество Х называется областью определения (областью задания) функции, говорят, что функция задана на этом множестве, множество Y называется множеством значений функции. Множество Х совершенно необязательно является числовым множеством. Так, случайная величина – это функция, заданная на нечисловом пространстве элементарных событий.

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, причем какое именно заранее неизвестно.

Дискретной называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного интервала.

Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и их вероятностями. Этот закон задается в виде таблицы, формулы или графика.

Для дискретных случайных величин одним из наиболее употребительных является так называемый биномиальный закон распределения, к которому приводит схема Бернулли повторения испытаний. Формула (8) и является аналитическим выражением этого закона.

Пример 11 .

По каналу связи передается сообщение с помощью кода, состоящего из двух знаков. Вероятность появления первого равна 2/3. Передано три знака. Найти закон распределения для появлений первого знака.

Решение.

По условию n =4, р =2/3, q =1/3. Возможные значения числа появлений первого знака: 0, 1, 2 и 3. Найдем их вероятности по формуле (8):

Этот закон можно представить в виде таблицы

X
P1/27 1/27 2/9 4/9 8/27

Функцией распределения называют функцию, определяющую вероятность того, что случайная величина Х в результате испытания примет значение меньше х, то есть

Геометрически это означает, что случайная величина с вероятностью р примет значение, которое на числовой оси изображается точкой, лежащей левее х.

Для непрерывной случайной величины функция распределения есть непрерывная кусочно-дифференцируемая функция. Из определения выводятся основные свойства:

1. Значения функции распределения принадлежат отрезку , т.е.

2. F (x ) - неубывающая функция, то есть , если

3. Вероятность того, что случайная величина примет значение, заключенное на промежутке [а,b [, равна приращению функции распределения на этом промежутке

Для непрерывной случайной величины вероятность принять отдельное значение равно нулю. Поэтому для непрерывных случайных величин

Пример 12 .

Случайная величина Х задана функцией распределения

Найти вероятность того, что в результате испытания Х примет значение, принадлежащее отрезку [-1;0,5].

Решение.

Из условия следует, что Х - непрерывная случайная величина, которая может принимать значение от 0 до 1.

Плотностью распределения вероятностей непрерывной случайной величины Х называют первую производную от функции распределения

Функция распределения F(x) есть одна из первообразных для плотности распределения. Исходя из определения плотности или дифференциального закона распределения и ее связи с функцией распределения, легко показать следующие свойства:

1. Плотность распределения непрерывной случайной величины - неотрицательная функция

2. Вероятность попадания случайной величины Х в интервал равна

(16)

3. Из свойства 2 получим выражение для функции распределения

(17)

4. Условие нормировки

(18)

Пример 13. Дискретная величина Х задана таблицей

Х
Р 0,1 0,3 0,4 0,2

Найти функцию распределения и построить ее график.

Решение.

1. Если , то , так как Х не может принимать значение меньше 2.

В этом случае в интервал (-¥, х) попадает только одно значение случайной величины Х (X =2). Поэтому

Для любого значения аргумента х функции F(x), удовлетворяющего данному неравенству, в интервал (-¥, х ) попадает два значения случайной величины (X =2 и X =3). Поскольку события, что Х примет данные значения являются несовместными (или X =2 или X =3), то

4. Аналогично если

Следовательно, функция распределения будет иметь вид

Строим график функции распределения

Рис. 1 - График функции распределения

дискретной случайной величины

Пример 14 . Плотность распределения ошибки измерения

ЗАКОН РАСПРЕДЕЛЕНИЯ И ХАРАКТЕРИСТИКИ

СЛУЧАЙНЫХ ВЕЛИЧИН

Случайные величины, их классификация и способы описания.

Случайной называется величина, которая в результате опыта может принимать то или иное значение, но какое именно заранее не известно. Для случайной величины, таким образом, можно указать только значения, одно из которых она обязательно примет в результате опыта. Эти значения в дальнейшем будем называть возможными значениями случайной величины. Так как случайная величина количественно характеризует случайный результат опыта, она может рассматриваться как количественная характеристика случайного события.

Случайные величины обычно обозначаются заглавными буквами латинского алфавита, например, X..Y..Z, а их возможные значения- соответствующими малыми буквами.

Различают три типа случайных величин:

Дискретные; Непрерывные; Смешанные.

Дискретной называется такая случайная величина, число возможных значений которой образует счетное множество. В свою очередь, счетным называется множество, элементы которого можно пронумеровать. Слово «дискретный» происходит от латинского discretus , что означает «прерывистый, состоящий из отдельных частей» .

Пример 1. Дискретной случайной величиной является число бракованных деталей Х в партии из nтук. Действительно, возможными значениями этой случайной величины является ряд целых чисел от 0 до n.

Пример 2. Дискретной случайной величиной является число выстрелов до первого попадания в цель. Здесь, как и в примере 1, возможные значения можно пронумеровать, хотя в предельном случае возможное значение является бесконечно большим числом.

Непрерывной называется случайная величина, возможные значения которой непрерывно заполняют некоторый интервал числовой оси, называемый иногда интервалом существования этой случайной величины. Таким образом, на любом конечном интервале существования число возможных значений непрерывной случайной величины бесконечно велико.

Пример 3. Непрерывной случайной величиной является расход электроэнергии на предприятии за месяц.

Пример 4. Непрерывной случайной величиной является ошибка измерения высоты с помощью высотомера. Пусть из принципа работы высотомера известно, что ошибка лежит в пределах от 0 до 2 м. Поэтому интервалом существования данной случайной величины является интервал от 0 до 2 м.

Закон распределения случайных величин.

Случайная величина считается полностью заданной, если на числовой оси указаны ее возможные значения и установлен закон распределения.

Законом распределения случайной величины называется соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими вероятностями.

Про случайную величину говорят, что она распределена по данному закону, или подчинена данному закону распределения. В качестве законов распределения используются ряд вероятностей, функция распределения, плотность вероятности, характеристическая функция.

Закон распределения дает полное вероятное описание случайной величины. По закону распределения можно судить до опыта о том какие возможные значения случайной величины будут появляться чаще, а какие – реже.

Для дискретной случайной величины закон распределения может быть задан в виде таблицы, аналитически (в виде формулы) и графически.

Простейшей формой задания закона распределения дискретной случайной величины является таблица (матрица), в которой перечислены в порядке возрастания все возможные значения случайной величины и соответствующие их вероятности, т.е.

Такая таблица называется рядом распределения дискретной случайной величины. 1

События Х 1 , Х 2 ,..., Х n , состоящие в том, что в результате испытания случайная величина X примет соответственно значения х 1 , x 2 ,...х n являются несовместными и единственно возможными (ибо в таблице перечислены все возможные значения случайной величины), т.е. образуют полную группу. Следовательно, сумма их вероятностей равна 1. Таким образом, для любой дискретной случайной величины

(Эта единица как-то распределена между значениями случайной величины, отсюда и термин «распределение»).

Ряд распределения может быть изображен графически, если по оси абсцисс откладывать значения случайной величины, а по оси ординат - соответствующие их вероятности. Соединение полученных точек образует ломаную, называемую многоугольником или полигоном распределения вероятностей (рис. 1).

Пример В лотерее разыгрывается: автомобиль стоимостью 5000 ден. ед., 4 телевизора стоимостью 250 ден. ед., 5 видеомагнитофонов стоимостью 200 ден. ед. Всего продается 1000 билетов по 7 ден. ед. Составить закон распределения чистого выигрыша, полученного участником лотереи, купившим один билет.

Решение . Возможные значения случайной величины X - чистого выигрыша на один билет - равны 0-7 = -7 ден. ед. (если билет не выиграл), 200-7 = 193, 250-7 = 243, 5000-7 = 4993 ден. ед. (если на билет выпал выигрыш соответственно видеомагнитофона, телевизора или автомобиля). Учитывая, что из 1000 билетов число невыигравших составляет 990, а указанных выигрышей соответственно 5, 4 и 1, и используя классическое определение вероятности, получим.