Как расширяется Вселенная


Юрий Ефремов, доктор физико-математических наук

Российские ученые показали, что расширением Вселенной управляет физический вакуум, обнаруженный в 1998 г. по астрономическим наблюдениям. Это неожиданное открытие открывает новые пути для развития естествознания и понимания самых глубоких закономерностей окружающего нас Мира.

Решает ли фундаментальная наука стоящие перед человечеством проблемы или же приводит только к новым опасностям? - ответ на этот вопрос зависит от того, насколько далеко вперед способен заглянуть человек. Все блага цивилизации мы принимаем как данность, но все они, как и успехи медицины, явились итогом многих десятилетий и веков работы ученых, занимавшихся пустячными на взгляд обывателя занятиями, вроде наблюдений за звездами или за жизнью каких-то козявок. Применение результатов науки, неконтролируемое учеными, принесло и много тяжелых проблем, но теперь лишь дальнейшее развитие науки способно нас от них избавить, равно как и дать новые источники энерги и, спасти от вызовов будущего, - таких, как новые эпидемии или природные катаклизмы.

Развитие естествознания, рано или поздно приносящее плоды, необходимые для дальнейшего существования нашей цивилизации, возможно только если равномерно развиваются все его отрасли, сколь далекими они не казались бы от теперешних человеческих нужд. Исследования ядер атомов казались до 1939 г. никчемной тратой денег; немногочисленные исследователи занимались этой проблемой только потому, что хотели знать, как устроен мир. Эта любознательность остается движущей силой науки; проблемы, которые встают перед ней, определяются внутренней логикой ее развития.

Астрономия, казалось бы, относится к самым отвлеченным от жизни занятиям, особенно теперь, когда уже ни летчики, ни моряки не нуждаются в ее услугах. Однако напомним слова Эйнштейна: "Интеллектуальные орудия, без которых было бы невозможно развитие современной техники, пришли в основном от наблюдения звезд". В последние годы развитие теор етической физики (которая в ХХ веке одарила нас не только бомбой, но и лазерами и всевозможной электроникой...) стало еще более тесно связано с успехами астрономии. А в этой науке в самом конце ХХ века началась настоящая революция, о которой еще мало знает широкая публика. (О ней расказывается в двух вышедших недавно книгах сотрудников ГАИШ МГУ: Ю.Н.Ефремов, "Вглубь Вселенной", М., УРСС, 2003; А.М.Черепащук, А.Д.Чернин, "Вселенная, жизнь, черные дыры", М., Век-II, 2003).

Когда-нибудь - может быть через несколько лет, а может быть лишь через многие десятилетия - и эта революция принесет человечеству плоды, об истоках которых к тому времени позабудут, как забыты почти всеми истоки нашего нынешнего городского комфорта. Впрочем, у человека существуют ведь и духовные потребности. Давно сказано, что он отличается от некоторых животных и тем, что способен иногда поднимать голову к небу и обращать взор на звезды...

В этой статье мы расскажем о вкладе российских ученых в развитие космологии последних лет, которое привело к радикальному изменению наших представлений о Вселенной. Космология, наука о Вселенной в целом, стоящая на стыке физики

и астрономии, родилась одновременно с общей теор ией относительности. Из ее уравнений, написанных Альбертом Эйнштейном в 1916 г. первоначально следовало, что Вселенная не может быть статичной, она должна расширяться или сжиматься.

Однако испокон веков философы были уверены в том, что Космос, Вселенная в целом, вечен и неизменен. Не было и никаких наблюдательных данных, которые позволяли бы в 1916 г. говорить о расширении Вселенной - да собственно говоря и Вселенная еще не была открыта. Эйнштейн считал, что она населена звездами, и наша система Млечного пути охватывает всю Вселенную. Больших скоростей движения звезд не наблюдалось, и это давало ему и эмпирическ ие основания добавить в свои уравнения еще один член - космологическую постоянную, которая должна сделать Вселенную статичной.

Однако уже в 1925 г. стало окончательно ясно, что наша звездная система является лишь одной из бесчисленных таких систем - галактик, населяющих огромную Вселенную (Рис. 1). Высокие скорости движения по лучу зрения у галактик уже были известны - линии в спектрах далеких галактик были неизменно сдвинуты в красную сторону. Это было следствием эффекта Допплера, который вызывает смещение спектральных линий в длинноволновую (красную) сторону при удалении от нас наблюдаемых объектов, и в синюю сторону - при их приближении.

К 1929 г. благодаря работам Эдвина Хаббла и Милтона Хьюмасона на величайшем тогда в мире 2,5-м телескопе на горе Вилсон в Калифорнии стало окончательно ясно, что существует пропорциональность между скоростями удаления галактик и их расстояниями от нас (на самом деле увеличиваются, конечно, все расстояния между всеми галактиками) - Вселенная расширяется (Рис. 2). Необходимость в космологической постоянной, какзалось бы, отпала - Вселенная действительно оказалась нестатичной. Расстояния галактик R представляются формулой R = Ht, где t - время и H - константа, названная позднее постоянной Хаббла.

После этого открытия Эйнштейн назвал введение космологической постоянной своей самой грубой ошибкой. И вплоть до конца ХХ века крупнейшие физики были убеждены в том, что в этой постоянной нет необходимости - она равна нулю. Только теперь мы начинаем понимать, что ошибочным у Эйнштейна было лишь придание космологической постоянной значения, необходимого именно для статичности Вселенной. Существование некоей силы, наряду с обычным тяготением управляющей динамикой Вселенной, было недавно доказано. После открытия расширения Вселенной (в 1929 г.) и реликтового излучения, оставшегося от первых тысячелетий расширения Вселенной (в 1965 г.), это крупнейшее достижение в наблюдательной астрономии и космологии. Сравнить с ним можно только доказательство наличия сверхмассивных черных дыр в ядрах галактик.

Выбор между космологическими моделями, описывающими Вселенную в целом можно сделать при сравнении с наблюдениями теор етических зависимостей между красным смещением и расстояниями далеких объектов с известной светимостью: при больших красных смещениях должны появиться особенности, которые должны сказать - ускоренно, равномерно или замедленно идет расширение Вселенной. И это в принципе может дать величину космологической постоянной.

Основная трудность в применении этого способа связана с необходимостью иметь надежные данные о максимально далеких объектах с известной светимостью - и в определении этой светимости и тем самым расстояний. Долгое время единственными объектами, вроде бы удовлетворяющими этим требованиям оставались ярчайшие галактики в богатых скоплениях, светимость которых можно считать примерно одинаковой. Однако оставались серьезные проблемы, связанные в частности с тем, что наиболее далекие галактики мы видим на миллиарды лет более молодыми, чем галактики наших окрестностей (Рис. 3).

Конечно, еще более серьезной оставалась проблема начала расширения - экстрапол яция его назад приводит к выводу, что миллиарды лет назад все вещество Вселенной было сосредоточено в точечном объеме. Сам Хаббл испугался этого непреложного вывода из своего открытия и считал возможным старение фотонов - уменьшение их энерги и (и стало быть увеличение длины волны) на их пути из глубин Вселенной. Однако это предположение влечет ряд следствий, которые не согласуются ни с теор ией, ни с наблюдениями.

На фоне этой сверхпроблемы долгое время оставалась незамеченной другая. Согласно существовавшей теор ии, космологическое расширение в однородном и изотропном мире происходит по линейному закону, если мы мы уходим на расстояния, на которых скорость этого расширения пространства превышает скорости галактик, обусловленные их движением при гравитационном взаимодействием с соседними галактиками. Хаббл располагал данными лишь до расстояний (в современной шкале) около 20 Мегапарсек (~60 тысяч световых лет), самые далекие его галактики были членами скопления галактик в созвездии Девы. Тем не менее Хаббл нашел, что скорости удаления галактик линейно зависят от расстояния, хотя мы знаем теперь, что однородность распределения галактик в пространстве и изотропность их скоростей наступают лишь на масштабах 100 - 300 Мегапарсек. И вот оказывается, что и на этих расстояниях постоянная Хаббла имеет ту же величину, что и на расстояниях в 2 - 20 Мегапарсек.

Лишь в 1972 г. парадоксальность этого обстоятельства отметил крупнейший американский астроном Аллан Сендидж, ученик Хаббла. Он подчеркнул также необходимость объяснения другой странности - наличие скоплений галактик, внутри которых они быстро двигаются, не вызывает большого разброса в положении галактик вокруг средней линии зависимости красного смещения от расстояния. В статье, опубликованной в 1999 г., Сендидж нашел, что локальное и глобальное значения постоянной Хаббла совпадают с точностью не хуже 10%.

Аналогичные результаты по еще более точным данным были получены недавно И.Д.Караченцевым и его группой с помощью наблюдений на 6-м телескопе Специальной астрофизической обсерватории РАН и на Космическом телескопе им. Хаббла (Рис. 4). Измеренная Караченцевым и соавторами постоянная Хаббла по данным о галактиках на расстояниях до 8 Мегапарсек оказалась такой же, как и по данным для самых далеких галактик. Объяснить этот парадокс Сендидж не мог и заключил, что "мы так и остаемся с этой тайной". Правда, уже в 1972 г. он подозревал, что постоянство расширения Вселенной на всех масштабах обусловлены глубокими космологическими причинами. И это было правильной догадкой.

В 90-ые годы стало выясняться, что гораздо лучшими, чем ярчайшие галактик в скоплениях, "стандартными свечами" могут служить Сверхновые типа Ia. Это звезды, вспыхивающие на несколько дней или недель столь ярко, что становятся сравнимыми по блеску с целой галактикой. Явление сверхновых типа Ia происходит в тесных системах, состоящих из двух плотных звезд - белых карликов при обмене веществом между компонентами системы (Рис. 5).

Попытки использовать сверхновые этого типа для целей космологии начались довольно давно, но наблюдательных данных нехватало. Проблема состояла в трудности получения наблюдательного времени на больших телескопах. Комитеты, распределяющие время этих телескопов, раньше терпеть не могли заявки на работы типа поисков, слежения, обзоров; большие телескопы ведь предназначены для изучения уникальных объектов...

Успех пришел к 1997 г. одновременно к двум командам. Одна из них была сформирована в 1988 г. в Национальной лаборатории им. Лоуренса в США и состояла в основном из физиков, ее возглавил С.Перлмуттер; другую команду, из астрономов, возглавил в 1994 г. Б.Шмидт, работавший на Обсерваториях Маунт Стромло и Сайдинг Спринг в Австралии. Эти команды получили доступ к 4-м телескопам на этой обсерватории и на Серро Тололо, а позднее и к Хаббловскому Космическому телескопу и 10-м телескопу Кека на Гавайских островах; на последнем получались спектральные данные (которые, между прочим, показали, что у далеких сверхновых аналогичные спектральные изменения свершаются медленнее, чем у более близких, - еще одно доказательство допплеровской природы красного смещения).

Результаты казались - и некоторым кажутся и сейчас - невероятными. Далекие сверхновые оказались систематически более слабыми, чем требовал линейный закон Хаббла и это означало, что Вселенная расширяется с ускорением и космологическая постоянная не равна нулю, а имеет положительный знак (Рис. 6). С.Перлмуттер рассказывает, что после одного из его первых выступлений с сообщением об открытии, один знаменитый физик - теор етик заметил, что эти наблюдательные результаты должны быть ошибочными, поскольку космологическая постоянная должна быть очень близкой к нулю.

Однако о надежности результатов говорила близость независимых выводов двух команд, тщательно рассмотревших все возможные источники ошибок. Небольшие различия в максимальной светимости сверхновых оказалось возможным учесть на основе работ, выполненных еще в 1970-ых годах Ю.П.Псковским (ГАИШ МГУ) - эти различия зависят от скорости падения блеска звезды.

В октябре 2003 года большая международная команда астрономов подтвердила вывод об ускоренном расширении Вселенной. Они получили данные о 23 сверхновых, среди которых 7 очень далеких, и это позволяет уверенно говорить о том, что ускорение расширения Вселенной не является кажущимся, и что характеристики сверхновых Ia не зависят от их расстояний и возрастов.

Ускоренное расширение Вселенной заставляет некоторых физиков вводить новую сущность, "квинтэссенцию", новое физическое поле, для которого эффективная гравитационная плотность отрицательна и которое, следовательно, способно создать антигравитацию, ведущую к ускорению расширения Вселенной. Однако классики науки учат нас не вводить новые сущности без крайней необходимости. Таким же свойством отрицательного давления обладает космический вакуум, который присутствует повсюду. Он фигурирует и в физике микромира, представляя собой наинизшее энергетическое состояние квантовых полей. Именно в нем происходят взаимодействия элементарных частиц; реальность физического вакуума бесспорно установлена в нескольких экспериментах.

Теперь есть все основания считать, что космологический член в уравнениях Эйнштейна описывает именно плотность энерги и вакуума. Эта плотность постояна во времени и в пространстве, причем в любой системе отсчета, и она имеет положительное значение.

Давление вакуума равно плотности со знаком минус, умноженной на квадрат скорости света, и следовательно, оно отрицательно, - что и вызывает ускоренное расширение Вселенной, обнаруженное теперь по данным о далеких сверхновых.

Свойства вакуума и позволяют объяснить парадокс Сендиджа. Он и его соавторы (Astrophys. J., V. 590, P. 256, 2003) отмечают, что первыми этом сделали в 2001 г. Российские и Финские астрономы. Согласно А.Д.Чернину (ГАИШ МГУ), П.Теерикорпи (Обсерватория Турку) и Ю.В.Барышеву (АИ СПбГУ) - см. обзорную статью Чернина, (Успехи физ. наук, т. 171, #11, с. 1153, 2001) - парадоксальные результаты Сендиджа и Караченцева объясняется тем, что именно вакуум определяет динамику Вселенной. Крупномасштабная кинематика галактик - расширение Вселенной - является однородной, регулярной, хотя их пространственное распределение весьма иррегулярно в тех же объемах. Это означает, что крупномасштабная динамика галактик управляется вакуумом, плотность которого начинает превышать плотность вещества уже с расстояний порядка 1,5 - 2 кпк от нас. Плотность его одинакова везде и именно она и задает темп расширения - постоянную Хаббла. Динамический эффект вакуума не зависит ни от движений, ни от распределения галактик в пространстве. Таким образом, исходя из объяснения ускоренного расширения Вселенной наличием космического вакуума, А.Чернин и его коллеги нашли и естественное объяснение парадокса Сендиджа. Концепция же квинтэссенции остается пока придуманной ad hoc - она предложена лишь потому, что даваемое астрономическими наблюдениями значение плотности энерги и вакуума несовместимо с убеждениями многих физиков.

Итак, все сходится к тому, что астрономы сумели измерить величину, о знании которой давно мечтали физики - плотность энерги и вакуума. Результат оказался неожиданным. Ожидалось, что такая фундаментальная величина должна иметь какое-то выделенное значение, либо нулевое, либо же определяемое планковской плотностью - комбинацией из постоянной тяготения, скорости света и постоянной Планка, имеющей размерность плотности и составляющей 5 х 1093 г/см3. Однако наблюденное астрономами значение плотности вакуума меньше планковского на 122 порядка - и все же оно отнюдь не нулевое! Плотность энерги и вакуума составляет около 70% плотности всего вещества Вселенной. Этот результат следует и из спутниковых измерений флуктуаций фона реликтового излучения. Он означает, что Вселенная будет расширяться вечно...

Все это ставит трудные проблемы перед фундаментальной физикой. В обзорной статье в УФН А.Д.Чернин приводит аргументы в пользу предположения, что природа вакуума должна быть как-то связана с физикой электрослабых процессов при возрасте мира около 10-12 секунды. В эпоху, когда температура расширяющегося космоса упала до соответствующего этим процессам значения, возможно и произошел последний по времени скачок (фазовый переход) в состоянии первичного вакуума, который и обусловил современное значение плотности космического физического вакуума.

Первичный вакуум - это теор етическое понятие того же уровня фундаментальности, что и понятия времени и пространства. Предполагается, что его плотность должна быть близка к планковской плотности. Никаких наблюдательных данных, подтверждающих его существование, пока нет, но именно флуктуации первичного вакуума, по мнению многих теор етиков, дают начало множеству вселенных с самыми разными значениями физических констант в них. Та из этих вселенных, параметры которой (на современном этапе!) совместимы с жизнью, является Нашей Вселенной...

Итак, Вселенная состоит на 70% из вакуума, - и лишь 4% приходится на барионы, из которых состоят звезды и газ. Это также результат последних лет. Остальные 26% плотности энерги и Вселенной дает "холодное темное вещество", обнаружимое (пока?) лишь по его гравитационному полю. Носителями этой скрытой массы являются скорее всего еще неизвестные физике слабо взаимодействующие элементарные частицы. Их усиленно разыскивают с приборами, расположенными глубоко под землей. Но об этом уже нет места рассказывать.

Могут сказать, что астрономы в итоге XX века оказались у разбитого корыта? Но нет, мы взобрались на очередную вершину знания - и увидели с нее новые пики. Состав Вселенной мы сумели определить, наблюдая звезды, масса которых составляет лишь около 1% ее полной массы (рис. 7). Это очередной триумф науки - и доказательство того, что конца науки не будет, если человечество будет ее поддерживать. И тогда нам не будут страшны никакие вызовы будущего!

Создано: 25.10.2013 , 10010 46

"Он сотворил землю силою Своею, утвердил вселенную мудростью Своею и разумом Своим распростер небеса "

Иеремия 10:12

В процессе развития науки многие ученые начали искать возможность исключить Бога из своих взглядов как Первопричину появления вселенной. В результате этого появилось много различных теорий возникновения вселенной, а также появления и развития живых организмов. Самыми популярными из них являются теория «Большого взрыва» и теория «Эволюции». В процессе обоснования теории «Большого взрыва» была создана одна из фундаментальных теорий эволюционистов - «Расширяющаяся вселенная». Данная теория говорит о том, что происходит расширение космического пространства в масштабах вселенной, которое наблюдается благодаря постепенному отдалению галактик одной от другой.

Давайте рассмотрим аргументы, которыми некоторые ученые пытаются доказать данную теорию. Ученые эволюционисты, в частности Стивен Хокинг, считают, что расширяющаяся вселенная является результатом Большого взрыва и что после взрыва было быстрое расширение вселенной, а потом оно замедлилось и сейчас это расширение медленное, но этот процесс продолжается. Они аргументируют это измерением скорости отдаления других галактик от нашей галактики с помощью эффекта Доплера, а также тем, что им известна скорость в процентном отношении, о чем Стивен Хокинг говорит: «Поэтому нам известно лишь то, что скорость расширения Вселенной составляет от 5 до 10% за миллиард лет.» (С.Хокинг «Кратчайшая история времени» пер.Л.Млодинов, стр.38). Однако здесь возникают вопросы: как данное процентное отношение было получено, а также кто и каким образом проводил данное исследование? Этого Стивен Хокинг не объясняет, но говорит об этом как о факте. Исследовав данный вопрос, мы получили информацию, что на сегодняшний день для измерения скорости отдаления галактик используют закон Хаббла, использующий теорию о «Красном смещении», которое в свою очередь основывается на Эффекте Доплера. Давайте посмотрим, что собой представляют данные понятия:

Закон Хаббла - закон, связывающий красное смещение галактик и расстояние до них линейным образом. Данный закон имеет вид: cz = H 0 D, где z - красное смещение галактики; H 0 - коэффициент пропорциональности, называемый "постоянная Хаббла"; D - расстояние до галактики. Одним из важнейших элементов для закона Хаббла является скорость света.

Красное смещение - сдвиг спектральных линий химических элементов в красную сторону. Есть мнение, что это явление может быть выражением эффекта Доплера или гравитационного красного смещения, или их комбинацией, но чаще всего берется во внимание эффект Доплера. Это проще выражается тем, что чем дальше галактика, тем больше ее свет смещается в красную сторону.

Эффект Доплера - изменение частоты и длинны звуковых волн, регистрируемых приёмником, вызванное движением их источника в результате движения приёмника. Проще говоря, чем ближе объект, тем больше частота звуковых волн и наоборот чем дальше объект, тем меньше частота звуковых волн.

Однако существует ряд проблем с данными принципами измерения скорости отдаления галактик. Для закона Хаббла является проблемой оценка «постоянной Хаббла», так как помимо скорости отдаления галактик, они обладают еще собственной скоростью, что приводит к тому, что закон Хаббла плохо выполняется, или совсем не выполняется для объектов, находящихся на расстоянии ближе 10-15 млн. световых лет. Закон Хаббла плохо выполняется также для галактик на очень больших расстояниях (в миллиарды св. лет), которым соответствует величина красного смещения больше 1. Расстояния до объектов с таким большим красным смещением теряют однозначность, поскольку зависят от принимаемой модели Вселенной и от того, к какому моменту времени они отнесены. В качестве меры расстояния в этом случае обычно используется только красное смещение. Таким образом, получается, что определить скорость отдаления далеких галактик практически является невозможным и определяется только той моделью вселенной, которую принимает исследователь. Это говорит о том, что каждый верит в свою субъективную скорость отдаления галактик.

Также нужно сказать, что невозможно измерить расстояние к дальним галактикам относительно их сияния или красного смещения. Этому мешают некоторые факты, а именно, что скорость света не постоянная и изменяется, причем эти изменения идут в сторону замедления. В 1987 году в отчете Станфордского научно-исследовательского института австралийские математики Тревор Норман и Барри Сеттерфилд постулировали, что в прошлом произошло большое снижение скорости света (B. Setterfield, The Velocity of Light and the Age of the Universe .). В1987 году нижегородский физик-теоретик В.С. Троицкий постулировал, что со временем произошло громадное снижение скорости света. Доктор Троицкий говорил о снижении скорости света в 10 миллионов раз по сравнению с ее нынешним значением (V.S. Troitskii, Physical Constants and Evolution of the Universe , Astrophysics and Space Science 139(1987): 389-411.). В 1998 году физики-теоретики лондонского Импириал-колледжа Альбрехт и Жоао Магейжу также постулировали уменьшение скорости света. 15 ноября 1998 года газета «Лондон таймс» напечатала статью «Скорость света – самая высокая во вселенной – снижается» (The speed of light - the fastest thing in the universe - is getting slower , The London Times, Nov. 15, 1998.). Относительно этого нужно сказать, что на скорость света влияет много факторов, например, химические элементы через которые проходит свет, а также температура, которую они имеют, потому как через одни элементы свет проходит медленней, а через другие намного быстрее, что и было доказано экспериментально. Так 18 февраля 1999 года в весьма уважаемом (и на 100% эволюционистском) научном журнале «Nature» была опубликована научная статья с подробным описанием эксперимента, в котором скорость света удалось уменьшить до 17 метров в секунду, то есть до каких-то 60 километров в час. Это значит, что за ним можно было наблюдать как за едущим по улице автомобилем. Этот эксперимент был поставлен датским физиком Лене Хау и международной группой ученых из Гарвардского и Стенфордского университетов. Они пропускали свет через пары натрия, охлажденные до невероятно низких температур, измеряемых нанокельвинами (то есть, миллиардными долями кельвина; это практически абсолютный ноль, который по определению равен -273,160C). В зависимости от точной температуры паров скорость света была снижена до значений в интервале 117 км/час – 61 км/час; то есть, по существу, до 1/20.000.000-ной от обычной скорости света (L.V. Hau, S.E. Harris, Science News, March 27, p. 207, 1999.).

В июле 2000 года ученые из исследовательского института NEC в Прингстоне сообщили об ускорении ими света до скорости, превышающей скорость света! Их эксперимент был опубликован в британском журнале «Nature». Они направили лазерный луч на стеклянную камеру, содержащую пары цезия. В результате энергетического обмена между фотонами лазерного луча и атомами цезия возник луч, скорость которого на выходе из камеры была выше скорости входного луча. Считается, что свет распространяется с максимальной скоростью в вакууме, где отсутствует сопротивление, и медленнее в любой другой среде из-за дополнительного сопротивления. Например, всем известно, что в воде свет распространяется медленнее, чем в воздухе. В описанном выше эксперименте полученныйлуч вышел из камеры с парами цезия еще до того, как полностью вошел в нее. Эта разница была очень интересной. Лазерный луч перепрыгнул на 18 метров вперед от того места, где должен был быть. По идее, это можно было расценить как следствие, предшествующее причине, но это не совсем верно. Существует и научная область, изучающая сверхсветовое распространение импульсов. Правильная интерпретация этого исследования такова: скорость света непостоянна, и свет можно ускорить подобно любому другому физическому объекту во вселенной при наличии нужных условий и подходящего источника энергии. Ученые получили вещество из энергии без потерь; ускорили свет до скорости, превышающей ныне принятую скорость света.

Относительно красног о смещения нужно сказать, что никто с точностью не может сказать причину появления красного смещения и сколько раз преломляется свет, доходя до земли, а это в свою очередь делает нелепой основу для измерения расстояний с помощью красного смещения. Также изменение скорости света опровергает все существующие предположения расстояния к дальним галактикам и нивелирует метод измерения данного расстояния по красному смещению. Еще нужно сказать, что применение эффекта Доплера к свету является чисто теоретическим, а учитывая, что скорость света меняется, то это вдвойне усложняет применение данного эффекта к свету. Все это говорит, что метод определения расстояния к дальним галактикам по красному смещению и тем более аргументирование того, что вселенная расширяется, просто являются не научным подходом и обманом. Давайте подумаем, даже если нам будет известна скорость отдаления галактик, то невозможно утверждать, что происходит расширение пространства вселенной. Никто не может сказать, происходит ли вообще подобное расширение. Движение планет и галактик во вселенной не говорит об изменении самого пространства, а ведь согласно теории Большого взрыва пространство появилось в результате большого взрыва и расширяется. Это утверждение не является научным, так как никто не нашел край вселенной и тем более не измерил расстояние до него.

Исследуя теорию "Большого взрыва" мы наталкиваемся на еще одно не исследованное и недоказанное явление, но о котором говорят как о факте, а именно о «черной материи». Посмотрим, что об этом говорит Стивен Хокинг: «Наша и другие галактики должны содержать большое количество некой «темной материи», которую мы не можем наблюдать непосредственно, но о существовании которой мы знаем благодаря ее гравитационному воздействию на орбиты звезд в галактиках. Возможно, лучшим свидетельством существования темной материи являются орбиты звезд на периферии спиральных галактик, подобных Млечному Пути. Эти звезды обращаются вокруг своих галактик слишком быстро, чтобы их могло удерживать на орбите притяжение одних только видимых звезд галактики» (С.Хокинг «Кратчайшая история времени» пер.Л.Млодинов, стр.38). Мы хотим подчеркнуть, что о «черной материи» говорится так: «которую мы не можем наблюдать непосредственно», это свидетельствует о том, что фактов существования данной материи нет, но непонятное для эволюционистов поведение галактик во вселенной заставляет их верить в существование чего-то, но сами не знают чего. Интересным также представляется утверждение: «фактически количество темной материи во Вселенной значительно превышает количество обычного вещества» . Данное утверждение говорит о количестве «темной материи», но возникает вопрос, как и каким методом, это количество определили в условиях, когда невозможно наблюдать и исследовать данную «материю»? Можно сказать, что было взято неизвестно что и получено количество этого, непонятно каким образом. То, что ученым непонятно как звезды спиральных галактик держатся на своей орбите, при высокой скорости, не означает существование призрачной «материи», которую никто не видел и не мог непосредственно наблюдать.

Современная наука находится в невыгодном положении относительно своих фантазий о большом взрыве. Так заключением в размышлениях о существовании различных материй Стивен Хокинг говорит: «Нельзя, однако, исключать существования других, еще не известных нам форм материи, распределенных почти равномерно повсюду во Вселенной, что могло бы повысить ее среднюю плотность. Например, существуют элементарные частицы, называемые нейтрино, которые очень слабо взаимодействуют с веществом и которые чрезвычайно трудно обнаружить» (С.Хокинг «Кратчайшая история времени» пер.Л.Млодинов, стр.38) . Это показывает всю беспомощность современной науки в попытке доказать, что вселенная возникла сама по себе без Творца. Если частицы не найдены, тогда нельзя на этом строить научные доводы, так как вероятность, что другие формы материи не существуют больше чем вероятность их существования.

Как бы там ни было, движение галактик, планет и других космических тел не говорит о расширении пространства вселенной, так как подобное движение не имеет ничего общего с определением расширения пространства. Например, если в одной комнате находится два человека и один отдаляется от другого, то это не говорит о том, что комната расширяется, а говорит о том, что есть пространство, в котором возможно двигаться. Аналогично и в данной ситуации, происходит движение галактик в космическом пространстве, однако это не говорит об изменении космического пространства. Также абсолютно невозможно доказать, что самые далекие галактики находятся на краю вселенной и за ними нет еще каких-либо галактик, а это в свою очередь говорит о том, что край вселенной не найден.

Таким образом, у нас есть все факты для утверждения, что на сегодняшний день не существует доказательств расширения вселенной, а это в свою очередь подтверждает несостоятельность теории "Большого взрыва".


Если, любопытствуя, мы возьмем в руки справочник или какое-нибудь научно-популярное пособие, то непременно наткнемся в них на одну из версий теории происхождения Вселенной – так называемой теории «большого взрыва». В кратком виде эту теорию можно изложить так: первоначально вся материя была сжата в одну «точку», имевшую необычайно высокую температуру, а затем эта «точка» взорвалась с огромной силой. В результате взрыва из постепенно расширявшегося во все стороны супергорячего облака субатомных частиц постепенно образовывались атомы, вещества, планеты, звезды, галактики и, наконец, жизнь. При этом расширение Вселенной продолжается, и неизвестно, как долго будет продолжаться: возможно, когда-нибудь оно достигнет своих границ.

Выводы космологии основываются и на законах физики, и на данных наблюдательной астрономии. Как любая наука, космология в своей структуре кроме эмпирического и теоретического уровней имеет также уровень философских предпосылок, философских оснований.

Так, в основании современной космологии лежит предположение о том, что законы природы, установленные на основе изучения весьма ограниченной части Вселенной, чаще всего на основе опытов на планете Земля, могут быть экстраполированы на значительно большие области, в конечном счете - на всю Вселенную. Это предположение об устойчивости законов природы в пространстве и времени относится к уровню философских оснований современной космологии.

Возникновение современной космологии связано с созданием релятивистской теории тяготения - общей теории относительности Эйнштейном (1916). Из уравнений Эйнштейна общей теории относительности следует кривизна пространства-времени и связь кривизны с плотностью массы (энергии).

Применив общую теорию относительности ко Вселенной в целом, Эйншейн обнаружил, что такого решения уравнений, которому бы соответствовала не меняющаяся со временем Вселенная, не существует. Однако Эйнштейн представлял себе Вселенную как стационарную. Поэтому он ввел в полученные уравнения дополнительное слагаемое, обеспечивающее стационарность Вселенной.

В начале 20-х годов советский математик А.А.Фридман впервые решил уравнения общей теории относительности применительно ко всей Вселенной, не накладывая условия стационарности.

Он показал, что Вселенная, заполненная тяготеющим веществом, должна расширяться или сжиматься. Полученные Фридманом уравнения лежат в основе современной космологии.

В 1929 году американский астроном Э.Хаббл опубликовал статью "Связь между расстоянием и лучевой скоростью внегалактических туманностей", в которой пришел к выводу: "Далекие галактики уходят от нас со скоростью, пропорциональной удаленности от нас. Чем дальше галактика, тем больше ее скорость" (коэффициент пропорциональности получил название постоянной Хаббла).

Этот вывод Хаббл получил на основе эмпирического установления определенного физического эффекта - красного смещения, т.е. увеличения длин волн линий в спектре источника (смещения линий в сторону красной части спектра) по сравнению с линиями эталонных спектров, обусловленного эффектом Допплера, в спектрах галактик.

Открытие Хабблом эффекта красного смещения, разбегания галактик лежит в основе концепции расширяющейся Вселенной.

В соответствии с современными космологическими концепциями, Вселенная расширяется, но центр расширения отсутствует: из любой точки Вселенной картина расширения будет представляться той же самой, а именно, все галактики будут иметь красное смещение, пропорциональные расстоянию до них. Само пространство как бы раздувается.

Если на воздушном шарике нарисовать галактики и начать надувать его, то расстояния между ними будут возрастать, причем тем быстрее, чем дальше они расположены друг от друга. Разница лишь в том, что нарисованные на шарике галактики и сами увеличиваются в размерах, реальные же звездные системы повсюду во Вселенной сохраняют свой объем из-за сил гравитации.

Одна из самых больших проблем, стоящих перед сторонниками теории «большого взрыва», как раз состоит в том, что ни один из предлагаемых ими сценариев возникновения Вселенной невозможно описать математически или физически. Согласно базовым теориям «большого взрыва», первоначальным состоянием Вселенной была точка бесконечно малых размеров с бесконечно большой плотностью и бесконечно высокой температурой. Однако такое состояние выходит за пределы математической логики и не поддается формальному описанию. Так что в действительности о первоначальном состоянии Вселенной ничего определенного сказать нельзя, и расчеты тут подводят. Поэтому это состояние получило в среде ученых название «феномена».

Так как этот барьер до сих пор не преодолен, то в научно-популярных изданиях для широкой публики тема «феномена» обычно опускается вообще, а в специализированных научных публикациях и изданиях, авторы которых пытаются как-то справиться с этой математической проблемой, о «феномене» говорят как о вещи, недопустимой с научной точки зрения, Стивен Хоукинг, профессор математики из Кембриджского университета, и Дж.Ф.Р. Эллис, профессор математики университета в Кейптауне, в своей книге «Длинная шкала структуры пространство-время» указывают: «Достигнутые нами результаты подтверждают концепцию, что Вселенная возникла конечное число лет назад. Однако отправной пункт теории возникновения Вселенной – так называемый «феномен» – находится за гранью известных законов физики». Тогда приходится признать, что во имя обоснования «феномена», этого краеугольного камня теории «большого взрыва», необходимо допустить возможность использования методов исследований, выходящих за рамки современной физики.

«Феномен», как и любой другой отправной пункт «начала Вселенной», включающий в себя что-то, что невозможно описать научными категориями, остается открытым вопросом. Однако возникает следующий вопрос: откуда появился сам «феномен», как он образовался? Ведь проблема «феномена» – это только часть гораздо большей проблемы, проблемы самого источника начального состояния Вселенной. Иными словами – если первоначально Вселенная была сжата в точку, то что привело ее в это состояние? И если мы даже откажемся от вызывающего теоретические трудности «феномена», то все равно останется вопрос: как образовалась Вселенная?

В попытках обойти эту трудность, некоторые ученые предлагают так называемую теорию «пульсирующей Вселенной». По их мнению, Вселенная бесконечно, раз за разом, то сжимается в точку, то расширяется до каких-то границ. Такая Вселенная не имеет ни начала, ни конца, существуют только цикл расширения и цикл сжатия. При этом авторы гипотезы утверждают, что Вселенная существовала всегда, тем самым вроде бы полностью снимая вопрос о «начале мира».

Но дело в том, что никто до сих пор не представил удовлетворительного объяснения механизма пульсации. Почему происходит пульсация Вселенной? Какими причинами она вызвана? Физик Стивен Вайнберг в своей книге «Первые три минуты» указывает, что при каждой очередной пульсации во Вселенной неизбежно должна возрастать величина соотношения количества фотонов к количеству нуклеонов, что ведет к угасанию новых пульсаций. Вайнберг делает вывод, что таким образом количество циклов пульсации Вселенной конечно, а значит, в какой-то момент они должны прекратиться. Следовательно, «пульсирующая Вселенная» имеет конец, а значит, имеет и начало.

В 2011 году нобелевская премия по физике была присуждена участнику проекта Supernova Cosmology Саулу Перлмуттеру из Национальной лаборатории Лоренса Беркли, а также членам исследовательской группы High-z Supernova Брайану П. Шмидту из Австралийского национального университета и Адаму Г. Риссу из Университета Джонса Хопкинса.

Трое ученых разделили премию за открытие ускорения расширения Вселенной путем наблюдения далеких сверхновых звезд. Они изучали особый вид сверхновых типа Ia. Это взорвавшиеся старые компактные звезды тяжелее Солнца, но размером с Землю. Одна такая сверхновая может излучать столько света, сколько целая звездная плеяда. Двум группам исследователей удалось обнаружить более 50 далеких сверхновых Ia, чей свет оказался слабее, чем ожидалось. Это было доказательством того, что расширение Вселенной ускоряется. Исследование неоднократно натыкалось на загадки и сложные проблемы, однако, в конце концов, обе команды ученых пришли к одинаковым заключениям об ускорении расширения Вселенной.

Это открытие на самом деле удивительно. Нам уже известно, что после Большого взрыва около 14 миллиардов лет назад Вселенная начала расширяться. Тем не менее, открытие того, что это расширение ускоряется, поразило самих первооткрывателей.

Причину загадочного ускорения приписывают гипотетической темной энергии, которая составляет по расчетам примерно три четверти Вселенной, но до сих пор остается самой большой загадкой современной физики.

Видео: Александр Фридман и Теория Расширяющейся Вселенной



В истории познания окружающего нас мира четко прослеживается общее направление - постепенное признание неисчерпаемости природы, ее бесконечности во всех отношениях. Вселенная бесконечна в пространстве и во времени, и если отбросить идеи И. Ньютона о "первом толчке", то такого рода мировоззрение можно считать вполне материалистическим. Ньютоновская Вселенная утверждала, что пространство есть вместилище всех небесных тел, с движением и массой которых оно никак не связано; Вселенная всегда одна и та же, т. е. стационарна, хотя в ней постоянно происходит гибель и рождение миров.

Казалось бы, небо ньютоновской космологии обещало быть безоблачным. Однако очень скоро пришлось убедиться в обратном. В течение XIX в. обнаружились три противоречия, которые были сформулированы в форме трех парадоксов, названных космологическими. Они, казалось, подрывали представление о бесконечности Вселенной.


Фотометрический парадокс. Если Вселенная бесконечна и звезды в ней распределены равномерно, то по любому направлению мы должны видеть какую-нибудь звезду. В этом случае фон неба был бы ослепительно ярким, как Солнце.

Гравитационный парадокс. Если Вселенная бесконечна и звезды равномерно занимают ее пространство, то сила тяготения в каждой его точке должна быть бесконечно велика, а стало быть, бесконечно велики были бы и относительные ускорения космических тел, чего, как известно, нет.

Термодинамический парадокс. По второму закону термодинамики все физические процессы во Вселенной в конечном счете сводятся к выделению теплоты, которая необратимо рассеивается в мировом пространстве. Рано или поздно все тела остынут до температуры абсолютного нуля, движение прекратится и наступит навсегда "тепловая смерть". Вселенная имела начало, и ее ждет неизбежный конец.

Первая четверть XX в. прошла в томительном ожидании развязки. Никто, разумеется, не хотел отрицать бесконечность Вселенной, но, с другой стороны, никому не удавалось устранить космологические парадоксы стационарной Вселенной. Лишь гений Альберта Эйнштейна внес новую струю в космологические споры.



Ньютоновская классическая физика, как уже говорилось, рассматривала пространство как вместилище тел. Никакого взаимодействия между телами и пространством по Ньютону и быть не могло.

В 1916 г. А. Эйнштейн опубликовал основы общей теории относительности. Одна из главных ее идей состоит в том, что материальные тела, в особенности большой массы, заметно искривляют пространство. Из-за этого, например, луч света, проходящий вблизи Солнца, изменяет первоначальное направление.

Представим себе теперь, что во всей наблюдаемой нами части Вселенной материя равномерно "размазана" в пространстве и в любой его точке действуют одни и те же законы. При некоторой средней плотности космического вещества выделенная ограниченная часть Вселенной не только искривит пространство, но


даже замкнет его "на себя". Вселенная (точнее, выделенная ее часть) превратится в замкнутый мир, напоминающий обычную сферу. Но только это будет четырехмерная сфера, или гиперсфера, представить себе которую мы, трехмерные существа, не в состоянии. Однако, мысля по аналогии, мы легко разберемся в некоторых свойствах гиперсферы. Она, как и обычная сфера, имеет конечный объем, заключающий в себе конечную массу вещества. Если в мировом пространстве лететь все время в одном направлении, то через некоторое число миллиардов лет можно попасть в исходную точку.

Идею о возможности замкнутости Вселенной впервые высказал А. Эйнштейн. В 1922 г. советский математик А. А. Фридман доказал, что "замкнутая Вселенная" Эйнштейна никак не может быть статичной. В любом случае ее пространство или расширяется, или сжимается со всем своим содержимым.

В 1929 г. американский астроном Э. Хаббл открыл замечательную закономерность: линии в спектрах подавляющего большинства галактик смещены к красному концу, причем смещение тел тем больше, чем дальше от нас находится галактика. Это интересное явление называется красным смещением. Объяснив красное смещение эффектом Доплера, т. е. изменением длины волны света в связи с движением источника, ученые пришли к выводу о том, что расстояние между нашей и другими галактиками непрерывно увеличивается. Конечно, галактики не разлетаются во все стороны от нашей Галактики, которая не занимает никакого особого положения в Метагалактике, а происходит взаимное удаление всех галактик. Это означает, что наблюдатель, находящийся в любой галактике, мог бы, подобно нам, обнаружить красное смещение, ему казалось бы, что от него удаляются все галактики. Таким образом, Метагалактика нестационарна. Открытие расширения Метагалактики свидетельствует о том, что Метагалактика в прошлом была не такой, как сейчас, и иной станет в будущем, т. е. Метагалактика эволюционирует.

По красному смещению определены скорости удаления галактик. У многих галактик они очень велики, соизмеримы со скоростью света. Самыми большими скоростями, иногда превы-


шающими 250 тыс. км/с, обладают некоторые квазары, считающиеся самыми удаленными от нас объектами Метагалактики.

Закон, согласно которому красное смещение (а значит, и скорость удаления галактик) возрастает пропорционально расстоянию от галактик (закон Хаббла), можно записать в виде: v - Нr, где v - лучевая скорость галактики; r - расстояние до нее; Н - постоянная Хаббла. По современным оценкам, значение Н заключено в пределах:

Следовательно, наблюдаемый темп расширения Метагалактики таков, что галактики, разделенные расстоянием 1 Мпк (3 10 19 км), удаляются друг от друга со скоростью от 50 до 100 км/с. Если скорость удаления галактики известна, то можно вычислить расстояние до далеких галактик.

Итак, мы живем в расширяющейся Метагалактике. Это явление имеет свои особенности. Расширение Метагалактики проявляется только на уровне скоплений и сверхскоплений галактик, т. е. систем, элементами которых являются галактики. Другая особенность расширения Метагалактики заключается в том, что не существует центра, от которого разбегаются галактики.

Расширение Метагалактики - самое грандиозное из известных в настоящее время явлений природы. Правильное его истолкование имеет исключительно большое мировоззренческое значение. Не случайно в объяснении причины этого явления резко проявилось коренное отличие философских взглядов ученых. Некоторые из них, отождествляя Метагалактику со всей Вселенной, пытаются доказать, что расширение Метагалактики подтверждает религиозное о сверхъестественном, божественном происхождении Вселенной. Однако во Вселенной известны естественные процессы, которые в прошлом могли вызвать наблюдаемое расширение. По всей вероятности, это взрывы. Их масштабы поражают нас уже при изучении отдельных видов галактик. Можно представить, что расширение Метагалактики


также началось с явления, напоминающего колоссальный взрыв вещества, обладавшего огромной температурой и плотностью.

Так как Вселенная расширяется, естественно думать, что раньше она была меньше и когда-то все пространство было сжато в сверхплотную материальную точку. Это был момент так называемой сингулярности, который уравнениями современной физики описан быть не может. По неизвестным причинам произошел процесс, подобный взрыву, и с тех пор Вселенная начала "расширяться". Процессы, происходящие при этом, объясняются теорией горячей Вселенной.

В 1965 г. американские ученые А. Пензиас и Р. Вильсон нашли экспериментальное доказательство пребывания Вселенной в сверхплотном и горячем состоянии, т. е. реликтовое излучение. Оказалось, что космическое пространство заполнено электромагнитными волнами, являющимися посланцами той древней эпохи развития Вселенной, когда еще не было никаких звезд, галактик, туманностей. Реликтовое излучение пронизывает все пространство, все галактики, оно участвует в расширении Метагалактики. Реликтовое электромагнитное излучение находится в радиодиапазоне с длинами волн от 0,06 см до 60 см. Распределение энергии похоже на спектр абсолютно черного тела температурой 2,7 К. Плотность энергии реликтового излучения равна 4 10 -13 эрг/см 3 , максимум излучения приходится на 1,1 мм. При этом само излучение имеет характер некоторого фона, ибо заполняет все пространство и совершенно изотропно. Оно является свидетелем начального состояния Вселенной.

Очень важно, что, хотя это открытие было сделано случайно при изучении космических радиопомех, существование реликтового излучения было предсказано теоретиками. Одним из первых предсказал это излучение Д. Гамов, разрабатывая теорию происхождения химических элементов, возникших в первые минуты после Большого взрыва. Предсказание существования реликтового излучения и обнаружение его в космическом пространстве - еще один убедительный пример познаваемости мира и его закономерностей.


Во всех развитых динамических космологических моделях утверждается идея о расширении Вселенной из некоторого сверхплотного и сверхгорячего состояния, называемого сингулярным. Американский астрофизик Д. Гамов пришел к концепции Большого взрыва и горячей Вселенной на ранних этапах ее эволюции. Анализ проблем начальной стадии эволюции Вселенной оказался возможным благодаря новым представлениям о природе вакуума. Космологическое решение, полученное В. де Ситтером для вакуума (r ~ е Ht), показало, что экспоненциальное расширение неустойчиво: оно не может продолжаться неограниченно долго. Через сравнительно малый промежуток времени экспоненциальное расширение прекращается, в вакууме происходит фазовый переход, в процессе которого энергия вакуума переходит в обычное вещество и кинетическую энергию расширения Вселенной. Большой взрыв был 15-20 млрд лет назад.

Согласно стандартной модели горячей Вселенной сверхплотная материя после Большого взрыва начала расширяться и постепенно охлаждаться. По мере расширения произошли фазовые переходы, в результате которых выделились физические силы взаимодействия материальных тел. При экспериментальных значениях таких основных физических параметров, как плотность и температура (р ~ 10 96 кг/м 3 и Т ~ 10 32 К), на начальном этапе расширения Вселенной различие между элементарными частицами и четырьмя типами физических взаимодействий практически отсутствует. Оно начинает проявляться когда уменьшается температура и начинается дифференциация материи.

Таким образом, современные представления об истории возникновения нашей Метагалактики основываются на пяти важных экспериментальных наблюдениях:

1. Исследование спектральных линий звезд показывает, что Метагалактика в среднем обладает единым химическим составом. Преобладают водород и гелий.

2. В спектрах элементов далеких галактик обнаруживается систематическое смещение красной части спектра. Величина


этого смещения возрастает по мере удаления галактик от наблюдателя.

3. Измерения радиоволн, приходящих из космоса в сантиметровом и миллиметровом диапазонах, указывают на то, что космическое пространство равномерно и изотропно заполнено слабым радиоизлучением. Спектральная характеристика этого так называемого фонового излучения соответствует излучению абсолютно черного тела при температуре около 2,7 градуса Кельвина.

4. По астрономическим наблюдениям, крупномасштабное распределение галактик соответствует постоянной плотности массы, составляющей, по современным оценкам, по крайней мере 0,3 бариона на каждый кубический метр.

5. Анализ процессов радиоактивного распада в метеоритах показывает, что некоторые из этих компонентов должны были возникнуть от 14 до 24 миллиардов лет назад.

Мироздание не статично. Это подтвердили исследования астронома Эдвина Хаббла еще в 1929 году, то есть почти 90 лет назад. На эту мысль его навели наблюдения за движением галактик. Еще одним открытием астрофизиков в завершение двадцатого века стало вычисление расширения Вселенной с ускорением.

Как называют расширение Вселенной

Некоторые удивляются, услышав, как ученые называют расширение Вселенной. Это наименование у большинства связано с экономикой, причем с негативными ожиданиями.

Инфляция - это процесс расширения Вселенной сразу после её появления, причем с резким ускорением. В переводе с английского «инфляция» - «накачивать», «раздувать».

Новые сомнения о существовании темной энергии как фактора теории инфляции Вселенной используют противники теории расширения.

Тогда ученые предложили карту черных дыр. Первоначальные данные отличаются от тех, что были получены на позднем этапе:

  1. Шестьдесят тысяч черных дыр с расстоянием между самыми дальними больше одиннадцати миллионов световых лет - данные четырехлетней давности.
  2. Сто восемьдесят тысяч галактик с черными дырами с удалением в тринадцать миллионов световых лет. Данные, полученные учеными, в том числе российскими ядерными физиками, в начале 2017 года.

Эти сведения, говорят астрофизики, не противоречат классической модели Вселенной.

Скорость расширения Вселенной - задача для космологов

Скорость расширения действительно является задачей для космологов и астрономов. Правда, о том, что скорость расширения Вселенной не имеет постоянного параметра, космологи больше не спорят, расхождения перешли в другую плоскость - когда расширение начало ускоряться. Данные о кочевании в спектре очень далеких сверхновых галактик первого типа доказывают, что расширение - это не внезапно наступивший процесс.

Ученые считают, что первые пять миллиардов лет Вселенная сужалась.

Первые последствия Большого Взрыва сначала спровоцировали мощное расширение, а потом началось сжатие. Но темная энергия все-таки повлияла на рост мироздания. Причем с ускорением.

Американские ученые приступили к созданию карты размеров Вселенной для разных эпох, чтобы выяснить, когда началось ускорение. Наблюдая взрывы сверхновых, а также направление концентрации в древних галактиках, космологи заметили особенности ускорения.

Почему Вселенная «разгоняется»

Изначально подразумевалось, что в составленной карте значения ускорения не были линейны, а превратились в синусоиду. Ее назвали «волной Вселенной».

Волна Вселенной говорит о том, что ускорение не шло с постоянной скоростью: оно то замедлялось, то ускорялось. Причем несколько раз. Ученые считают, что было семь таких процессов за 13,81 миллиарда лет после Большого Взрыва.

Однако космологи пока не могут ответить на вопрос о том, от чего зависит ускорение-замедление. Предположения сводятся к мысли, что энергетическое поле, от которого берет начало темная энергия, подчинено волне Вселенной. И, переходя от одного положения к другому, Вселенная то расширяет ускорение, то замедляет его.

Несмотря на убедительность доводов, они все-таки остаются пока теорией. Астрофизики надеются, что информация орбитального телескопа «Планк» подтвердит существование волны Вселенной.

Когда нашли темную энергию

Впервые о ней заговорили в девяностые из-за взрывов сверхновых. Природа темной энергии неизвестна. Хотя еще Альберт Эйнштейн выделил космическую постоянную в своей теории относительности.

В 1916 году, сто лет назад, Вселенная еще считалась неизменной. Но сила притяжения вмешалась: космические массы неизменно бы ударились друг от друга, если бы Вселенная была недвижима. Эйнштейн объявляет гравитацию за счет космической силы отталкивания.

Жорж Леметр обоснует это через физику. Вакуум содержит энергию. Из-за её колебаний, приводящих к появлению частиц и дальнейшего их разрушения, энергия приобретает силу отталкивания.

Когда Хаббл доказал расширение Вселенной, Эйнштейн назвал чушью.

Влияние темной энергии

Мироздание раздвигается с постоянной скоростью. В 1998 году миру представили данные анализа вспышек сверхновых первого типа. Было доказано, что Вселенная разрастается все быстрее.

Происходит это из-за непознанного вещества, её прозвали «темной энергией». Выяснится, что она занимает почти 70 % пространства Вселенной. Суть, свойства и природа темной энергии не изучены, но её ученые пытаются выяснить, имелась ли она в других галактиках.

В 2016 году вычислили точную скорость расширения на ближайшее будущее, но появилось несовпадение: Вселенная расширяется с большей скоростью, чем ранее предположили астрофизики. В среде ученых разгорелись споры о существовании темной энергии и её влиянии на скорость расширения пределов мироздания.

Расширение Вселенной происходит без темной энергии

Теорию независимости процесса расширения Вселенной от темной энергии выдвинули ученые в начале 2017 года. Расширение они объясняют изменением структуры Вселенной.

Ученые из Будапештского и Гавайского университетов пришли к выводу, что несовпадение расчетов и реальной скорости расширения связаны с изменением свойств пространства. Никто не учитывал, что происходит с моделью Вселенной при расширении.

Усомнившись в существовании темной энергии, ученые объясняют: самые большие концентраты материи Вселенной влияют на её расширение. При этом остальное содержание распределяется равномерно. Однако факт остается неучтенным.

Для демонстрации обоснованности своих предположений ученые предложили модель мини-Вселенной. Они представили её в форме набора пузырьков и начали просчет параметров роста каждого пузырька с собственной скоростью, зависящей от его массы.

Такое моделирование Вселенной показало ученым, что она может изменяться без учета энергии. А если «примешать» темную энергию, то модель не изменится, считают ученые.

В общем-то, споры все еще продолжаются. Сторонники темной энергии говорят, что она влияет на расширение границ Вселенной, противники стоят на своем, утверждая, что значение имеет концентрация материи.

Скорость расширения Вселенной сейчас

Ученые убеждены, что расти Вселенная начала после Большого Взрыва. Тогда, почти четырнадцать миллиардов лет назад, оказалось, что скорость расширения Вселенной больше скорости света. И она продолжает расти.

В книге Стивена Хокинга и Леонарда Млодинова «Кратчайшая история времени» отмечается, что скорость расширения границ Вселенной не может превышать 10 % за миллиард лет.

Чтобы определить, какова скорость расширения Вселенной, летом 2016 года лауреат Нобелевской премии Адам Рисс рассчитал расстояние до пульсирующих цефеид в близких друг к другу галактиках. Эти данные позволили вычислить скорость. Выяснилось, что галактики на расстоянии не меньше трех миллионов световых лет могут отдаляться со скоростью почти 73 км/с.

Результат был удивителен: орбитальные телескопы, тот же «Планк», говорили о 69 км/с. Почему зафиксирована такая разница, ученые не в силах дать ответ: им ничего не известно о происхождении темной материи, на которую опирается теория расширения Вселенной.

Темная радиация

Еще один фактор «разгона» Вселенной обнаружили астрономы с помощью «Хаббла». Темное излучение, как предполагают, появилось в самом начале образования Вселенной. Тогда больше в ней было энергии, а не материи.

Темное излучение «помогло» темной энергии расширить границы Вселенной. Расхождения в определении скорости ускорения были из-за неизвестности этого излучения, считают ученые.

Дальнейшая работа «Хаббла» должна сделать наблюдения более точными.

Таинственная энергия может уничтожить Вселенную

Такой сценарий ученые рассматривают уже несколько десятилетий, данные космической обсерватории «Планк» говорят, что это далеко не только предположения. Их опубликовали в 2013 году.

«Планк» замерил «эхо» Большого взрыва, появившееся в возрасте Вселенной около 380 тысяч лет, температура составила 2 700 градусов. Причем температура менялась. «Планк» определил и «состав» Вселенной:

  • почти 5 % - звезды, космическая пыль, космический газ, галактики;
  • почти 27 % - масса темной материи;
  • около 70 % - темная энергия.

Физик Роберт Колдуэл предположил, что темная энергия обладает силой, способной нарастать. И эта энергия разъединит пространство-время. Галактика будет отдаляться в ближайшие двадцать-пятьдесят миллиардов лет, считает ученый. Этот процесс будет происходить при нарастающем расширении границ Вселенной. Это оторвет Млечный Путь от звезды, и он тоже распадется.

Космосу отмерили около шестидесяти миллионов лет. Солнце станет карликовой гаснущей звездой, и от нее отделятся планеты. После взорвется Земля. В следующие тридцать минут пространство разорвет атомы. Финалом станет разрушение структуры пространство-время.

Куда «улетает» Млечный Путь

Иерусалимские астрономы убеждены, что Млечный Путь набрал максимальную скорость, которая выше скорости расширения Вселенной. Ученые объясняют это стремлением Млечного Пути к «Великому Аттрактору», считающемуся самым крупным Так Млечный Путь уходит из космической пустыни.

Ученые используют разные методики измерения скорости расширения Вселенной, поэтому нет единого результата этого параметра.