Дистанционный контроль

способ обнаружения нарушения охраняемого участка ГГ (акватории, объекта) с помощью СК (систем) и приборов. Д.к. проводится также в целях проверки работоспособности (исправности) СК (системы) и приборов, осуществляется дежурным по связи и сигнализации (дежурным по заставе), а также пограничным нарядом непосредственно на охраняемом участке ГГ. Результаты Д.к. заносятся в специальный журнал.


Пограничный словарь. - М.: Академия Федеральной ПС РФ . 2002 .

Смотреть что такое "Дистанционный контроль" в других словарях:

    дистанционный контроль - (МСЭ Т Y.1314). Тематики электросвязь, основные понятия EN remote monitoringRMON …

    дистанционный контроль (состояния объекта) - [Интент] EN remote monitoring … Справочник технического переводчика

    дистанционный контроль работы сети - — Тематики электросвязь, основные понятия EN remote network monitoringRMON … Справочник технического переводчика

    дистанционный сбор административной информации - среда дистанционного контроля сети дистанционный контроль удаленный мониторинг — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы среда… … Справочник технического переводчика

    дистанционный - ая, ое. distance f. 1. Отн. к дистанции (расстоянию), производимый, действующий на расстоянии. Дистанционные измерения. Дистанционный контроль. БАС 2. ♦ Дистанционная бомба, граната. Бомба, граната, взрывающаяся в воздухе. БАС 2. Румынская… … Исторический словарь галлицизмов русского языка

    дистанционный регулятор водогрейного котла - (обеспечивает непрерывный контроль и регулирование основных параметров и режимов нагрева котла) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN hot water boiler remote control … Справочник технического переводчика

    дистанционный - 4.1.3 дистанционный (без провода) контроль (remote (wireless) control). Источник: ГОСТ Р ИСО 21467 2011: Машины землеройные. Машины для …

    ГОСТ Р 53698-2009: Контроль неразрушающий. Методы тепловые. Термины и определения - Терминология ГОСТ Р 53698 2009: Контроль неразрушающий. Методы тепловые. Термины и определения оригинал документа: 2.2.1 активный метод теплового неразрушающего контроля; активный метод: Метод теплового неразрушающего контроля, при котором объект … Словарь-справочник терминов нормативно-технической документации

    ГОСТ 25314-82: Контроль неразрушающий тепловой. Термины и определения - Терминология ГОСТ 25314 82: Контроль неразрушающий тепловой. Термины и определения оригинал документа: 14. Активный метод теплового неразрушающего контроля Активный метод Метод теплового неразрушающего контроля, при котором объект контроля… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ 27452-87: Аппаратура контроля радиационной безопасности на атомных станциях. Общие технические требования - Терминология ГОСТ 27452 87: Аппаратура контроля радиационной безопасности на атомных станциях. Общие технические требования оригинал документа: Аварийная радиационная обстановка Радиационная обстановка, соответствующая неожиданным существенным… … Словарь-справочник терминов нормативно-технической документации

Книги

  • Дистанционный прогноз кимберлитового магматизма , Серокуров Ю.Н., Калмыков В.Д., Зуев В.М.. В работе кратко характеризуются объекты прогноза и поисков, взгляды на их структурный контроль. Предложена технология, позволяющая оконтурить участки развития известного кимберлитового…

Освещение в доме - это один из основных моментов, которые формируют комфортные условия проживания. Автоматизируя, упрощая управление осветительными приборами и расширяя возможности по их настройке, владельцы жилья облегчают и улучшают уют и обустроенность быта.

Дистанционное управление - это один из способов добиться от системы максимального удобства и эффективности при его эксплуатации и сделать свой дом максимально удобным. Ведь так удобно подъехать к гаражным воротам, где автоматически включатся фонари, и при этом не выходить из салона. Или выключить свет, не поднимаясь с дивана, изменить его яркость или даже направление освещения.

Для организации подобной схемы управления светом в доме следует ознакомиться с характеристиками, типами используемых устройств и принципами их работы, оценить положительные и отрицательные свойства данных систем. Владея информацией, хозяину жилья не составит особого труда произвести все работы своими руками, а приведенный ниже материал окажет в этом помощь.

Пожалуй, единственным «минусом» использования такой системы можно назвать более сложную по сравнению со стандартной схему устройства осветительной сети и дополнительные материальные вложения в оборудование. Однако положительные свойства, получаемые взамен, намного превосходят все затраты труда и денежных средств:

  • Повышение удобства и комфортность эксплуатации;
  • Дополнительный уровень пассивной безопасности.

Важно! Используя возможности управления светом через сеть интернет (с удаленного компьютера или через смартфон), можно создавать эффективную против воров и грабителей имитацию присутствия людей в доме. Управляемый удаленно комплекс со стороны выглядит как действия находящихся в доме жильцов.

  • Для беспроводных систем не требуется использование кабеля, что значительно снижает расходы;
  • Возможность управления многими точками света с одного места без беготни по всей территории, что особо важно при значительных размерах участка и большом количестве помещений.

Общие принципы управления освещением

Организация управления светом может быть самой разной, с использованием различных методов контроля. Самые распространенные - это единый центральный контроллер и пульт дистанционного управления. Схемы могут быть как отдельными для каждого помещения (при этом каждое из них будет иметь свой пульт), так и объединяющими в единую сеть управления все помещения сразу.

Самой сложной на сегодняшний день, но и дающей наибольшее количество возможностей, является система управления под названием «умный дом», в которой все осветительные устройства не только связаны в одну сеть, но и дополнительно могут программироваться на определенные действия. Для обеспечения реакции устройств на определенные воздействия в таких схемах используются дополнительные устройства вроде таймеров, датчиков освещения и движения и прочих.

Производственные и крупные офисные постройки зачастую оборудуют управлением осветительной системой с центрального щита. При этом непосредственно включаться и выключаться свет может с контроллеров, установленных отдельно.

Дистанционное управление

Стоит особо отметить такую разновидность централизованного контроля как дистанционные системы - к ним, в первую очередь, относится удаленное управление посредством компьютера или мобильного гаджета через сеть интернет.

В жилых помещениях использовать центральное управление с единого пульта тоже достаточно оправданно - возможность включения или выключения света во всех нужных помещениях прямо у входной двери может быть очень удобной.

По вполне понятным причинам наиболее востребованным видом управления светом является именно дистанционное. Особенно в условиях частных загородных домов со значительными придомовыми участками - если задействованы многие , то дистанционное управление позволит легко включить и выключить подсветку фонтана, бассейна, газона или дорожек, управлять светом в подсобных помещениях и гараже. В такой ситуации самый оптимальный метод контроллера - пульт ДУ.

В то же время, переносной пульт дистанционного управления может быть не очень эффективным в условиях небольшой квартирки. Забытый в другой комнате пульт, попытка нескольких обитателей квартиры одновременно управлять светом и прочие нюансы ограниченного по площади помещения приводят к различным неудобствам и недоразумениям.

Применение в оформлении помещений нескольких разнесенных по вертикали уровней освещения (потолочные светильники, освещение по периметру, настенные бра, нижняя подсветка, подсветка отдельных зон и подобных) становится значительно более полным и удобным, если применить беспроводное управление с пульта ДУ.

Разновидности управляющих сигналов

Все беспроводные системы дистанционного управления освещением выполняются при задействовании устройств, которые «общаются» между собой посредством одного из двух видов передаваемых и принимаемых сигналов:

  1. Инфракрасный тип - устройства действуют по тому же принципу, что и пульты ДУ телевизоров, кондиционеров, музыкальных центров и тому подобных. Самый недорогой и распространенный вариант. Чаще всего применяется для управления светом в наружном освещении, в «проходных» местах (коридоры, тамбуры, лестницы). Самыми большими минусами такой разновидности приспособлений является их работа только в зоне прямой видимости и малый радиус сигнала (обычно не превышает 10-12 метров, после чего безвозвратно рассеивается).

Важно! Сейчас на рынке появились специальные усилители сигналов, которые позволяют минимизировать ограничения, накладываемые использованием ИК-пультов. В таком усилителе принимается инфракрасный сигнал от пульта управления и выдается соответствующий ему радиосигнал.

  1. Радиоволна. Как понятно из названия, управляющие сигналы от пульта передаются посредством радиоволн, что обеспечивает беспрепятственное управление вне зоны прямой видимости на значительных удалениях. Основным минусом является достаточно высокая стоимость приборов данного типа.

Классификация устройств управления

Непосредственно для контроля могут использоваться различные устройства и приспособления. Некоторые сами являются управляющими элементами, в то время как другие лишь выступают «помощниками».

Для оптимальной организации управления светом необходимо знать об их назначении и функционале.

Приспособление подобного типа представляет собой сведенное в один корпус управление включением и отключением, иногда интенсивностью и яркостью освещения отдельных источников света или их групп. Сам контроль осуществляется посредством кнопок на панели.

В производимых моделях довольно часто предусмотрена возможность получения управляющих сигналов извне с пультов ДУ (иногда даже от обычного телевизора, бытовых устройств). Кроме того, довольно часто кнопки блока самостоятельно программируются на определенные действия.

Контроллер системы

Конструктивно - самый простой из используемых элементов удаленного управления. Обычно производится в настенном варианте и чаще всего устанавливается возле входа в помещение. Контроллер удаленно включает или выключает световые устройства согласно заложенной программе.

Алгоритм действий заложен в стандартной программе от изготовителя, либо же контроллер может быть запрограммирован с помощью подключаемой клавиатуры и ЖК-дисплея. Действие программы запускается при получении сигнала с пульта ДУ, с установленных датчиков, таймеров или вручную кнопками на самом контроллере.

Различные датчики

В качестве вспомогательных элементов довольно часто применяют различные датчики:


Достаточно простой по своему действию прибор, включающий в себя два устройства: релейный выключатель и приемник сигнала (чаще всего инфракрасного). Принцип действия предельно прост - с пульта подается сигнал непосредственно на такой выключатель и он срабатывает, включая или выключая свет.

Выключатели удаленного типа с приемником радиоволн значительно дороже, чем инфракрасные, но могут задействоваться с пультов на расстоянии более ста метров и вне зоны прямой видимости.

Инфракрасный пульт ДУ (дистанционного управления)

Устройство подобного типа является, видимо, наиболее востребованным, когда владелец хочет сделать беспроводным управление освещением своего дома.

Визуально такой пульт мало отличается от стандартных телевизионных и других бытовых приборов. Более того, довольно часто можно перепрограммировать пульт TV на управление дистанционной системой контроля светом.

Важно! При оборудовании жилья интеллектуальной компьютеризированной системой «умный дом» каждый пульт управления может контролировать работу не только освещения, но и электроники в доме: от света в саду до кофеварки и стиральной машины.

Стандартные пульты обычно имеют 5-7 кнопок. Каждая кнопка пульта может быть запрограммирована на определенное действие, но количество устройств, для которых это действие выполняется, практически не ограничено и может быть несколькими сотнями (например, «включить свет» одинаково сработает для лампы на крыльце или в спальне).

Радиоволновой пульт ДУ

Семи-десятикнопочные стандартные пульты с радиопередатчиком более функциональны, чем инфракрасные, поскольку действуют вне зоны открытого обзора.

С радиопульта управление производится заранее сконфигурированными группами осветительных (и прочих) приборов. Например, можно одним нажатием одновременно осветить пригаражную площадку и открыть въездные ворота.

Многие производители дополнительно комплектуют такие пульты одним или несколькими радиобрелками, запрограммированными на управление одной конкретной группой, - удобно, к примеру, повесить такой на ключи от машины, вместо того чтобы носить с собой пульт (который можно и забыть).

Как видно из вышеописанного, оборудование своего жилища комплексом удаленного контроля и управления освещением способно сделать его значительно более современным и комфортным. При этом разнообразие возможностей позволяет воплотить в жизнь самые взыскательные запросы хозяина и реализовать их без особого труда.

Назначение

Система оперативного дистанционного контроля (СОДК) предназначена для проведения непрерывного контроля состояния теплоизоляционного слоя из пенополиуретана (ППУ) предизолированных трубопроводов в течение всего срока их службы. СОДК является одним из основных инструментов технического обслуживания трубопроводов, построенных по технологии «труба в трубе» с использованием сигнальных медных проводников. Комплекс приборов и оборудования СОДК позволяет своевременно и с большой точностью находить места повреждений. Применение СОДК способствует безопасной эксплуатации трубопроводных систем, позволяет значительно уменьшить затраты и время на ремонтные работы.

Принцип действия и организация системы

Система контроля основана на применении датчика увлажнения изоляции, распределенного по всей длине трубопровода. Сигнальные медные проводники (не менее двух), находящиеся в теплоизоляционном слое каждого элемента трубопровода, соединяются по всей длине разветвленной сети трубопровода в двухпроводную линию, объединенную на концевых элементах в единую петлю. Проводники любых ответвлений включаются в разрыв сигнального проводника основного трубопровода. Эта петля из медных сигнальных проводников, стальная труба всех элементов трубопровода и теплоизоляционный слой из жесткого пенополиуретана между ними и образуют датчик увлажнения изоляции. Электрические и волновые свойства этого датчика позволяют:

1. Контролировать длину датчика увлажнения или длину сигнальной петли и как следствие длину участка трубопровода охваченную этим датчиком.

2. Контролировать состояние влажности теплоизоляционного слоя участка трубопровода охваченного этим датчиком.

3. Осуществлять поиск мест увлажнения теплоизоляционного слоя или обрыва сигнального провода, на участке трубопровода охваченного этим датчиком.

Контроль длины датчика увлажнения необходим для получения достоверных сведений о состоянии влажности теплоизоляционного слоя по всей длине участка трубопровода, охваченного этим датчиком. Длина сигнальной петли (длина датчика увлажнения) определяется, как отношение общего сопротивления сигнальных проводников, соединённых в замкнутую цепь к их удельному сопротивлению. Длина участка трубопровода охваченная этим датчиком составляет половину.

При контроле состояния влажности применяется принцип измерения электрической проводимости теплоизоляционного слоя. С увеличением влажности увеличивается электропроводимость теплоизоляции и уменьшается сопротивления изоляции. Увеличение влажности теплоизоляционного слоя может быть вызвано утечкой теплоносителя из стального трубопровода или проникновением влаги через внешнюю оболочку трубопровода.

Поиск мест повреждений осуществляется на принципе отражения импульсов (метод импульсной рефлектометрии). Увлажнение изоляционного слоя или обрыв провода приводят к изменению волновых характеристик датчика увлажнения изоляции в конкретных локальных участках. Сущность метода отраженного импульса заключается в зондировании линии сигнальных проводников высокочастотными импульсами. Определение величины задержки между временем отправки зондирующих импульсов и временем получения импульсов, отраженных от неоднородностей волновых сопротивлений (намокание изоляции или повреждений сигнальных проводников) позволяет вычислить расстояния до этих неоднородностей.

Для оперативной работы с датчиком увлажнения изоляции предусмотрен вывод сигнальных проводников и «массы» тела стальной трубы из теплоизоляционного слоя. Данные выводы организуются с помощью специальных элементов трубопровода, в которых вывод сигнальных проводников осуществляется кабелем, проходящим через внешнюю изоляцию с помощью герметизирующего устройства. Эти кабели, выведенные в технологические помещения, наземные или настенные ковера, вместе с подключёнными к ним терминалами образуют на трассе точки контроля и коммутации - технологические измерительные пункты.

Различаются концевые и промежуточные измерительные технологические пункты.

В концевых измерительных пунктах применяются концевые элементы трубопровода с кабельными выводами. Кабели от подающей и обратной трубы подключаются к концевому терминалу установленному в технологических помещениях или сооружениях, наземных или настенных коверах.

В промежуточных пунктах обычно применяются элементы трубопровода с промежуточным кабельным выводом. Кабели от обоих трубопроводов выводятся в наземный ковер или технологические сооружения и подключаются к промежуточному или двойному концевому терминалу. Но в местах разрыва тепловой изоляции (в тепловой камере и т.п.) организация промежуточного измерительного пункта осуществляется с помощью концевых элементов с кабельными выводами. Кабели от всех элементов трубопроводов выводятся в наземный ковер или технологическое сооружение и подключаются к соответствующему терминалу.

Технологические измерительные пункты, установленные через определённые расстояния, позволяют оперативно производить поисковые измерения с достаточной точностью.

Состав оборудования

Система контроля разделяется на следующие части: трубная, сигнальная и дополнительные устройства.

Трубная часть - это все элементы трубопровода и комплектующие изделия, непосредственно образующие датчик увлажнения изоляции:

  1. Элементы трубопровода с двумя или более медными сигнальными проводниками.
  2. Промежуточные и концевые кабельные выводы.
  3. Концевые элементы трубопровода.
  4. Монтажно-соединительные комплекты для соединения сигнальных проводников при гидроизоляции стыков и для удлинения кабельных выводов.

Элементы трубопровода с двумя или более медными сигнальными проводниками это предварительно изолированные трубы, отводы, компенсаторы, тройники, шаровые краны, и т.п.

Сигнальные проводники, установленные внутри ППУ изоляции каждого элемента располагаются паралельно стальной теплонесущей трубе на расстоянии 16÷25 мм. от неё. При сборке труб проводники фиксируются в центраторах полиэтиленовой оболочки, которые устанавливаются на расстоянии 0,8÷1,2 м друг от друга. Эти проводники изготавливаются из медной проволоки сечением 1,5 мм 2(марка ММ 1,5).

Во всех элементах провода системы контроля располагаются в положении «без десяти минут два часа».

Концевой кабельный вывод устанавливается в местах окончания теплоизоляции. Конструктивно может выполняться в двух вариантах.

Первый вариант - концевой элемент трубопровода с кабельным выводом и металлической заглушкой изоляции (ЗИМ КВ). В данном элементе два провода трехжильного кабеля подключается к сигнальным проводникам на торце трубы, третий провод подключается к стальной трубе, а кабель выводится через герметизирующее устройство, установленное на заглушке изоляции. Этот вариант применяется для вывода сигнальных проводников внутрь инженерных сооружений и технологических помещений.

Второй вариант - концевой элемент трубопровода с металлической заглушкой изоляции и кабельным выводом (КВ ЗИМ). В данном элементе два провода трехжильного кабеля включаются в разрыв основного сигнального провода, третий провод подключается к стальной трубе, а кабель выводится через герметизирующее устройство, установленное на оболочке трубы. Этот вариант применяется для вывода сигнальных проводников в специальные технологические устройства (ковера), устанавливаемые снаружи инженерных сооружений и зданий.

Промежуточные кабельные выводы предназначены для разделения разветвленной сети трубопровода на участки определенной длины, что обеспечивает необходимую точность при поиске неисправностей системы контроля. Они устанавливаются по длине трассы через расстояния, определяемыми нормативной документацией (СП 41-105-2002) и согласованными с эксплуатирующими организациями. Промежуточный кабельный вывод выполняется в виде специального элемента трубопровода, в котором четыре провода пятижильного кабеля включаются в разрыв сигнальных проводов, пятый провод подключается к рабочей трубе, а сам кабель выводится через герметизирующее устройство установленное на оболочке трубы.

Концевые элементы трубопровода устанавливаются в местах окончания теплоизоляции и предназначены для объединения двухпроводной линии в единую петлю и защиты теплоизоляционного слоя от проникновения влаги. Соединение сигнальных проводников между собой на концевых элементах трубопровода произведено по торцу изоляционного слоя под заглушкой изоляции.

Сопротивление изоляции каждого сигнального проводника любого элемента не менее 10 Мом.

Монтажно-соединительные комплекты

Комплект соединения проводов СОДК (входит в комплекты материалов для заделки стыковых соединений) предназначен для соединения проводов СОДК и фиксации их на теплонесущей трубе на определённом расстоянии от неё.

Комплект поставки на 1 стык:

  1. держатель провода - 2 шт.
  2. обжимная муфта для соединения проводов - 2шт.
  1. припой, кол-во на 1 стык - 2г
  2. флюс или паяльная паста - 1г
  3. лента с клеящим слоем - по таблице:
Наружный диаметр стальной трубы Расход ленты с клеящим слоем на 1 стык
d, мм м
57 0,5
76 0,7
89 0,85
108 1,02
133 1,26
159 1,5
219 2,1
273 2,6
325 3,1
377 3,55
426 4,05
530 5,02

Комплект удлинения трёхжильного кабеля вывода применяется для удлинения трёхжильного кабеля системы ОДК на концевых кабельных выводах при монтаже трубопровода.

Комплект поставки:

Кабель трёхжильный - 5 м;

Термоусадочная трубка диаметром 25 мм L= 0,12 м;

Мастика ленточная "Герлен" - 0,2 м 2 ;

Изолента - 1 рулон на 10 комплектов;

Обжимная муфта для соединения проводов - 3 шт;

Термоусадочная трубка диаметром 6 мм L= 3см - 3 шт;

Расходные материалы (в комплект поставки не входят):

Припой - 3г.
- флюс или паяльная паста - 1,5г.

Комплект удлинения пятижильного кабеля вывода применяется для удлинения пятижильного кабеля системы ОДК на промежуточном кабельном выводе при монтаже трубопровода.

Комплект поставки:

Кабель пятижильный - 5 м;

Термоусадочная трубка диаметров 25 мм - 0,12 м;

Мастика ленточная " Герлен " - 0,2 м 2 ;

Изолента - 1 рулон 1 - 8 комплектов;

Обжимная муфта для сращивания проводов - 5 шт.

Термоусадочная трубка диаметром - 6 мм L= 3см - 5 шт

Расходные материалы (в комплект поставки не входят):

Припой - 5г.
- флюс или паяльная паста - 2,5г.

Сигнальная часть состоит из элементов сопряжения и приборов:

  1. Измерительные и коммутационные терминалы для подключения приборов в точках контроля и коммутации сигнальных проводников.
  2. Приборы контроля (детекторы, индикаторы) переносные и стационарные.
  3. Приборы поиска местонахождения неисправностей (импульсный рефлектометр).
  4. Измерительные приборы (тестер изоляции, мегомметр, омметр).
  5. Кабели для монтажного подсоединения терминалов и соединения терминалов со стационарными приборами контроля.

Для коммутации сигнальных проводников и подключения приборов к соединительным кабелям в точках контроля и коммутации применяются специальные коммутационные коробки - терминалы.

Терминалы разделяются на два основных вида: измерительные и герметичные .

Измерительные терминалы предназначены для оперативной коммутации сигнальных проводников при проведении измерений. Необходимая коммутация и измерения производятся с помощью внешних штекерных разъемов, без вскрытия терминала. Терминалы этого вида устанавливаются в сухих или хорошо проветриваемых инженерных устройствах (наземных или настенных коверах и т.п.) и технологических помещениях (ЦТП, ИТП и т.п.).

Герметичные терминалы предназначены для коммутации сигнальных проводников в условиях повышенной влажности. Необходимая коммутация и измерения производятся с помощью разъемов, установленных внутри терминалов. Для доступа к ним требуется снятие крышки терминала. Терминалы этого вида могут устанавливаться в любых технологических устройствах (наземных или настенных коверах и т.п.), сооружениях и помещениях (в тепловых камерах, в подвалах домов и т.п.)

Типы измерительных терминалов :

Концевой терминал (КТ-11, КИТ, КСП 10-2 и ТКИ, ТКИМ) - устанавливается в точках контроля на концах трубопровода;

Концевой терминал с выходом на стационарный детектор (КТ-15, КТ-14, ИТ-15, ИТ-14, КДТ, КДТ2, КСП 12-5 и ТКД) - устанавливается на конце трубопровода, в точке контроля, где предусмотрено подключение стационарного детектора;

Промежуточный терминал (КТ-12/Ш, ИТ-12/Ш, ПИТ, КСП 10-3, ТПИ и ТПИМ) - устанавливается в промежуточных точках контроля трубопровода и в точках контроля в начале боковых ответвлений.

Двойной концевой терминал (КТ-12/Ш, ИТ-12/Ш, ДКИТ, КСП 10-4 и ТДКИ) - устанавливается в точке контроля на границе разделения систем контроля сопрягаемых проектов;

Типы герметичных терминалов :

Концевой терминал герметичный - устанавливается в точках контроля на концах трубопровода;

Промежуточный терминал (КТ-12, ИТ-12, ПГТ и ТПГ) - устанавливается в промежуточных точках контроля трубопровода и в точках контроля в начале боковых ответвлений.

Объединяющий терминал герметичный (КТ-16, ИТ-16, ОТ6, ОТ4, ОТ3, КСП 13-3, КСП 12-3, ТО-3 и ТО-4)- устанавливается в тех точках контроля, где необходимо объединить в единую петлю несколько участков трубопровода или несколько отдельных трубопроводов;

Объединяющий терминал герметичный с выходом на стационарный детектор (КТ-16, ИТ-16, ОТ6, ОТ3, КСП 13-3, КСП 12-3 и ТО-3) - устанавливается в точке контроля, где необходимо объединить в единую петлю несколько отдельных трубопроводов, и в которой предусмотрено подключение кабеля от стационарного детектора;

Проходной терминал герметичный (КТ-15, ИТ-15, ПТ, КСП 12 и ТП) - устанавливается в местах разрыва ППУ изоляции (в тепловых камерах, в подвалах домов и т.п.) для коммутации соединительных кабелей или устройства дополнительной точки контроля при необходимости применения соединительных кабелей большой длины.

Соответствие терминалов производства НПК «ВЕКТОР», ООО «ТЕРМОЛАЙН», НПО «СТРОПОЛИМЕР», ЗАО «МОСФЛОУЛАЙН» и терминалов серии «ТермоВита»

ООО «ТЕРМОЛАЙН» НПК «ВЕКТОР» НПО «СТРОЙПОЛИМЕР» ЗАО «МОСФЛОУЛАЙН»
КТ-11 ИТ-11 КИТ КСП 10-2 Терминал концевой.
КТ-12 ИТ-12 ПГТ нет ----
КТ-12/Ш ИТ-12/Ш ПИТ, ДКИТ КСП 10-3, КСП 10-4 Терминал промежуточный, терминал двойной концевой
КТ-13 ИТ-13 КГТ КСП 10 ----
КТ-15 ИТ-15 КДТ КСП 12-5 Терминал с выходом на детектор
КТ-14 ИТ-14
КДТ2 КСП 12-5 (2 штуки) Терминал с выходом на детектор (2 штуки)
КТ-15 ИТ-15 ПТ, ОТ4 КСП 12 Терминал проходной
КТ-15/Ш ИТ-15/Ш КИТ4 КСП 12-2, КСП 12-4 ----
КТ-16 ИТ-16 ОТ6, ОТ3 (2 штуки) КСП 13-3, КСП 12-3 (2 штуки) __

Терминалы присоединяют к проводникам ОДК с помощью соединительных кабелей: 3-х жильный кабель (NYM 3х1,5) для соединения терминалов на концевых участках теплотрассы и 5-ти жильный кабель (NYM 5х1,5) для соединения терминалов на промежуточных участках теплотрассы. Подключение и эксплуатация терминалов производится согласно технической документации предприятия-изготовителя.

Приборы контроля

Контроль состояния системы ОДК в процессе эксплуатации трубопроводов осуществляется с помощью прибора, называемого детектором. Этотприбор фиксирует электрическую проводимость теплоизоляционного слоя. При попадании воды в теплоизоляционный слой его проводимость увеличивается и это регистрируется детектором. Одновременно детектор измеряет сопротивление проводников, соединённых в замкнутую цепь.

Детекторы могут питаться от сети напряжением 220 Вольт (стационарные), либо от автономного источника питания 9 Вольт (переносные).

Стационарный детектор позволяет одновременно контролировать две трубы с максимальной длиной от2,5 до 5 км каждая, в зависимости от модели.

Таблица 1

Технические характеристики стационарных детекторов

Параметры Вектор-2000 ПИККОН СД-М2
ДПС-2А ДПС-2АМ ДПС-4А ДПС-4АМ
Напряжение питания, В 220 (+10-15)% 220 (+10-15)% 220 (+10-15)%
Количество контролируемых участков трубопроводов, шт. от 1 до 4 2 4 2
до 2500 до 2500 5000
более 600 более 200 более 150
Индикация намокания изоляции, кОм менее 5 (+10%) менее 5 (+10%) Многоуровневый более 100 от30до100 от10до30 от3до10 менее 3
10 Постоянный ток 8 Постоянный ток 4 Переменный ток
30 30 120 (2 вт.)
Эксплуатационная температура окружающей среды, С ˚ -45 - +50 -45 - +50 -45 - +50 -40 - +55
не более 98 (25 °С) 45÷75 45÷75 Нет данных
Класс защиты от внешних воздействий
IP 55 IP 55 IP 67
Габаритные размеры, мм 145x220x75 170x155x65 220x175x65 180x180x60
Масса, кг не более 1 не более 0,7 не более 1 0,75

При использовании стационарного детектора СД-М2 возможна организация централизованной СОДК разветвленной теплосети значительной протяженности (до 5 км) из единого диспетчерского пункта. Для этого в стационарном детекторе предусмотрены контакты с гальванической развязкой по каждому каналу, которые замыкаются при возникновении неисправностей.

Подключение и эксплуатация стационарных детекторов производится согласно технической документации предприятия-изготовителя.

Переносной детектор позволяет контролировать трубу с максимальной длиной от 2 до 5 км в зависимости от модели. Одним детектором можно контролировать разные участки трубопроводов, которые не связанны между собой в единую систему. Переносной детектор на объекте стационарно не устанавливается, а подключается к контролируемому участку сотрудником, производящим обследование в порядке эксплуатации.

Таблица 2

Технические характеристики переносных детекторов

Параметры Вектор-2000 ПИККОН ДПП-А ПИККОН ДПП-АМ ДА-М2
Напряжение питания, В 9 9 9
Длина одного контролируемого участка трубопровода, м до 2000 до 2000
5000
Индикация повреждения сигнальных проводов, Ом более 600(+10%) более 200(+10%) 150
Контрольное напряжение на сигнальных проводах, В 10 Постоянный ток 8 Постоянный ток 4 Переменный ток
Индикация намокания ППУ-изоляции, кОм менее 5 (+10%) менее 5 (+10%) Многоуровневый более 1000 от500до1000 от100до500 от50до100 от5до50 Многоуровневый более 100 от30до100 от10до30 от3до10 менее 3
Потребляемый ток в рабочем режиме, мА 1,5 1,5 Не более 20
Эксплуатационная температура окружающей среды, -45 - +50 -45 - +50 -20 - +40
Эксплуатационная влажность окружающей среды, % не более 98 (25 °С) 45÷75 Брызгозащищённый
Габаритные размеры, мм 70x135x24 70x135x24 135x70x25
Масса, г не более 100 не более 170 150

Подключение и эксплуатация переносных детекторов производится согласно технической документации предприятия-изготовителя.

Приборы поиска повреждений

Для определения местонахождения повреждений используется импульсный рефлектометр , обеспечивающий приемлемую точность измерений. Рефлектометр позволяет определить повреждения на расстояниях от 2 до 10 км, в зависимости от применяемой модели. Погрешность измерений составляет приблизительно 1-2% от длины измеряемой линии. Точность измерений определяется не погрешностью рефлектометров, а погрешностью волновых характеристик всех элементов трубопровода (волнового сопротивления датчика увлажнения изоляции). В зависимости от величины увлажнения изоляции рефлектометр позволяет определить местоположение нескольких мест с пониженным сопротивлением изоляции.

Технические характеристики отечественных импульсных рефлектометров

Наименование РЕЙС-105 РЕЙС-205 РИ-10М РИ-20М
Завод-изготовитель НПП «СТЭЛЛ» г. Брянск ЗАО «ЭРСТЕД» г. Санкт-Петербург
Диапазон измеряемых расстояний
12,5 -25600 м
12,5-102400м 1- 20000 м 1м-50км.
Разрешающая способность Не хуже 0,02 м 0,2 % на диапазонах от 100 до 102400 м 1% от диапазона 25 см... 250 м. (по дальности)
Погрешность измерения Менее 1% Менее 1% Менее 1% Менее 1%
Выходное сопротивление 20 - 470 Ом, плавно регулируемое от 30 до 410, плавно регулируемое 20 - 200 Ом. 30. . 1000 Ом.
Зондирующие сигналы Импульс амплитудой 5 В, 7 нс - 10 мкс; Импульс амплитудой 7 В и 22 В от10 до 30-10 3 нс Импульс амплитудой 6 В, 10 нс - 20 мкс; Импульс амплитудой не менее 10 В. 10 нс. .50 мкс.
Растяжка Возможность растяжки рефлектограммы вокруг измерительного или нулевого курсора в 2,4,8, 16, …131072 раза 0,1от диапазона 0,025 от диапазона
Память 200 рефлектограмм; до 500 рефлектограмм 100 рефлектограмм 16 Мбайт.
Интерфейс RS-232 RS-232 RS-232 RS-232
Усиление 60 дБ 86 дБ -20... +40 дБ. -20... +40 дБ.
Диапазон установки КУ (v/2) 1.000...7.000 1.000...7.000 1.00...3.00 (50 м/мкс... 150 м/мкс).
Дисплей ЖКИ 320x240 точек с подсветкой ЖКИ 128х64 точек с подсветкой ЖКИ 240х128 точек с подсветкой
Питание
встроеный аккумулятор - 4,2÷6В сетевое - 220÷240 В, 47-400 Гц сеть постоянного тока - 11÷15В встроеный аккумулятор - 10,2-14 сеть постоянного тока - 11÷15В сетевое - 220÷240 встроеный аккумулятор - 12 В; сетевое - 220В 50гц, через адаптер Время непрерывной работы от аккумулятора не менее 6 час (с подсветкой). встроеный аккумулятор - 12 В; сетевое - 220В 50гц, через адаптер Время непрерывной работы от аккумулятора не менее 5 час (с подсветкой).
Потребляемая мощность Не более 2,5 Вт 5 Вт 3 ВА 4ВА
Диапазон рабочих температур - 10 °С + 50 °С - 10 °С + 50 °С -20С...+40С -20С...+40С
Габаритные размеры 106x224x40 мм 275х166х70 267х157х62 220х200х110 мм
Масса Не более 0,7 кг (со встроенными аккумуляторами) Не более 2 кг (со встроенными аккумуляторами) не более 2.5 кг(со встроенными аккумуляторами)

РЕЙС-205

Рефлектометр РЕЙС-205 наряду с традиционным методом импульсной рефлектометрии , при котором надежно и точно определяется длина линии, расстояние до мест короткого замыкания, обрыва, низкоомной утечки и продольного увеличения сопротивления (например, в местах скрутки жил и.т.п.), дополнительно реализует мостовой метод измерения.Что позволяет с высокой точностью измерять сопротивление шлейфа, оммическую асимметрию, емкость линии, сопротивление изоляции, определить расстояние до места высокоомного повреждения (понижения изоляции) или обрыва линии.

Подключение и эксплуатация импульсных рефлектометров производится согласно технической документации предприятия-изготовителя.

Дополнительные устройства

Наземные и настенные ковера

Назначение

Ковер, как наземный, так и настенный, предназначен для размещения в них коммутационных терминалов и предохраняет элементы системы контроля от несанкционированного доступа.

Ковер представляет собой металлическую конструкцию с надежным запорным устройством. Внутри ковера предусмотрено место для крепления терминала.

Проектирование

Проектирование систем необходимо осуществлять с возможностью присоединения проектируемой системы к системам контроля действующих трубопроводов и трубопроводов, планируемых в будущем. Максимальная длина разветвленной сети трубопроводов для проектируемой системы контроля выбирается исходя из максимального диапазона действия приборов контроля (пять километров трубопровода).

Выбор вида приборов контроля для проектируемого участка должен производиться исходя из возможности подвода (наличия) напряжения 220 В к проектируемому участку на все время эксплуатации трубопровода. При наличии напряжения необходимо использовать стационарный детектор повреждений, а при отсутствии напряжения - переносной детектор, имеющий автономное питание.

Выбор количества приборов для проектируемого участка должен производиться с учетом протяженности проектируемого участка трубопровода.

Если протяженность проектируемого участка больше максимально контролируемой одним детектором длины (см. характеристики в паспорте), то необходимо разбить теплотрассу на несколько участков с независимыми системами контроля.

Количество участков определяется по формуле:

N = Lnp/Lmax,

где /_ пр -длина проектируемой теплотрассы, м;

L ^ ax -максимальный диапазон действия детектора, м.

Полученное значение округлять до целого числа в большую сторону.

Примечание. Одним переносным детектором можно контролировать несколько независимых участков теплосетей.

Контрольные точки предназначены для того, чтобы эксплуатирующий персонал имел доступ к сигнальным проводам с целью определения состояния трубопровода.

Контрольные точки подразделяются на концевые и промежуточные. Концевые точки контроля располагаются во всех конечных точках проектируемого трубопровода. При длине участка менее 100 метров допускается устройство только одной контрольной точки, с закольцовкой сигнальных проводников под металлической заглушкой на другом конце трубопровода.

Точки контроля располагаются таким образом, чтобы расстояние между двумя соседними контрольными точками не превышало 300 м. В начале каждого бокового ответвления от основного трубопровода, если его длина 30 м и более (вне зависимости от расположения других точек контроля на основном трубопроводе), ставится промежуточный терминал.

На границах сопрягаемых проектов тепловых сетей, в местах их соединения, необходимо предусматривать точки контроля и устанавливать двойные концевые терминалы, которые позволяют объединять или разъединять систему ОДК этих участков.

При последовательном соединении проводников системы ОДК в местах окончания изоляции (проход трубопроводов через тепловые камеры, подвалы зданий и т. п.) соединение проводников требуется выполнять только через терминалы.

Максимальная длина кабеля от трубопровода до терминала не должна превышать 10 м. В случае необходимости применения кабеля с большей длиной требуется установить как можно ближе к трубопроводу дополнительный терминал.

В комплект каждой точки контроля должны входить:

  • элемент трубопровода с кабелем вывода;
  • соединительный кабель;
  • коммутационный терминал.

Контрольные точки в тепловых камерах размещать не рекомендуется из-за влажности в камере, однако допускается только в тех случаях, когда размещение наземного ковера связано с какими-либо сложностями (порча внешнего вида города, влияние на безопасность движения и т. п.). В этих случаях терминалы, размещаемые в тепловых камерах, должны быть герметичны. В подвалах домов размещение контрольных точек не рекомендуется, если проектируемая теплотрасса и дом принадлежат разным ведомствам, так как в этих случаях возможен конфликт при эксплуатации трубопроводов (из-за проблем с доступом к точкам контроля и сохранностью элементов системы ОДК). В этих случаях рекомендуется оснащать контрольную точку наземным ковером, устанавливаемым в 2 - 3 метрах от дома.

Установка терминалов в промежуточных и концевых точках контроля осуществляется в наземных или настенных коверах установленного образца. В концевых точках трубопровода допускается установка терминалов в ЦТП.

Правила проектирования систем контроля

(в соответствии с СП 41-105-2002)

  1. В качестве основного сигнального провода используется провод маркированный, расположенный справа по направлению подачи воды к потребителю на обоих трубопроводах (условно луженый). Второй сигнальный проводник называется транзитным.
  2. Проводники любых ответвлений должны включаться в разрыв основного сигнального проводника основного трубопровода. Запрещается подключать боковые ответвления к медному проводу, расположенному слева по ходу подачи воды к потребителю.
  3. При проектировании сопрягаемых проектов в местах соединения трасс устанавливаются промежуточные кабельные выводы с двойными концевыми терминалами, которые позволяют объединить или разъединить системы контроля этих проектов.
  4. На концах трасс единичного проекта устанавливаются концевые кабельные выводы с концевыми терминалами. Один из этих терминалов может иметь выход на стационарный детектор.
  5. Вдоль всей трассы через расстояния, не превышающие 300 метров, устанавливаются промежуточные кабельные выводы с промежуточными терминалами.
  6. Промежуточные кабельные выводы на теплотрассах должны дополнительно устанавливаться на всех боковых ответвлениях длиной более 30 метров, независимо от расположения других терминалов на основной трубе.
  7. Система контроля должна обеспечивать проведение измерений с обеих сторон контролируемого участка при его длине более 100 метров.
  8. Для трубопроводов или концевых участков длиной менее 100 метров допускается установка одного концевого или промежуточного кабельного вывода и соответствующего ему терминала. На другом конце трубопровода линия сигнальных проводников соединяется в петлю под металлической заглушкой изоляции.
  9. При последовательном соединении сигнальных проводников, в местах окончания ППУ изоляции (проход через камеры, подвалы зданий и т.п.), а также при объединении систем контроля разных труб (подающей с обратной, теплосеть с горячим водоснабжением), соединение кабелей между участками трубопроводов производить только с помощью проходных, объединяющих или герметичных терминалов.
  10. В спецификации необходимо указывать длину кабеля для конкретной точки, с учетом глубины заложения теплотрассы, высоты ковера, расстояния его (ковера) выноса на материковый грунт и 0,5 метра запаса.
  11. Максимальная длина кабеля от трубопровода до терминала не должна превышать 10 метров. В том случае, когда требуется применить кабель с большей длиной, необходима установка дополнительного проходного терминала. Терминал устанавливается как можно ближе к трубопроводу.
  12. Установка стационарных детекторов на трубопроводах, которые входят в технологические помещения с постоянным доступом обслуживающего персонала, обязательна.

Схема системы контроля

Схема системы контроля состоит из графического изображения схемы соединения сигнальных проводников, повторяющего конфигурацию трассы.

На схеме показываются:

F места установки кабельных выводов и точек контроля с указанием типов терминалов, детекторов и видов коверов (наземные или настенные) в графическом виде;

F указываются условные обозначения всех используемых на схеме системы контроля элементов;

F указываются характерные точки, соответствующие монтажной схеме: ответвления от основного ствола теплотрассы (включая спускники); углы поворотов; неподвижные опоры; переходы диаметров; кабельные выводы.

К схеме прилагается таблица данных по характерным точкам с указанием следующих параметров:

F номера точек по проектной документации;

F диаметр трубы на участке;

F длина трубопровода между точками по проектной документации для подающего трубопровода;

F длина трубопровода между точками по проектной документации для обратного трубопровода;

F длина трубопровода между точками по схеме стыков (отдельно для основного и транзитного сигнальных проводников каждого трубопровода);

F длину соединительных кабелей во всех точках контроля (отдельно для каждого трубопровода).

Дополнительно схема контроля должна содержать:

F схемы подключения соединительных кабелей к сигнальным проводникам;

F схемы подключения кабелей к терминалам и стационарным детекторам;

F спецификацию применяемых приборов и материалов;

F эскизы маркировок внешних и внутренних разъемов по направлениям.

Проект системы контроля должен быть согласован с организацией, принимающей теплотрассу на баланс.

Монтаж системы ОДК

Монтаж системы ОДК выполняется после сварки труб и проведения гидравлического испытания трубопровода.

При монтаже элементов трубопровода на строительной площадке, пе-ред началом сварки стыка, трубы должны быть ориентированы таким обра-зом, чтобы обеспечить расположение проводов системы ОДК по боковым частям стыка, а выводы проводов одного элемента трубопровода располагались напротив выводов другого, обеспечивая тем самым возможность соединения проводов по кратчайшему расстоянию.Не допускается располагать сигнальные провода в нижней четверти стыка.

Одновременно производится проверка монтируемых элементов трубопровода по состоянию изоляции (визуально и электрически) и целостности сигнальных проводников. А все элементы трубопровода с кабельными выводами требуют дополнительного измерения цепи желто-зелёного провода выводного кабеля и стальной трубы. Сопротивление должно быть ≈ 0 оМ.

При проведении сварочных работ торцы пенополиуретановой изоляции следует защитить съемными алюминиевыми (или жестяными) экранами для предупреждения повреждения сигнальных проводов и изоляционного слоя.

Во время проведения монтажных работ проводить точные измерения длин каждого элемента трубопровода (по стальной трубе), с занесением результатов на исполнительную схему стыковых соединений.

Соединение сигнальных проводников производится строго согласно проектной схеме системы контроля.

Проводники любых ответвлений должны включаться в разрыв основного сигнального проводника основного трубопровода. Запрещается подключать боковые ответвления к медному проводу, расположенному слева по ходу подачи воды к потребителю.

В качестве основного сигнального провода используется маркированный провод, расположенный справа по направлению подачи воды к потребителю на обоих трубопроводах (условно луженый).

Сигнальные проводники смежных элемен-тов трубопроводов должны соединяться посредством обжимных муфточек с последующей пайкой места соединения проводников. Обжим муфточек со вставленными проводами производить только специальным инструментом (обжимными клещами). Обжим производить средней рабочей частью инстру-мента с маркировкой 1,5. Запрещается производить опрессовку обжимных муфточек нестандартными инструментами (кусачки, пассатижи и т.п.)

Пайка должна вы-полняться с использованием неактивных флюсов. Рекомендуемый флюс ЛТИ-120. Рекомендуемый припой ПОС-61.

При соединении проводов на стыках все сигнальные провода фиксируются на держателях проводов (стойках), которые крепятся к трубе при помощи скотча (клеящей ленты). Запрещается применение хлорсодержащих материалов. Так же запрещается пускать изоляцию поверх проводов, закрепляя стойки и провода од-новременно.

При монтаже элементов трубопровода с кабельными выводами свободный конец сигнального кабеля от подающего трубопровода промаркировать изоляционной лентой.

М онтаж проводников системы ОДК во время работ по изоляции стыков

1. Перед монтажом сигнальных проводов стальную трубу очищают от пыли и влаги. Пенополиуретан на торцах трубы зачищают: он должен быть сухим и чистым.

3. Выправить провода.

4. Обрезать соединяемые провода, предварительно отмерив необходимую длину. Зачистить провода шлифовальной шкуркой.

5. Соединить провода на противо-положном конце элемента трубопровода или смонтированного участка и проверить их на отсутствие замыкания на трубу.

6. Подсоединить оба провода к прибору и замерить сопротивление: оно недолжно превышать 1,5 Ом на 100 м проводов.

7. Зачистить участок стальной трубы от ржавчины и окалины. Подсоединить один кабель прибора к трубе, второй к одному из сигнальных проводников. При напряжении 250 В сопротивление изоляции любого элемента трубопровода должно быть не менее 10 Мом, а сопротивление изоляции участка трубопровода длинной 300м не должно быть менее 1 Мом. С увеличением длины проводников их сопро-тивление будет уменьшаться. Фактическое измеренное сопротивление изоляции должно быть не менее значения, определенного по формуле:

R из = 300/ L из

R из - замеренное сопротивление изоляции, МОм

L из - длина измеряемого участка трубопровода, м.

Слишком малое сопротивление указывает на повы-шенную влажность изоляции или на наличие контакта между сигнальными проводами и стальной трубой.

8. Зафиксировать провода на стыке с помощью стоек и клеящей ленты. Запрещается пускать клеящую ленту поверх проводов, закрепляя стойки и провода од-новременно.

9. Соединить провода согласно инструкции «Соединение проводников системы ОДК».

10. Выполнить теплогидроизоляцию стыка. Тип теплогидроизоляции определяется проектом.

11. По окончании работ проверить сопротивление изоляции и сопротивление петель проводов системы ОДК смонтированных участков. Результаты измерений занести в «Журнал проведения работ».

Если сигнальный провод поломался на выходе из изоляции, нужно удалить ППУ-изоляцию вокруг обломанного провода на участке, достаточном для надежного соединения проводов. Соединение производится с использованием обжимных гильз и пайки. Наращивание коротких проводов производить таким же способом.

При монтаже проводов сигнальной системы на каждом стыке выполняется контроль сигнальной цепи и сопротивления изоляции в соответствии с указанной ниже схемой:

После гидроизоляции проверить сопротивление изоляции и сопротивление петель проводов системы ОДК смонтированных участков, и полученные данные занести в акт выполненных работ или протокол измерений.

Контрольные измерения параметров сис- темы ОДК на элементах трубопроводов

1. Выпрямить выводы проводов и уложить их таким образом, чтобы они располагались параллельно трубе. Тщательно осмотреть провода - на них не должно быть трещин, надрезов и заусенцев. При проведении измерений на кабельных выводах снять внешнюю изоляцию кабеля на расстоянии 40 мм. от его конца и изоляцию каждой жилы на 10-15 мм. Зачистить концы проводов с по-мощью наждачной шкурки до появления характерного медного блеска.

2. Замкнуть два провода на одном конце трубы. Убедиться, что контакт между проводами надежен и провода не касаются металлической трубы. Аналогичные операции выполнить для проверки проводов в отводах. Для Т-образных ответвлений провода должны быть замкнуты на обоих концах ос-новной трубы, образуя единую петлю. При окончании участка трубопровода элементом с кабельным выводом произвести соединение соответствующих кабельных жил, уходящих в одном направлении.

3. К проводникам на незамкнутом конце подсоединить прибор для измерения сопротивления изоляции и контроля целостности цепей (STANDARD 1800 IN или аналогичный) и измерить сопротивление проводов: сопротивление должно быть в пределах 0,012-0,015 Ом на каждый метр проводника.

4. Зачистить трубу, подсоединить к ней один из кабелей прибора, второй кабель подсоединить к одному из проводов. При напряжении 500 В, если изоляция сухая, прибор должен показать бесконечность. Допустимое сопротивление изоляции каждой трубы или другого элемента трубопровода должно быть не менее 10МОм.

5. При измерении сопротивления изоляции участка трубопровода состоящего из нескольких элементов измерительное напряжение не должно превышать 250 В. Сопротивление изоляции считается удовлетворительным при значении 1 Мом на 300 метров трубопровода. При измерении сопротивления изоляции участков трубопроводов с различными длинами следует учитывать, что сопротивление изоляции обратнопропорционально длине трубопровода.

Монтаж точек контроля

Наземные ковера устанавливаются на материковый грунт рядом с трубопроводом в точках, указанных на схеме системы контроля. Место установки наземного ковера в конкретной точке определяется по месту строительной организацией, с учётом удобства обслуживания. Внутренний объем наземного ковера должен быть засыпан сухим песком от основания до уровня 20 сантиметров от верхнего края.

После установки ковера, проводится его геодезическая привязка. При устройстве коверов на теплотрассах прокладываемых в насыпных грунтах следует предусмотреть дополнительные меры по защите ковера от просадки и повреждения сигнального кабеля.

При устройстве ковера на теплотрассах, прокладываемых в насыпных грунтах, необходимо предусматривать дополнительные меры по защите ковера от просадки грунта.

Наружная поверхность ковера защищается антикоррозионным покрытием.

Настенный ковер крепится к стене здания, либо с наружной стороны, либо с внутренней. Крепление настенного ковера осуществляется на 1,5 метров от горизонтальной поверхности (пол здания, камеры или земли).

Соединительные кабели от элементов трубопровода с герметичным кабельным выводом до ковера прокладываются в трубах (оцинкованных, полиэтиленовых) или в защитном гофрированном шланге. Прокладку соединительного кабеля внутри зданий (сооружений) до места установки терминалов также необходимо осуществить в оцинкованных трубах или в защитных гофрированных шлангах, которые закрепляются на стенах. Возможно применение ПЭ труб. Прокладку соединительного кабеля в месте разрыва тепловой изоляции (в тепловой камере и т.п.) также необходимо осуществлять в оцинкованной трубе, закрепленной на стене.

Монтаж терминалов и детекторов производить в соответствии с приведенной маркировкой на прилагаемых схемах и сопроводительной документации на эти изделия.

По окончании монтажа провести маркировку шильдиков (бирок-табличек) на каждом терминале согласно эскизам маркировки разъёмов по направлениям.

На внутренней стороне крышки каждого ковера сваркой нанести номер проекта и номер точки, где этот ковер установлен.

По окончании работ проверить сопротивление изоляции и сопротивление петель проводов системы ОДК и результаты измерений оформить актом обследования параметров системы контроля. В этом же акте следует зафиксировать длины сигнальных линий каждого участка трубопровода и соединительных кабелей в каждом измерительном пункте, отдельно для подающего и обратного трубопроводов. Измерения проводить при отключенном детекторе.

Приемка системы ОДК в эксплуатацию.

Приемка системы ОДК должна осуществляться представителями эксплуатирующей организации. В присутствии представителей технического надзора, строительной организации и организации, производившей монтаж и наладку системы ОДК при комплексной проверке, производятся:

Измерение омического сопротивления сигнальных проводников;

Измерение сопротивления изоляции между сигнальными проводниками и рабочей трубой;

Запись рефлектограмм участков теплосети с использованием импульсного рефлектометра для использования в качестве эталонного при эксплуатации. Рекомендуется создать первичный банк данных путём снятия рефлектограмм каждого провода между ближайшими измерительными пунктами со встречных направлений;

Правильности настройки контрольных приборов (локаторов, детекторов) передаваемых в эксплуатацию для данного объекта.

Все данные измерений и исходная информация (длина трубопроводов, длины соединительных кабелей в каждой контрольной точке, и т.п.) заносятся в акт приемки системы ОДК.

Система ОДК считается работоспособной, если сопротивление изоляции между сигнальными проводниками и стальным трубопроводом не ниже 1 МОм на 300 м теплотрассы. Для контроля сопротивления изоляции следует использовать напряжение 250в. Сопротивление петли сигнальных проводников должно быть в пределах 0,012 - 0,015 Ом на каждый метр проводника, включая соединительные кабели.

Правила эксплуатации систем ОДК.

Для оперативного выявления неисправностей систем ОДК необходимо обеспечить регулярный контроль состояния системы.

Контроль состояния системы ОДК должен производится постоянно стационарным детектором. Переносные детекторы применяются только на участках теплотрасс где нет возможности установки стационарного детектора (отсутствие сети 220 в.) или во время производства ремонтных работ. Во время производства ремонтных работ система контроля ремонтируемого участка между ближайшими измерительными пунктами выводится из общей системы. Общая система контроля разделяется на локальные участки. На время ремонта контроль состояния системы ОДК каждого из этих участков, отделённого от стационарного детектора, производится переносным детектором.

Контроль состояния системы ОДК включает:

1. Контроль целостности петли сигнальных проводников.

2. Контроль состояния изоляции контролируемого трубопровода.

При обнаружении неисправности системы ОДК (обрыв или увлажнение) необходимо проверить наличие и правильность подключения разъёмов терминалов во всех точках контроля, после чего провести повторные измерения.

При подтверждении неисправностей систем ОДК теплотрасс, находящихся на гарантии строительной организации (организации, осуществляющей монтаж, наладку и сдачу системы ОДК) эксплуатирующая организация уведомляет о характере неисправности строительную организацию, которая проводит поиск и определение причины неисправности.

Поиск мест повреждений

Поиск мест повреждений осуществляется на принципе отражения импульсов (метод импульсной рефлектометрии). Сигнальный провод, рабочая труба и изоляция между ними образуют двухпроводную линию, обладающую определенными волновыми свойствами. Увлажнение изоляции или обрыв провода приводят к изменению волновых характеристик этой двухпроводной линии. Работы по поиску неисправностей системы контроля осуществляются инструментальным способом с применением импульсного рефлектометра и мегомметра в соответствии с технической документацией на эти приборы. Эти работы состоят из следующих этапов:

1. Определяется единичный участок трубопровода с обрывом сигнального провода или с пониженным сопротивлением изоляции с помощью индикатора (детектора) или мегомметра. Под единичным участком принимается участок теплосети между ближайшими измерительными пунктами.

2. Производится раскоммутация проводов системы ОДК на выделенном участке.

3. Далее производится снятие рефлектограмм каждого провода отдельно со встречных направлений. При наличии первичных рефлектограмм, снятых при сдаче системы ОДК, производится их сравнение с вновь полученными рефлектограммами.

4. Полученные данные накладываются на схему стыков. То есть производится соотношение расстояний по рефлектограммам с расстояниями, имеющимися на схеме стыков.

5. По результатам анализа данных производится откопка трубопровода для проведения ремонтных работ. После откопки возможно проведение контрольных вскрытий изоляции в районе прохождения сигнальных проводов для снятия уточняющей информации.

Виды неисправностей, фиксируемые системой контроля на трубопроводах с ППУ изоляцией.

А. Обрыв сигнального провода

По параметрам системы ОДК характеризуется отсутствием или повышенной величиной сопротивления петли.

1. Механические повреждения внешней изоляции трубопроводов и соединительных кабелей.

2. Усталостный обрыв сигнальных проводов при тепловых циклах в местах механических воздействий (надрезы, надломы, вытягивание и.т.п.)

3. Окисление мест соединения сигнальных проводов внутри внешней изоляции трубопроводов и в местах подсоединения или наращивания соединительных кабелей (отсутствие пайки, перегрев паяного соединения, применение активных флюсов без промывки соединения.)

4. Коммутационные обрывы на терминалах (дефекты паяных соединений, окисление, деформация и усталость пружинных контактов коммутационных разъемов, ослабление винтовых зажимов соединительных колодок).

Б. Намокание ППУ изоляции.

По параметрам системы ОДК характеризуется пониженным сопротивлением изоляции.

1. Негерметичность внешней изоляции.

а. Механические повреждения внешней изоляции и соединительных кабелей (порывы и пробои).

б. Дефекты сварных швов полиэтиленовой оболочки фитингов (не провары, трещины).

в. Негерметичность изоляции стыков (не провары, отсутствие адгезии клеевых материалов).

2.Внутреннее намокание.

а. Дефекты сварных швов стальных труб.

б. Свищи от внутренней коррозии.

В. Замыкание сигнального провода на трубу.

По параметрам системы ОДК характеризуется очень низким сопротивлением изоляции.

Причины:

Разрушение пленки из ППУ компонентов между трубой и сигнальным проводом при тепловых циклах. Производственный дефект - приближение провода к трубе. Обнаружение трудностей не представляет и производится аналогично поиску мест увлажнения.

Рабочий процесс требует дисциплины и порядка. Но как контролировать рабочий персонал без нарушения личностных границ, не распугивать сотрудников и получить пользу?

В этой статье попробуем разобраться: какие проблемы возникают у руководителей при отсутствии контроля, как контролировать сотрудников и какие при этом ошибки совершают руководители.

1. Отсутствие контроля

Проблемы, которые возникают у компании при отсутствии контроля:

  • Опоздания на работу; частые перекуры и чаепития;
  • Некачественное выполнение работы;
  • Сотрудники срывают сроки выполнения работы;
  • Низкая продуктивность работы, как одного сотрудника, так и всего персонала;
  • Отсутствие четкого распорядка дня – рабочее время, обед, конференции, собрания.

2. Как контролировать сотрудников

Выделяем три распространенных метода контроля за сотрудниками:

  • Журналы учета
  • Видеонаблюдение
  • Программы контроля

Журналы учета

Простой и недорогой метод контроля. Как он работает: ведется журнал, в котором отмечается время прихода и ухода сотрудника. С помощью этого метода контроля руководитель получает информацию о том, опаздывает работник или нет, как часто покидает рабочее место по личным делам и когда уходит с работы. Минус такого метода контроля в том, что руководитель не сможет знать занимается ли он решением задач в рабочее время.

Видеонаблюдение

Распространенный прием контроля персонала. Как он работает: видеокамера фиксирует приход и уход сотрудника, пребывание в офисе и на своем рабочем месте. Но этот метод не будет работать эффективно, если сотрудник работает за компьютером. Камера не сможет зафиксировать занят он рабочими задачами, чтением новостей или раскладыванием пасьянса.

Программы дистанционного контроля

Популярный способ контроля. Плюс таких программ в том, что они устанавливаются на рабочие компьютеры, фиксируют всю рабочую и нерабочую информацию и передает её руководителю. Такой вид контроля помогает получить сведения о том, когда сотрудник присутствует/отсутствует на работе, чем он занят, какие задачи решает и сколько времени уходит на его перерывы и кофе.

3. Ошибки контроля персонала, которые допускают руководители

Выбранный руководителем метод контроля при неправильном подходе может привести к негативным последствиям.

Четыре классические ошибки контроля, которые допускают руководители:

  • Непонятный контроль. Руководитель проверяет своих подчиненных, но совершенно не понимает содержания рабочего процесса.

Например, менеджер не сможет контролировать технический процесс самостоятельно, юрист не сможет проверить работу бухгалтера, а программист – деятельность редактора. В таком случае лучше доверить контроль специалисту в этой сфере.

  • Контроль, который переходит в конфликтные ситуации. Руководитель контролирует процесс, но замечает лишь ошибки работника и при первой возможности указываете ему на них? Ни один нормальный человек не выдержит, если вы будете его только «шпынять». Контроль должен быть системным, а не пугающим и угнетающим.
  • Скрытый контроль, который переходит в явный при обнаружении нарушений. Если руководитель устанавливает систему контроля скрытно, то не стоит при первой же ошибке «выскакивать из-за кустов» с криком «Ага!!! Попался!». Такие «выскакивания» могут только усилить негативную реакцию сотрудника и целого коллектива. Узнав о скрытой слежке работники и так будут переживать и стараться сделать работу качественно. А если руководитель заметил вопиющие нарушения в работе, можно всегда это обсудить.
  • Формальный контроль – это контроль без конкретных действий и требований к работнику.

Например, когда руководитель отдела поручает задание менеджеру и говорит «Смотри у меня, я все проконтролирую», но на практике ничего не делает. Тогда менеджер понимает, что его работу не проверяют и можно схалтурить. Такой недоконтроль негативно сказывается на работе не только отдела, но и всей компании.

Вывод

Правильная организация контроля за сотрудниками позволит решить проблемы с дисциплиной, выявить изъяны в рабочем процессе и настроить коллектив на продуктивную работу.

Никки Бишоп (Nikki Bishop) – [email protected], Аарон Круз (Aaron Crews) - [email protected]

Автоматизированный контроль ключевых технологических активов повышает надежность производственного оборудования и сокращает издержки на его техническое обслуживание. Дистанционный контроль обеспечивает мгновенную передачу сигналов предупреждения, удаленную диагностику и позволяет круглосуточно отслеживать состояние ключевых технологических активов.

Развитие коммуникационных технологий в последние годы позволило мгновенно устанавливать связь с кем угодно практически в любой точке мира. Эти технологии можно также применять в заводских цехах для того, чтобы находящееся там оборудование могло сообщать о своем состоянии персоналу. Теперь производственные активы могут «общаться» с диспетчерской. Более того, нужный человек получит оповещение именно тогда, когда оборудованию необходимо уделить внимание.

Но прежде чем перейти к обсуждению дистанционного контроля, необходимо рассмотреть вопрос о том, как выбрать наиболее эффективную стратегию контроля технологических активов. Правильная стратегия автоматизированного мониторинга - это фундамент, на котором строится инфраструктура эффективного дистанционного контроля (рис. 1).

Рис. 1. Автоматизированный контроль позволяет точно и эффективно планировать ремонты

Не секрет, что правильная стратегия профилактического технического обслуживания повышает общую надежность и помогает достичь установленных целевых показателей эксплуатационной готовности производства. Однако не все стратегии профилактического обслуживания дают одинаковый результат. Профилактическое техническое обслуживание, основанное на периодическом и, возможно, нечастом сборе данных, не предоставляет полной информации о работоспособности активов в реальном времени. Периодические данные могут появляться в результате «обходов с планшетом», когда сотрудники через определенные интервалы времени отправляются на места эксплуатации оборудования, чтобы вручную собрать данные. Это может происходить раз в смену, раз в сутки, а может быть и еще реже.

Такой способ обеспечивает получение лишь «моментального снимка» данных о состоянии оборудования, и раннего предупреждения о надвигающихся проблемах может не произойти. Более того, отправка сотрудников для сбора данных вручную на места, где эксплуатируется оборудование, может угрожать их безопасности.

При слабом или полном отсутствии понимания, какие производственные активы на самом деле нуждаются во внимании, возможна ситуация, когда ресурсы тратятся на обслуживание оборудования, которому оно не требуется. Исследования показали, что более 60% обычных выездов технических специалистов по проверке контрольно-измерительных приборов либо не приводят ни к каким действиям, либо приводят к незначительным изменениям конфигурации, которые можно было бы провести, не выезжая на место.

Секреты эффективного техобслуживания

Автоматизированный контроль обеспечивает индикацию работоспособности производственных активов в режиме реального времени и позволяет определять условия технологического процесса, которые могут непреднамеренно или без ведома персонала привести к неисправности оборудования. Операторы вносят корректировки в работу оборудования, связанного с технологическим процессом, что позволяет избежать его отказов. При наличии развитой системы предупреждения персонал, осуществляющий техническое обслуживание, может работать именно с тем оборудованием, которое в нем на самом деле нуждается, а не терять время на поиски проблем, проводя контроль вручную.

Оценка важности того или иного технологического актива часто определяет и подход к управлению. Если контроль (и защита) в реальном времени критически важного оборудования, такого как большие компрессоры или турбины, является обычной практикой на многих производственных площадках, то онлайн-контроль оборудования второго уровня, такого как насосы, теплообменники, вентиляторные установки, небольшие компрессоры, градирни и теплообменники с воздушным охлаждением (с вентиляторами и оребрением), традиционно считается чрезмерно дорогим, чтобы его реализовывать, или слишком сложным. Даже несмотря на то, что эти не охваченные контролем или контролируемые вручную активы могут быть изначально не классифицированы как «критические», их выход из строя или неисправность может привести к серьезному нарушению технологического процесса или его остановке. В результате - простой и возросшая нагрузка на персонал производственного участка, который будет вынужден заняться внеплановым неотложным ремонтом. Такие активы можно назвать «ключевыми технологическими активами» (рис. 2).

Рис. 2. Ключевые активы обычно не имеют уже установленных систем контроля, но последствия их отказов могут быть серьезными

Решения по контролю в режиме реального времени повышают их общую надежность, одновременно сокращая издержки на техническое обслуживание.

Слагаемые эффективного контроля технологических активов

Контроль технологических активов - это не только сбор данных (рис. 3). Сбор информации, прежде всего, закладывает основу для стратегии контроля активов. Можно использовать существующие средства измерения или легко добавить новые беспроводные каналы измерения. После того как инфраструктура измерений создана, предварительно разработанные решения контроля (используются в режиме «подключи и работай», Plug&Play) принимают необработанные данные и посредством анализа преобразуют их в содержательные предупреждающие сигналы. Данные о технологическом процессе и активах можно объединять для определения условий, которые могут привести к неисправности оборудования. Можно скорректировать условия технологического процесса таким образом, чтобы вовсе исключить подобный вид отказов.

Рис. 3. Cбора данных недостаточно для эффективного контроля. Чтобы программа успешно работала, необходимо сочетание сбора данных, анализа, информированности и действий

Предупреждающие сигналы, которые формируются путем анализа данных и их объединения, полезны только в том случае, если они вовремя доходят до тех сотрудников, которым они предназначены. Организация процесса информирования - очень важная составляющая автоматизированной системы контроля. Подобной информированности можно достичь разными способами, наиболее эффективный из которых - автоматическое оповещение. Предупреждающие сигналы в форме текстовых сообщений или электронной почты гарантируют, что информация сразу же дойдет до нужного человека.

После того как предупреждающий сигнал принят, ответственный сотрудник приступает к решению возникших проблем. Удаленный доступ через планшетный компьютер или смартфон позволяет практически мгновенно провести диагностику и начать действовать. При необходимости можно оповестить узких специалистов, которые смогут также дистанционно войти в систему и оказать помощь в диагностике проблемы. Благодаря автоматизированной системе оповещения возможно также периодическое формирование и рассылка отчетов. Эти отчеты могут включать в себя тенденции, отражающие изменение эксплуатационной готовности активов, по которым можно увидеть ухудшение работы и предотвратить приближающийся отказ.

Таким образом, автоматизированный мониторинг в сочетании с автоматически формируемыми сигналами предупреждения и возможностью дистанционного доступа представляет собой мощное средство контроля эксплуатационных характеристик технологических активов.

Критические производственные активы и дистанционный контроль в действии

Одной из площадок, где реализованы преимущества дистанционного контроля технологических активов, является университетский исследовательский городок Дж. Дж. Пикла Техасского университета в Остине (США). Здесь реализуется исследовательская программа Separations, в которой участвуют представители промышленности и ученые. В рамках программы проводятся фундаментальные исследования для химических, биотехнологических, нефте- и газоперерабатывающих, фармацевтических и пищевых компаний.

В настоящее время один из исследовательских проектов Separations - удаление углекислого газа из дымовых газов. Этот технологический процесс включает в себя абсорбционную и отпарную колонны и связанное с ними оборудование: насосы, вентиляторы и теплообменники. Технологический процесс не предполагает резервирования оборудования, поэтому важно наладить его надлежащее техническое обслуживание и поддержку рабочего состояния. Потеря одного элемента означает остановку всего технологического процесса до завершения ремонта.

Чтобы снизить риск внепланового простоя, были успешно внедрены стратегии контроля критических активов для насосов, теплообменников и вентиляторов. Теперь персонал получает информацию о работоспособности производственных активов в режиме реального времени и контролирует условия технологического процесса (рис. 4). Когда они становятся такими, что могут привести к ухудшению работоспособности оборудования, предпринимаются корректирующие действия, призванные не допустить повреждения или отказа в дальнейшем. Например, сигналы предупреждения об усиливающейся вибрации говорят о надвигающихся отказах и дают время на проведение обслуживания до того, как такие отказы произойдут.

Рис. 4. Беспроводной датчик вибрации, установленный на насосе, обеспечивает ценными данными автоматизированную систему контроля

Для обеспечения своевременной передачи сигналов предупреждения надлежащим сотрудникам ученые Техасского университета сделали еще один шаг вперед, создав инфраструктуру дистанционного контроля. Предупреждающие сигналы о таких событиях, как засорение теплообменника, обнаружение резонансной частоты вращения, утечки углеводородов и кавитации насоса, могут автоматически направляться персоналу на производственной площадке, а также удаленным экспертам (узкоспециализированным опытным специалистам), когда состояние, приводящее к отказу, еще только начинает проявлять себя.

Помимо мониторинга оборудования технологического процесса, система дистанционного контроля, известная как система интеллектуальных центров управления (Intelligent Operations Center, iOps), проверяет исправность системы управления и выдает такие сигналы предупреждения, как, например, сигнал о перегруженном ПК или отказавшем резервном контроллере. Эти предупреждающие сигналы автоматически могут быть отправлены текстовым сообщением или на электронную почту. Через удаленное соединение эксперты могут дистанционно оказывать помощь в диагностике проблем оборудования и помогать в проведении соответствующих корректирующих мероприятий. Входить в систему они могут, используя защищенный доступ к виртуальной частной сети. При доступе в систему с помощью планшетного компьютера или смартфона функции диагностики становятся доступны мгновенно.

Используя инфраструктуру дистанционного контроля, можно периодически формировать отчеты в соответствии с потребностями заказчика и автоматически рассылать их. Эти отчеты содержат тенденции изменения работоспособности технологических активов и систем и ясно указывают на то, какое оборудование или системы требуют внимания. В Техасском университете удаленные эксперты снабжены информацией и готовы принять меры при возникновении неблагоприятных условий, будь то кавитация в насосе или перегрузка ПК. Это и можно назвать автоматизированным дистанционным контролем.

На рис. 5 показан процесс дистанционного контроля, реализованный в Техасском университете. В центре рисунка - производственная установка и диспетчерская с операторами. Стратегии контроля реализованы для насосов, теплообменников и вентиляторов, и эти решения используют данные от работающего оборудования, чтобы формировать предупреждающие сигналы и передавать их в диспетчерскую. Но что происходит, если оператор не в диспетчерской или он отвлекся от экрана? Даже если оператора нет на месте, центр iOps способен круглосуточно контролировать любые предупреждающие сигналы посредством установленных средств дистанционного контроля.

Рис. 5. Процесс автоматизированного дистанционного контроля, реализованный в Техасском университете

Если имеется проблема с насосом, например кавитация, система контроля ключевых технологических активов обнаружит ее, собрав, объединив и проанализировав данные об оборудовании и технологическом процессе. Предупреждающий сигнал и информация о работоспособности оборудования в процентном значении будут направлены в устройство дистанционного контроля, а затем в центр iOps, после чего центр связывается с местной службой на объекте, а при необходимости и с удаленным экспертом. Эксперт входит в систему, диагностирует проблему и предлагает меры по исправлению ситуации. Совместно с местной службой они определяют необходимые действия, а затем оператор в Остине выполняет корректирующие мероприятия и устраняет неисправность, прежде чем она превратится в отказ. Такой способ гарантирует, что неисправность не останется незамеченной и проблемы будут решаться быстро и эффективно.

* * *
При использовании новейших достижений в области беспроводных систем и технологий связи эра дистанционного онлайнового контроля производственного оборудования становится реальностью. Беспроводные технологии позволяют легко и экономично добавлять недостающие каналы измерения для ключевых технологических активов. Системы контроля работают по типу Plug&Play и обеспечивают простой сбор и анализ данных. Дистанционный контроль и автоматизированные предупреждающие сигналы гарантируют, что сигналы, сформированные системами контроля, не пропадут и корректирующие мероприятия будут проведены до возникновения незапланированного простоя из-за отказа оборудования.

Более подробная информация об управлении технологическими активами предприятия и системе управления размещена на сайте www.emersonprocess.com/ru/DeltaV .

Emerson Process Management, одно из подразделений Emerson, работает в области автоматизации технологических процессов производства для различных отраслей промышленности. Компания разрабатывает и производит инновационные продукты и технологии, консультирует, проектирует, осуществляет управление проектами и сервисное обслуживание для максимально эффективной работы предприятия.